AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025300306
REVIEW ARTICLE

Bioprinting strategies for skeletal muscle regeneration: Advances in bioinks, technologies, and functional reconstruction

Xiaoguang Liu1,2† Miaomiao Xu3,4† Huiguo Wang1,2 Lin Zhu1,5*
Show Less
1 Department of Exercise Physiology, College of Sports and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
2 Key Laboratory of Exercise and Youth Physical Fitness, Research Center for Innovative Development of Sports and Healthcare Integration, Guangzhou Sport University, Guangzhou, Guangdong, China
3 Department of Social Sports, College of Physical Education, Guangdong University of Education, Guangzhou, Guangdong, China
4 Department of Sports Medicine, School of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
5 Department of Sports Training, Innovative Research Center for Sports Science in the Guangdong- Hong Kong-Macao Greater Bay Area, Guangzhou Sport University, Guangzhou, Guangdong, China
†These authors contributed equally to this work.
Received: 25 July 2025 | Accepted: 18 August 2025 | Published online: 19 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Volumetric muscle loss (VML) presents a significant clinical challenge because the intrinsic regenerative capacity of skeletal muscle is insufficient to repair extensive defects, and current therapeutic strategies remain inadequate. Bioprinting has emerged as a transformative approach, enabling the spatially controlled deposition of cells, biomaterials, and biochemical cues to create functional, biomimetic muscle tissues. This review offers a comprehensive overview of recent advancements in bioink development, bioprinting technologies, and functional reconstruction strategies for skeletal muscle regeneration. Bioinks derived from natural, synthetic, and composite materials are examined in terms of their effectiveness in supporting myogenesis, promoting cellular alignment, and facilitating neurovascular integration. We compare key bioprinting techniques—including extrusion-based, inkjet, and laser-assisted printing—highlighting their respective strengths and limitations in achieving structural fidelity and multicellular complexity. Emerging technologies such as coaxial and microfluidic-assisted printing are also discussed for their potential to fabricate aligned, anisotropic muscle constructs with hierarchical architectures. Functional outcomes are synthesized from in vitro assays (e.g., contractility, gene expression) and in vivo studies using VML models, with a focus on vascularization, innervation, and force restoration. Despite significant progress, substantial challenges remain in achieving complete neurovascular integration, long-term functionality, and clinical scalability. Moving forward, future efforts should emphasize the development of dynamic, bioresponsive materials, integration with electrical and mechanical stimulation, and the establishment of standardized preclinical protocols. By bridging material innovation, structural design, and biological functionality, bioprinting holds great promise for next-generation, clinically relevant skeletal muscle regeneration.

Graphical abstract
Keywords
3D bioprinting
Hydrogel bioinks
Muscle tissue engineering
Myogenesis
Regenerative medicine
Funding
This work was supported by the New type of Regular Higher Education Institutions Think Tanks in Guangdong Province (grant number: 2024TSZK017 to LZ); the National Natural Science Foundation of China (grant number: 32300964 to XL); the Guangdong Basic and Applied Basic Research Foundation (grant number: 2022A1515111105 to XL); the Guangdong Provincial Sports Bureau 2024–2025 Science and Technology Innovation and Sports Culture Development Research Project (grant number: GDSS2024N010 to MX), and the 2025 First-Class Discipline Capacity Enhancement Project in Sports Science (“Guben” Program), Guangzhou University of Chinese Medicine (No. 7 to MX).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Relaix F, Bencze M, Borok MJ, et al. Perspectives on skeletal muscle stem cells. Nat Commun. 2021;12(1):692. doi: 10.1038/s41467-020-20760-6
  2. Judson RN, Rossi FMV. Towards stem cell therapies for skeletal muscle repair. NJP Regen Med. 2020;5(1):10. doi: 10.1038/s41536-020-0094-3
  3. Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Bio. 2022;23(3):204-226. doi: 10.1038/s41580-021-00421-2
  4. Qi L, Zhang F, Wang K, et al. Advancements in skeletal muscle tissue engineering: Strategies for repair and regeneration of skeletal muscle beyond self-repair. Regen Biomater. 2025;12:rbaf050. doi: 10.1093/rb/rbaf050
  5. Maimaiti D, Ge X, Wang C, et al. Extracellular matrix-mimicking cryogels composed of methacrylated fucoidan enhance vascularized skeletal muscle regeneration following volumetric muscle loss. Int J Biol Macromol. 2024;283:137122. doi: 10.1016/j.ijbiomac.2024.137122
  6. Sonaye SY, Sikder P. Bioengineered constructs as a tissue engineering-based therapy for volumetric muscle loss. Tissue Eng Part B Rev. 2025. doi: 10.1089/ten.teb.2025.0017
  7. Cai CW, Grey JA, Hubmacher D, Han WM. Biomaterial-based regenerative strategies for volumetric muscle loss: challenges and solutions. Adv Wound Care. 2025;14(3):159-175. doi: 10.1089/wound.2024.0079
  8. Edouard P, Reurink G, Mackey AL, et al. Traumatic muscle injury. Nat Rev Dis Primers. 2023;9(1):56. doi: 10.1038/s41572-023-00469-8
  9. SantAnna JPC, Pedrinelli A, Hernandez AJ, Fernandes TL. Muscle injury: pathophysiology, diagnosis, and treatment. Rev Bras Ortop. 2022;57(1):1-13. doi: 10.1055/s-0041-1731417
  10. Topaloğlu H, Poorshiri B. The congenital muscular dystrophies. Ann Child Neurol Soc. 2024;2(1):27-39. doi: 10.1002/cns3.20050
  11. Ostojic M, Indelli PF, Lovrekovic B, et al. Graft selection in anterior cruciate ligament reconstruction: a comprehensive review of current trends. Medicina. 2024;60(12):2090. doi: 10.3390/medicina60122090
  12. Gahlawat S, Oruc D, Paul N, et al. Tissue engineered 3D constructs for volumetric muscle loss. Ann Biomed Eng. 2024;52(9):2325-2347. doi: 10.1007/s10439-024-03541-w
  13. Boyer O, Butler-Browne G, Chinoy H, et al. Myogenic cell transplantation in genetic and acquired diseases of skeletal muscle. Front Genet. 2021;12. doi: 10.3389/fgene.2021.702547
  14. Liu H, Cheema U, Player DJ. Photobiomodulation therapy (PBMT) in skeletal muscle regeneration: a comprehensive review of mechanisms, clinical applications, and future directions. Photodiagn Photodyn. 2025;53:104634. doi: 10.1016/j.pdpdt.2025.104634
  15. de Sire A, Marotta N, Lippi L, et al. Pharmacological treatment for acute traumatic musculoskeletal pain in athletes. Medicina. 2021;57(11):1208. doi: 10.3390/medicina57111208
  16. Wei Q, An Y, Zhao X, Li M, Zhang J. Three-dimensional bioprinting of tissue-engineered skin: biomaterials, fabrication techniques, challenging difficulties, and future directions: a review. Int J Biol Macromol. 2024;266:131281. doi: 10.1016/j.ijbiomac.2024.131281
  17. Saini G, Segaran N, Mayer JL, Saini A, Albadawi H, Oklu R. Applications of 3D bioprinting in tissue engineering and regenerative medicine. J Clin Med. 2021;10(21):4966. doi: 10.3390/jcm10214966

 

  1. Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639. doi: 10.1016/j.biomaterials.2022.121639
  2. Samandari M, Quint J, Rodríguez-delaRosa A, Sinha I, Pourquié O, Tamayol A. Bioinks and bioprinting strategies for skeletal muscle tissue engineering. Adv Mater. 2022;34(12):2105883. doi: 10.1002/adma.202105883
  3. Sabetkish S, Currie P, Meagher L. Recent trends in 3D bioprinting technology for skeletal muscle regeneration. Acta Biomater. 2024;181:46-66. doi: 10.1016/j.actbio.2024.04.038
  4. Lee H, Kim W, Lee J, et al. Self-aligned myofibers in 3D bioprinted extracellular matrix-based construct accelerate skeletal muscle function restoration. Appl Phys Rev. 2021;8(2):021405. doi: 10.1063/5.0039639
  5. Sicherer ST, Haque N, Parikh Y, Grasman JM. Current methodologies for inducing aligned myofibers in tissue constructs for skeletal muscle tissue regeneration. Adv Wound Care. 2025;14(2):114-131. doi: 10.1089/wound.2024.0111
  6. Zhang H, Wu C. 3D printing of biomaterials for vascularized and innervated tissue regeneration. Int J Bioprinting. 2023;9(3):706. doi: 10.18063/ijb.706
  7. Thangadurai M, Ajith A, Budharaju H, Sethuraman S, Sundaramurthi D. Advances in electrospinning and 3D bioprinting strategies to enhance functional regeneration of skeletal muscle tissue. Biomater Adv. 2022;142:213135. doi: 10.1016/j.bioadv.2022.213135
  8. Miramini S, Fegan KL, Green NC, Espino DM, Zhang L, Thomas-Seale LEJ. The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing. J Mech Behav Biomed. 2020;103:103544. doi: 10.1016/j.jmbbm.2019.103544
  9. García-Lizarribar A, Villasante A, Lopez-Martin JA, et al. 3D bioprinted functional skeletal muscle models have potential applications for studies of muscle wasting in cancer cachexia. Biomater Adv. 2023;150:213426. doi: 10.1016/j.bioadv.2023.213426
  10. Alave Reyes-Furrer A, De Andrade S, Bachmann D, et al. Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses. Commun Biol. 2021;4(1):1183. doi: 10.1038/s42003-021-02691-0
  11. Mancuso S, Bhalerao A, Cucullo L. Advances and challenges of bioassembly strategies in neurovascular in vitro modeling: an overview of current technologies with a focus on three-dimensional bioprinting. Int J Mol Sci. 2024;25(20):11000. doi: 10.3390/ijms252011000
  12. Lee SJ, Jeong W, Atala A. 3D bioprinting for engineered tissue constructs and patient‐specific models: current progress and prospects in clinical applications. Adv Mater. 2024;36(49):e2408032. doi: 10.1002/adma.202408032
  13. Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: exploring technological potential and regulatory challenges. J Tissue Eng. 2025;16:20417314241308022. doi: 10.1177/20417314241308022
  14. Liu H, Xing F, Yu P, et al. Biomimetic fabrication bioprinting strategies based on decellularized extracellular matrix for musculoskeletal tissue regeneration: current status and future perspectives. Mater Des. 2024;243:113072. doi: 10.1016/j.matdes.2024.113072
  15. Chu J, Lu M, Pfeifer CG, Alt V, Docheva D. Rebuilding tendons: a concise review on the potential of dermal fibroblasts. Cells-basel. 2020;9(9):2047. doi: 10.3390/cells9092047
  16. Stocco TD, Zhang T, Dimitrov E, et al. Carbon nanomaterial-based hydrogels as scaffolds in tissue engineering: a comprehensive review. Int J Nanomed. 2023;18:6153-6183. doi: 10.2147/IJN.S436867
  17. Brooks SV, Guzman SD, Ruiz LP. Skeletal muscle structure, physiology, and function. Handb Clin Neurol. 2023;195:3-16. doi: 10.1016/b978-0-323-98818-6.00013-3
  18. Feng LT, Chen ZN, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm. 2024;5(7):e649. doi: 10.1002/mco2.649
  19. Roy BC, Bruce HL. Contribution of intramuscular connective tissue and its structural components on meat tenderness-revisited: a review. Crit Rev Food Sci. 2024;64(25):9280-9310. doi: 10.1080/10408398.2023.2211671
  20. Sunadome K, Erickson AG, Kah D, et al. Directionality of developing skeletal muscles is set by mechanical forces. Nat Commun. 2023;14(1):3060. doi: 10.1038/s41467-023-38647-7
  21. Wohlgemuth RP, Brashear SE, Smith LR. Alignment, cross linking, and beyond: a collagen architect’s guide to the skeletal muscle extracellular matrix. Am J Physiol Cell Physiol. 2023;325(4):C1017-C1030. doi: 10.1152/ajpcell.00287.2023
  22. Kim W, Kim G. Bioprinting 3D muscle tissue supplemented with endothelial-spheroids for neuromuscular junction model. Appl Phys Rev. 2023;10(3):031410. doi: 10.1063/5.0152924
  23. Rudolf R, Kettelhut IC, Navegantes LCC. Sympathetic innervation in skeletal muscle and its role at the neuromuscular junction. J Muscle Res Cell Motil. 2024;45(2):79-86. doi: 10.1007/s10974-024-09665-9
  24. Poole DC, Kano Y, Koga S, Musch TI. August krogh: muscle capillary function and oxygen delivery. Comp Biochem Physiol A Mol Integr Physiol. 2021;253:110852. doi: 10.1016/j.cbpa.2020.110852
  25. Mondrinos MJ, Alisafaei F, Yi AY, et al. Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. Sci Adv. 2021;7(11):eabe9446. doi: 10.1126/sciadv.abe9446
  26. Ferrara PJ, Yee EM, Petrocelli JJ, et al. Macrophage immunomodulation accelerates skeletal muscle functional recovery in aged mice following disuse atrophy. J Appl Physiol. 2022;133(4):919-931. doi: 10.1152/japplphysiol.00374.2022
  27. Wirth G, Juusola G, Tarvainen S, Laakkonen JP, Korpisalo P, Ylä-Herttuala S. Capillary dynamics regulate post-ischemic muscle damage and regeneration in experimental hindlimb ischemia. Cells Basel. 2023;12(16):2060. doi: 10.3390/cells12162060
  28. Pajalunga D, Crescenzi M. Restoring the cell cycle and proliferation competence in terminally differentiated skeletal muscle myotubes. Cells Basel. 2021;10(10):2753. doi: 10.3390/cells10102753
  29. Fukada S ichiro, Higashimoto T, Kaneshige A. Differences in muscle satellite cell dynamics during muscle hypertrophy and regeneration. Skelet Muscle. 2022;12(1):17. doi: 10.1186/s13395-022-00300-0
  30. Andre AB, Rees KP, O’Connor S, et al. Single cell analysis reveals satellite cell heterogeneity for proinflammatory chemokine expression. Front Cell Dev Biol. 2023;11. doi: 10.3389/fcell.2023.1084068
  31. Zhong T, Gao N, Niu H, et al. Targeted delivery of engineered extracellular vesicles to simultaneously promote vascularization and muscle regeneration in ischemic limbs. J Control Release. 2025;384:113938. doi: 10.1016/j.jconrel.2025.113938
  32. Wang X, Zhou L. The many roles of macrophages in skeletal muscle injury and repair. Front Cell Dev Biol. 2022;10. doi: 10.3389/fcell.2022.952249
  33. Wang X, Zhou L. The multifaceted role of macrophages in homeostatic and injured skeletal muscle. Front Immunol. 2023;14. doi: 10.3389/fimmu.2023.1274816
  34. Zelada D, Bermedo-García F, Collao N, Henríquez JP. Motor function recovery: Deciphering a regenerative niche at the neuromuscular synapse. Biol Rev. 2021;96(2):752-766. doi: 10.1111/brv.12675
  35. Guzman SD, Brooks SV. Skeletal muscle innervation: reactive oxygen species as regulators of neuromuscular junction dynamics and motor unit remodeling. Free Radical Bio Med. 2025;230:58-65. doi: 10.1016/j.freeradbiomed.2025.01.053
  36. Cordelle MZ, Snelling SJB, Mouthuy PA. Skeletal muscle tissue engineering: from tissue regeneration to biorobotics. Cyborg Bionic Syst. 2025;6:0279. doi: 10.34133/cbsystems.0279
  37. Langridge B, Griffin M, Butler PE. Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches. J Mater Sci-mater M. 2021;32(1):15. doi: 10.1007/s10856-020-06476-5
  38. Xing J, Liu N, Xu N, Chen W, Xing D. Engineering complex anisotropic scaffolds beyond simply uniaxial alignment for tissue engineering. Adv Funct Mater. 2022;32(15):2110676. doi: 10.1002/adfm.202110676
  39. Filippi M, Yasa O, Giachino J, et al. Perfusable biohybrid designs for bioprinted skeletal muscle tissue. Adv Healthc Mater. 2023;12(18):2300151. doi: 10.1002/adhm.202300151
  40. Shiwarski DJ, Hudson AR, Tashman JW, et al. 3D bioprinting of collagen-based high-resolution internally perfusable scaffolds for engineering fully biologic tissue systems. Sci Adv. 2025;11(17):eadu5905. doi: 10.1126/sciadv.adu5905
  41. Gordon T. Peripheral nerve regeneration and muscle reinnervation. Int J Mol Sci. 2020;21(22):8652. doi: 10.3390/ijms21228652
  42. Kim JH, Kim I, Seol YJ, et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun. 2020;11(1):1025. doi: 10.1038/s41467-020-14930-9
  43. Christensen KW, Turner J, Coughenour K, et al. Assembled cell-decorated collagen (AC-DC) fiber bioprinted implants with musculoskeletal tissue properties promote functional recovery in volumetric muscle loss. Adv Healthc Mater. 2022;11(3):2101357. doi: 10.1002/adhm.202101357
  44. Park W, Gao G, Cho DW. Tissue-specific decellularized extracellular matrix bioinks for musculoskeletal tissue regeneration and modeling using 3D bioprinting technology. Int J Mol Sci. 2021;22(15):7837. doi: 10.3390/ijms22157837
  45. Cakal SD, Radeke C, Alcala JF, et al. A simple and scalable 3D printing methodology for generating aligned and extended human and murine skeletal muscle tissues. Biomed Mater. 2022;17(4):045013. doi: 10.1088/1748-605X/ac6b71
  46. Volpi M, Paradiso A, Costantini M, Świȩszkowski W. Hydrogel-based fiber biofabrication techniques for skeletal muscle tissue engineering. ACS Biomater Sci Eng. 2022;8(2):379-405. doi: 10.1021/acsbiomaterials.1c01145
  47. Baiguera S, Del Gaudio C, Di Nardo P, Manzari V, Carotenuto F, Teodori L. 3D printing decellularized extracellular matrix to design biomimetic scaffolds for skeletal muscle tissue engineering. BioMed Res Int. 2020;2020(1):2689701. doi: 10.1155/2020/2689701
  48. Bertassoni LE. Bioprinting of complex multicellular organs with advanced functionality—recent progress and challenges ahead. Adv Mater. 2022;34(3):2101321. doi: 10.1002/adma.202101321
  49. Zhuang P, An J, Chua CK, Tan LP. Bioprinting of 3D in vitro skeletal muscle models: a review. Mater Des. 2020;193:108794. doi: 10.1016/j.matdes.2020.108794
  50. Ronzoni FL, Aliberti F, Scocozza F, et al. Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation. J Tissue Eng Regen Med. 2022;16(5):484-495. doi: 10.1002/term.3293
  51. Kim WJ, Kim GH. 3D bioprinting of functional cell-laden bioinks and its application for cell-alignment and maturation. Appl Mater Today. 2020;19:100588. doi: 10.1016/j.apmt.2020.100588
  52. Gilbert-Honick J, Grayson W. Vascularized and innervated skeletal muscle tissue engineering. Adv Healthc Mater. 2020;9(1):1900626. doi: 10.1002/adhm.201900626
  53. Blake C, Massey O, Boyd-Moss M, et al. Replace and repair: biomimetic bioprinting for effective muscle engineering. APL Bioeng. 2021;5(3):031502. doi: 10.1063/5.0040764
  54. Davoodi E, Sarikhani E, Montazerian H, et al. Extrusion and microfluidic-based bioprinting to fabricate biomimetic tissues and organs. Adv Mater Technol. 2020;5(8):1901044. doi: 10.1002/admt.201901044
  55. Abrishamkar A, Nilghaz A, Saadatmand M, Naeimirad M, deMello AJ. Microfluidic-assisted fiber production: potentials, limitations, and prospects. Biomicrofluidics. 2022;16(6):061504. doi: 10.1063/5.0129108
  56. Adhikari J, Roy A, Das A, et al. Effects of processing parameters of 3D bioprinting on the cellular activity of bioinks. Macromol Biosci. 2021;21(1):2000179. doi: 10.1002/mabi.202000179
  57. Ngan CGY, Quigley A, Williams RJ, et al. Matured myofibers in bioprinted constructs with in vivo vascularization and innervation. Gels Basel. 2021;7(4):171. doi: 10.3390/gels7040171
  58. Kang MS, Lee SH, Park WJ, Lee JE, Kim B, Han DW. Advanced techniques for skeletal muscle tissue engineering and regeneration. Bioengineering. 2020;7(3):99. doi: 10.3390/bioengineering7030099
  59. Lee S, Kim W, Kim G. Efficient myogenic activities achieved through blade-casting-assisted bioprinting of aligned myoblasts laden in collagen bioink. Biomacromolecules. 2023;24(11):5219-5229. doi: 10.1021/acs.biomac.3c00749
  60. Xiaorui L, Fuyin Z, Xudong W, et al. Biomaterial inks for extrusion-based 3D bioprinting: Property, classification, modification, and selection. Int J Bioprinting. 2022;9(2):649. doi: 10.18063/ijb.v9i2.649
  61. Smoak MM, Hogan KJ, Grande-Allen KJ, Mikos AG. Bioinspired electrospun dECM scaffolds guide cell growth and control the formation of myotubes. Sci Adv. 2021;7(20):eabg4123. doi: 10.1126/sciadv.abg4123
  62. Hwangbo H, Lee H, Jin EJ, et al. Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration. Bioact Mater. 2022;8(1):57-70. doi: 10.1016/j.bioactmat.2021.06.031
  63. Yang GH, Kim W, Kim J, Kim G. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting. Theranostics. 2021;11(1):48-63. doi: 10.7150/thno.50794
  64. Kim D, Hwangbo H, Kim G. Engineered myoblast-laden collagen filaments fabricated using a submerged bioprinting process to obtain efficient myogenic activities. Biomacromolecules. 2021;22(12):5042-5051. doi: 10.1021/acs.biomac.1c01006
  65. Li S, Dan X, Chen H, et al. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact Mater. 2024;40:597-623. doi: 10.1016/j.bioactmat.2024.08.006
  66. Xuan Z, Peng Q, Larsen T, et al. Tailoring hydrogel composition and stiffness to control smooth muscle cell differentiation in bioprinted constructs. Tissue Eng Regen Med. 2023;20(2):199-212. doi: 10.1007/s13770-022-00500-1
  67. Lou H, Lu H, Zhang S, et al. Highly aligned myotubes formation of piscine satellite cells in 3D fibrin hydrogels of cultured meat. Int J Biol Macromol. 2024;282:136879. doi: 10.1016/j.ijbiomac.2024.136879
  68. Liu J, Song Q, Yin W, et al. Bioactive scaffolds for tissue engineering: a review of decellularized extracellular matrix applications and innovations. Exploration. 2025;5(1):20230078. doi: 10.1002/EXP.20230078
  69. Askari M, Naniz MA, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci. 2021;9(3):535-573. doi: 10.1039/D0BM00973C
  70. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49(1):1-15. doi: 10.1016/j.actbio.2016.11.068
  71. Zhang H, Wang Y, Zheng Z, et al. Strategies for improving the 3D printability of decellularized extracellular matrix bioink. Theranostics. 2023;13(8):2562-2587. doi: 10.7150/thno.81785
  72. Marzi J, Fuhrmann E, Brauchle E, et al. Non-invasive three-dimensional cell analysis in bioinks by Raman imaging. ACS Appl Mater Interfaces. 2022;14(27):30455-30465. doi: 10.1021/acsami.1c24463
  73. Kalva SN, Zakaria Y, Velasquez CA, Koç M. Tailoring the mechanical and degradation properties of 3DP PLA/PCL scaffolds for biomedical applications. Rev Adv Mater Sci. 2025;64(1):12. doi: 10.1515/rams-2025-0098
  74. Dias JR, Sousa A, Augusto A, Bártolo PJ, Granja PL. Electrospun polycaprolactone (PCL) degradation: an in vitro and in vivo study. Polymers Basel. 2022;14(16):3397. doi: 10.3390/polym14163397
  75. Hakim Khalili M, Zhang R, Wilson S, Goel S, Impey SA, Aria AI. Additive manufacturing and physicomechanical characteristics of PEGDA hydrogels: recent advances and perspective for tissue engineering. Polymers Basel. 2023;15(10):2341. doi: 10.3390/polym15102341
  76. Yuan Z, Bai X, Li S, et al. Multimaterial and multidimensional bioprinting in regenerative medicine: advances, limitations, and future directions. Adv Healthc Mater. 2025 14(18):e2500475. doi: 10.1002/adhm.202500475
  77. Sung TC, Wang T, Liu Q, et al. Cell-binding peptides on the material surface guide stem cell fate of adhesion, proliferation and differentiation. J Mater Chem B. 2023; 11(7):1389-1415. doi: 10.1039/D2TB02601E
  78. Cámara-Torres M, Sinha R, Scopece P, et al. Tuning cell behavior on 3D scaffolds fabricated by atmospheric plasma-assisted additive manufacturing. ACS Appl Mater Interfaces. 2021;13(3):3631-3644. doi: 10.1021/acsami.0c19687
  79. Péter B, Boldizsár I, Kovács GM, et al. Natural compounds as target biomolecules in cellular adhesion and migration: from biomolecular stimulation to label-free discovery and bioactivity-based isolation. Biomedicines. 2021;9(12):1781. doi: 10.3390/biomedicines9121781
  80. Bramhe P, Rarokar N, Kumbhalkar R, Saoji S, Khedekar P. Natural and synthetic polymeric hydrogel: a bioink for 3D bioprinting of tissue models. J Drug Deliv Sci Technol. 2024;101:106204. doi: 10.1016/j.jddst.2024.106204
  81. Khoeini R, Nosrati H, Akbarzadeh A, et al. Natural and synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res. 2021;1(8):2000097. doi: 10.1002/anbr.202000097
  82. Kumar S, Tharayil A, Thomas S. 3D bioprinting of nature-inspired hydrogel inks based on synthetic polymers. ACS Appl Polym Mater. 2021;3(8):3685-3701. doi: 10.1021/acsapm.1c00567
  83. Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review. Gels Basel. 2022;8(3):179. doi: 10.3390/gels8030179
  84. Kumar S. Synthetic polymer-derived single-network inks/bioinks for extrusion-based 3D printing towards bioapplications. Mater Adv. 2021;2(21):6928-6941. doi: 10.1039/D1MA00525A
  85. Satchanska G, Davidova S, Petrov PD. Natural and synthetic polymers for biomedical and environmental applications. Polymers Basel. 2024;16(8):1159. doi: 10.3390/polym16081159
  86. Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers Basel. 2021;13(7):1105. doi: 10.3390/polym13071105
  87. Serna JA, Rueda-Gensini L, Céspedes-Valenzuela DN, Cifuentes J, Cruz JC, Muñoz-Camargo C. Recent advances on stimuli-responsive hydrogels based on tissue-derived ECMs and their components: towards improving functionality for tissue engineering and controlled drug delivery. Polymers Basel. 2021;13(19):3263. doi: 10.3390/polym13193263
  88. Tripathi S, Dash M, Chakraborty R, et al. Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications. Biomater Sci. 2025;13(1):93-129. doi: 10.1039/D4BM01192A
  89. Lee G, Kim YH, Kim D, Lee DH, Bhang SH, Lee K. PCL-fibrin-alginate hydrogel based cell co-culture system for improving angiogenesis and immune modulation in limb ischemia. Colloid Surface B. 2025;250:114553. doi: 10.1016/j.colsurfb.2025.114553
  90. Grzelak A, Hnydka A, Higuchi J, et al. Recent achievements in the development of biomaterials improved with platelet concentrates for soft and hard tissue engineering applications. Int J Mol Sci. 2024;25(3):1525. doi: 10.3390/ijms25031525
  91. Xiang Y, Gao Y, Cheng Q, et al. Recombinant collagen coating 3D printed PEGDA hydrogel tube loading with differentiable BMSCs to repair bile duct injury. Colloid Surface B. 2024;241:114064. doi: 10.1016/j.colsurfb.2024.114064
  92. Bartholomew K, Mahapatro A. Rheological characterization and print quality studies of gelatin/collagen I/ PEGDA hydrogels. Int J Polym Mater Polym Biomater. 2025;74(11):975-986. doi: 10.1080/00914037.2024.2391964
  93. Lee J, Lee H, Jin EJ, Ryu D, Kim GH. 3D bioprinting using a new photo-crosslinking method for muscle tissue restoration. NPJ Regen Med. 2023;8(1):18. doi: 10.1038/s41536-023-00292-5
  94. Altunbek M, Afghah F, Caliskan OS, Yoo JJ, Koc B. Design and bioprinting for tissue interfaces. Biofabrication. 2023;15(2):022002. doi: 10.1088/1758-5090/acb73d
  95. Heo G, Kim W, Kim G. Comb-assisted 3D bioprinting for highly aligned 3D muscle bioconstructs with enhanced cellular mechanotransduction. Virtual Phys Prototyp. 2025;20(1):e2499440. doi: 10.1080/17452759.2025.2499440
  96. Zhu Y, Yu X, Liu H, et al. Strategies of functionalized GelMA-based bioinks for bone regeneration: recent advances and future perspectives. Bioact Mater. 2024;38:346-373. doi: 10.1016/j.bioactmat.2024.04.032
  97. Luo W, Zhang H, Wan R, et al. Biomaterials-based technologies in skeletal muscle tissue engineering. Adv Healthc Mater. 2024;13(18):2304196. doi: 10.1002/adhm.202304196
  98. Poerio A, Mashanov V, Lai D, et al. Towards innervation of bioengineered muscle constructs: development of a sustained neurotrophic factor delivery and release system. Bioprinting. 2022;27:e00220. doi: 10.1016/j.bprint.2022.e00220
  99. Sueters J, van Heiningen R, de Vries R, Guler Z, Huirne J, Smit T. Advances in tissue engineering of peripheral nerve and tissue innervation – a systematic review. J Tissue Eng. 2025;16:20417314251316918. doi: 10.1177/20417314251316918
  100. P. Quint J, Samandari M, Abbasi L, et al. Nanoengineered myogenic scaffolds for skeletal muscle tissue engineering. Nanoscale. 2022;14(3):797-814. doi: 10.1039/D1NR06143G
  101. Quint JP, Mostafavi A, Endo Y, et al. In vivo printing of nanoenabled scaffolds for the treatment of skeletal muscle injuries. Adv Healthc Mater. 2021;10(10):e2002152. doi: 10.1002/adhm.202002152
  102. Huang B. Carbon nanotubes and their polymeric composites: the applications in tissue engineering. Biomanuf Rev. 2020;5(1):3. doi: 10.1007/s40898-020-00009-x
  103. Kandhola G, Park S, Lim JW, et al. Nanomaterial-based scaffolds for tissue engineering applications: a review on graphene, carbon nanotubes and nanocellulose. Tissue Eng Regen Med. 2023;20(3):411-433. doi: 10.1007/s13770-023-00530-3
  104. Boularaoui S, Shanti A, Lanotte M, et al. Nanocomposite conductive bioinks based on low-concentration GelMA and MXene nanosheets/gold nanoparticles providing enhanced printability of functional skeletal muscle tissues. ACS Biomater Sci Eng. 2021;7(12):5810-5822. doi: 10.1021/acsbiomaterials.1c01193
  105. Ghaziof S, Shojaei S, Mehdikhani M, Khodaei M, Jafari Nodoushan M. Electro-conductive 3D printed polycaprolactone/gold nanoparticles nanocomposite scaffolds for myocardial tissue engineering. J Mech Behav Biomed. 2022;132:105271. doi: 10.1016/j.jmbbm.2022.105271
  106. Aparicio-Collado JL, García-San-Martín N, Molina-Mateo J, et al. Electroactive calcium-alginate/polycaprolactone/ reduced graphene oxide nanohybrid hydrogels for skeletal muscle tissue engineering. Colloid Surface B. 2022;214:112455. doi: 10.1016/j.colsurfb.2022.112455
  107. Jo SB, Erdenebileg U, Dashnyam K, et al. Nano-graphene oxide/polyurethane nanofibers: mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering. J Tissue Eng. 2020;11: 2041731419900424. doi: 10.1177/2041731419900424
  108. Han S, Cruz SH, Park S, Shin SR. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. Nano Converg. 2023;10(1):48. doi: 10.1186/s40580-023-00398-y
  109. Jo HJ, Kang MS, Heo HJ, et al. Skeletal muscle regeneration with 3D bioprinted hyaluronate/gelatin hydrogels incorporating MXene nanoparticles. Int J Biol Macromol. 2024;265:130696. doi: 10.1016/j.ijbiomac.2024.130696
  110. Liu L, Wang C, Wu Z, Xing Y. Ultralow-voltage-drivable artificial muscles based on a 3D structure MXene- PEDOT:PSS/AgNWs electrode. ACS Appl Mater Interfaces. 2022;14(16):18150-18158. doi: 10.1021/acsami.2c00760
  111. Oldroyd P, Oldroyd S, Meng M, et al. Stretchable device for simultaneous measurements of contractility and electrophysiology of neuromuscular tissue in the gastrointestinal tract. Adv Mater. 2024;36(19):2312735. doi: 10.1002/adma.202312735
  112. Nain A, Chakraborty S, Jain N, et al. 4D hydrogels: fabrication strategies, stimulation mechanisms, and biomedical applications. Biomater Sci. 2024;12(13):3249-3272. doi: 10.1039/D3BM02044D
  113. Arif ZU, Khalid MY, Zolfagharian A, Bodaghi M. 4D bioprinting of smart polymers for biomedical applications: Recent progress, challenges, and future perspectives. React Funct Polym. 2022;179:105374. doi: 10.1016/j.reactfunctpolym.2022.105374
  114. Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D printing strategies for next-generation tissue regeneration and medical devices. Adv Mater. 2022;34(20):2109198. doi: 10.1002/adma.202109198
  115. Fuentes J, Guix M, Cenev ZM, et al. Ferrofluid-based bioink for 3D printed skeletal muscle tissues with enhanced force and magnetic response. Adv Mater Interfaces. 2025;12(13):2400824. doi: 10.1002/admi.202400824
  116. Tuftee C, Alsberg E, Ozbolat IT, Rizwan M. Emerging granular hydrogel bioinks to improve biological function in bioprinted constructs. Trends Biotechnol. 2024;42(3):339-352. doi: 10.1016/j.tibtech.2023.09.007
  117. Zhang S, Li G, Man J, et al. Fabrication of microspheres from high-viscosity bioink using a novel microfluidic-based 3D bioprinting nozzle. Micromachines Basel. 2020;11(7):681. doi: 10.3390/mi11070681
  118. Yang J, Zhang X, Xie J, et al. Porous mullite ceramics with hierarchical pores constructed via vat photopolymerization of multi-phase pickering emulsion. Addit Manuf. 2024;79:103943. doi: 10.1016/j.addma.2023.103943
  119. Tuladhar S, Clark S, Habib A. Tuning shear thinning factors of 3D bio-printable hydrogels using short fiber. Materials. 2023;16(2):572. doi: 10.3390/ma16020572
  120. Sánchez-Sánchez R, Rodríguez-Rego JM, Macías-García A, Mendoza-Cerezo L, Díaz-Parralejo A. Relationship between shear-thinning rheological properties of bioinks and bioprinting parameters. Int J Bioprinting. 2023;9(2):687. doi: 10.18063/ijb.687
  121. de Barros NR, Darabi MA, Ma X, et al. Enhanced maturation of 3D bioprinted skeletal muscle tissue constructs encapsulating soluble factor-releasing microparticles. Macromol Biosci. 2023;23(12):e2300276. doi: 10.1002/mabi.202300276
  122. Cho S, Jang J. Recent trends in biofabrication technologies for studying skeletal muscle tissue-related diseases. Front Bioeng Biotechnol. 2021;9. doi: 10.3389/fbioe.2021.782333
  123. Fornetti E, De Paolis F, Fuoco C, et al. A novel extrusion-based 3D bioprinting system for skeletal muscle tissue engineering. Biofabrication. 2023;15(2):025009. doi: 10.1088/1758-5090/acb573
  124. Zhan Y, Jiang W, Liu Z, Wang Z, Guo K, Sun J. Utilizing bioprinting to engineer spatially organized tissues from the bottom-up. Stem Cell Res Ther. 2024;15(1):101. doi: 10.1186/s13287-024-03712-5
  125. Zoghi S. Advancements in tissue engineering: a review of bioprinting techniques, scaffolds, and bioinks. Biomed Eng Comput Biol. 2024;15:11795972241288099. doi: 10.1177/11795972241288099
  126. Sonaye SY, Ertugral EG, Kothapalli CR, Sikder P. Extrusion 3D (bio)printing of alginate-gelatin-based composite scaffolds for skeletal muscle tissue engineering. Materials. 2022;15(22):7945. doi: 10.3390/ma15227945
  127. Malekpour A, Chen X. Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views. J Funct Biomater. 2022;13(2):40. doi: 10.3390/jfb13020040
  128. McCauley PJ, Fromen CA, Bayles AV. Cell viability in extrusion bioprinting: The impact of process parameters, bioink rheology, and cell mechanics. Rheol Acta. 2025. doi: 10.1007/s00397-025-01504-z
  129. Betancourt N, Chen X. Review of extrusion-based multi-material bioprinting processes. Bioprinting. 2022;25:e00189. doi: 10.1016/j.bprint.2021.e00189
  130. Rossi A, Pescara T, Gambelli AM, et al. Biomaterials for extrusion-based bioprinting and biomedical applications. Front Bioeng Biotechnol. 2024;12:1393641. doi: 10.3389/fbioe.2024.1393641
  131. Müller SJ, Fabry B, Gekle S. Predicting cell stress and strain during extrusion bioprinting. Phys Rev Appl. 2023;19(6):064061. doi: 10.1103/PhysRevApplied.19.064061
  132. Lombardi L, Scalzone A, Ausilio C, Gentile P, Tammaro D. Optimizing nozzle design in extrusion-based 3D bioprinting to minimize mechanical stress and enhance cell viability. Int J Bioprinting. 2025:e025190182. doi: 10.36922/IJB025190182
  133. Reina-Romo E, Mandal S, Amorim P, Bloemen V, Ferraris E, Geris L. Towards the experimentally-informed in silico nozzle design optimization for extrusion-based bioprinting of shear-thinning hydrogels. Front Bioeng Biotechnol. 2021;9:701778. doi: 10.3389/fbioe.2021.701778
  134. Rasouli R, Sweeney C, Frampton JP. Heterogeneous and composite bioinks for 3D-bioprinting of complex tissue. Biomed Mater Devices. 2025;3(1):108-126. doi: 10.1007/s44174-024-00171-7
  135. Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting – an emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater. 2024;32:356-384. doi: 10.1016/j.bioactmat.2023.10.012
  136. Kumar P, Ebbens S, Zhao X. Inkjet printing of mammalian cells – theory and applications. Bioprinting. 2021;23:e00157. doi: 10.1016/j.bprint.2021.e00157
  137. Guida L, Cavallaro M, Levi M. Advancements in high-resolution 3D bioprinting: Exploring technological trends, bioinks and achieved resolutions. Bioprinting. 2024;44:e00376. doi: 10.1016/j.bprint.2024.e00376
  138. Huang J, Zhou G, Jiang Q, Li L. In situ 3D bioprinting: the future of regenerative medicine. Fundam Res. 2025. doi: 10.1016/j.fmre.2025.06.004
  139. Ng WL, Shkolnikov V. Optimizing cell deposition for inkjet-based bioprinting. Int J Bioprinting. 2024;10(2):2135. doi: 10.36922/ijb.2135
  140. Cheng C, Williamson EJ, Chiu GTC, Han B. Engineering biomaterials by inkjet printing of hydrogels with functional particulates. Med-X. 2024;2(1):9. doi: 10.1007/s44258-024-00024-4
  141. Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res 2022;9(1):70. doi: 10.1186/s40779-022-00429-5
  142. Ghosh E, Rego GP, Ghosh RN, et al. Advances in in situ bioprinting: a focus on extrusion and inkjet-based bioprinting techniques. Regen Eng Transl Med. 2025. doi: 10.1007/s40883-025-00420-1
  143. Chang J, Sun X. Laser-induced forward transfer based laser bioprinting in biomedical applications. Front Bioeng Biotechnol. 2023;11:1255782. doi: 10.3389/fbioe.2023.1255782
  144. Kryou C, Zergioti I. Laser-induced forward transfer on regenerative medicine applications. Biomed Mater Devices. 2023;1(1):5-20. doi: 10.1007/s44174-022-00040-1
  145. Leberfinger AN, Dinda S, Wu Y, et al. Bioprinting functional tissues. Acta Biomater. 2019;95(1):32-49. doi: 10.1016/j.actbio.2019.01.009
  146. Bosmans C, Ginés Rodriguez N, Karperien M, et al. Towards single-cell bioprinting: micropatterning tools for organ-on-chip development. Trends Biotechnol. 2024;42(6):739-759. doi: 10.1016/j.tibtech.2023.11.014
  147. Sun J, Gong Y, He Y, et al. Process optimization for coaxial extrusion-based bioprinting: a comprehensive analysis of material behavior, structural precision, and cell viability. Addit Manuf. 2025;100:104682. doi: 10.1016/j.addma.2025.104682
  148. Mohan TS, Datta P, Nesaei S, Ozbolat V, Ozbolat IT. 3D coaxial bioprinting: process mechanisms, bioinks and applications. Prog Biomed Eng (Bristol). 2022;4(2):022003. doi: 10.1088/2516-1091/ac631c
  149. Eghosasere E, Osasumwen E, Emmanuella O. 3D bioprinting in tissue engineering: Advancements, challenges, and pathways to clinical translation. JSM Regen Med Bioeng. 2025;7(1):1-15. doi: 10.47739/2379-0490/1023
  150. Volpi M, Paradiso A, Walejewska E, Gargioli C, Costantini M, Swieszkowski W. Automated microfluidics-assisted hydrogel-based wet-spinning for the biofabrication of biomimetic engineered myotendinous junction. Adv Healthc Mater. 2024;13(32):e2402075. doi: 10.1002/adhm.202402075
  151. Mohammadi S, Cidonio G. Unravelling hierarchical patterning of biomaterial inks with 3D microfluidic-assisted spinning: a paradigm shift in bioprinting technologies. Front Biomater Sci. 2023;2:1279061. doi: 10.3389/fbiom.2023.1279061
  152. Serpe F, Casciola CM, Ruocco G, Cidonio G, Scognamiglio C. Microfluidic fiber spinning for 3D bioprinting: harnessing microchannels to build macrotissues. Int J Bioprinting. 2024;10(1):1404. doi: 10.36922/ijb.1404
  153. Hosseinabadi HG, Dogan E, Miri AK, Ionov L. Digital light processing bioprinting advances for micro-tissue models. ACS Biomater Sci Eng. 2022;8(4):1381-1395. doi: 10.1021/acsbiomaterials.1c01509
  154. Jeong YG, Yoo JJ, Lee SJ, Kim MS. 3D digital light process bioprinting: cutting-edge platforms for resolution of organ fabrication. Mater Today Bio. 2024;29:101284. doi: 10.1016/j.mtbio.2024.101284
  155. Seo JW, Kim GM, Choi Y, Cha JM, Bae H. Improving printability of digital-light-processing 3D bioprinting via photoabsorber pigment adjustment. Int J Mol Sci. 2022;23(10):5428. doi: 10.3390/ijms23105428
  156. Karakaidos P, Kryou C, Simigdala N, Klinakis A, Zergioti I. Laser bioprinting of cells using UV and visible wavelengths: a comparative DNA damage study. Bioengineering. 2022;9(8):378. doi: 10.3390/bioengineering9080378
  157. Silva C, Cortés-Rodriguez CJ, Hazur J, Reakasame S, Boccaccini AR. Rational design of a triple-layered coaxial extruder system: in silico and in vitro evaluations directed toward optimizing cell viability. Int J Bioprinting. 2020;6(4):282. doi: 10.18063/ijb.v6i4.282
  158. Zhang P, Liu C, Modavi C, Abate A, Chen H. Printhead on a chip: empowering droplet-based bioprinting with microfluidics. Trends Biotechnol. 2024;42(3):353-368. doi: 10.1016/j.tibtech.2023.09.001
  159. Duong VT, Lin CC. Digital light processing 3D bioprinting of gelatin-norbornene hydrogel for enhanced vascularization. Macromol Biosci. 2023;23(12):e2300213. doi: 10.1002/mabi.202300213
  160. Cao T, Warren CR. From 2D myotube cultures to 3D engineered skeletal muscle constructs: a comprehensive review of in vitro skeletal muscle models and disease modeling applications. Cells Basel. 2025;14(12):882. doi: 10.3390/cells14120882
  161. Kim J, Lee H, Lee G, Ryu D, Kim G. Fabrication of fully aligned self-assembled cell-laden collagen filaments for tissue engineering via a hybrid bioprinting process. Bioact Mater. 2024;36:14-29. doi: 10.1016/j.bioactmat.2024.02.020
  162. Hwangbo H, Koo Y, Nacionales F, Kim J, Chae S, Kim GH. Stimulus-assisted in situ bioprinting: advancing direct bench-to-bedside delivery. Trends Biotechnol. 2025;43(5):1015-1030. doi: 10.1016/j.tibtech.2024.11.001
  163. Hwangbo H, Chae S, Ryu D, Kim G. In situ magnetic-field-assisted bioprinting process using magnetorheological bioink to obtain engineered muscle constructs. Bioact Mater. 2025;45:417-433. doi: 10.1016/j.bioactmat.2024.11.035
  164. Gao H, Xiao J, Wei Y, Wang H, Wan H, Liu S. Regulation of myogenic differentiation by topologically microgrooved surfaces for skeletal muscle tissue engineering. ACS Omega. 2021;6(32):20931-20940. doi: 10.1021/acsomega.1c02347
  165. Kamal KY, Othman MA, Kim JH, Lawler JM. Bioreactor development for skeletal muscle hypertrophy and atrophy by manipulating uniaxial cyclic strain: proof of concept. NPJ Microgravity. 2024;10(1):62. doi: 10.1038/s41526-023-00320-0
  166. Borisov V, Gili Sole L, Reid G, et al. Upscaled skeletal muscle engineered tissue with in vivo vascularization and innervation potential. Bioengineering. 2023;10(7):800. doi: 10.3390/bioengineering10070800
  167. Wang X, Dong W, Dong H, et al. Bioprinting of wearable sensors, brain-machine interfaces, and exoskeleton robots. Int J Bioprinting. 2024;10(6):3590. doi: 10.36922/ijb.3590
  168. Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ bioprinting - bioprinting from benchside to bedside? Acta Biomater. 2020;101(1):14-25. doi: 10.1016/j.actbio.2019.08.045
  169. Gorbenko N, Vaccaro JC, Fagan R, et al. Perfusion bioreactor conditioning of small-diameter plant-based vascular grafts. Tissue Eng Regen Med. 2024;21(8):1189-1201. doi: 10.1007/s13770-024-00670-0
  170. Ng WL, An J, Chua CK. Process, material, and regulatory considerations for 3D printed medical devices and tissue constructs. Engineering. 2024;36(5):146-166. doi: 10.1016/j.eng.2024.01.028
  171. Mladenovska T, Choong PF, Wallace GG, O’Connell CD. The regulatory challenge of 3D bioprinting. Regen Med. 2023;18(8):659-674. doi: 10.2217/rme-2022-0194
  172. Yoshida A, Baba K, Takahashi H, Nagase K, Shimizu T. One-step fabrication of 3D-aligned human skeletal muscle tissue and measurement of contractile force for preclinical drug testing. Mater Today Bio. 2025;31:101456. doi: 10.1016/j.mtbio.2025.101456
  173. Gao L, Li L, Wu W, et al. 3D-bioprinted in vitro skeletal muscle with pennate fiber architecture to enhance contractile function. Int J Bioprinting. 2024;10(6):4371. doi: 10.36922/ijb.4371
  174. Carraro E, Rossi L, Maghin E, Canton M, Piccoli M. 3D in vitro models of pathological skeletal muscle: which cells and scaffolds to elect? Front Bioeng Biotechnol. 2022;10:941623. doi: 10.3389/fbioe.2022.941623
  175. Mazzoldi EL, Gaudenzi G, Ginestra PS, Ceretti E, Giliani SC. Evaluating cells metabolic activity of bioinks for bioprinting: the role of cell-laden hydrogels and 3D printing on cell survival. Front Bioeng Biotechnol. 2024;12:1450838. doi: 10.3389/fbioe.2024.1450838
  176. Pellegrini E, Desando G, Petretta M, et al. A 3D collagen-based bioprinted model to study osteosarcoma invasiveness and drug response. Polymers. 2022;14(19):4070. doi: 10.3390/polym14194070
  177. Avnet S, Pompo GD, Borciani G, Fischetti T, Graziani G, Baldini N. Advantages and limitations of using cell viability assays for 3D bioprinted constructs. Biomed Mater. 2024;19(2):025033. doi: 10.1088/1748-605X/ad2556
  178. VanGenderen CA, Granet JA, Filippelli RL, Liu Y, Chang NC. Modulating myogenesis: an optimized in vitro assay to pharmacologically influence primary myoblast differentiation. Curr Protoc. 2022;2(9):e565. doi: 10.1002/cpz1.565
  179. Mueller C, Trujillo-Miranda M, Maier M, Heath DE, O’Connor AJ, Salehi S. Effects of external stimulators on engineered skeletal muscle tissue maturation. Adv Mater Interfaces. 2021;8(1):2001167. doi: 10.1002/admi.202001167
  180. Vesga-Castro C, Aldazabal J, Vallejo-Illarramendi A, Paredes J. Contractile force assessment methods for in vitro skeletal muscle tissues. Huang CLH, Zaidi M, eds. Elife. 2022;11:e77204. doi: 10.7554/eLife.77204
  181. Khodabukus A. Tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. Front Physiol. 2021;12:619710. doi: 10.3389/fphys.2021.619710
  182. Ebrahimi M, Lad H, Fusto A, et al. De novo revertant fiber formation and therapy testing in a 3D culture model of duchenne muscular dystrophy skeletal muscle. Acta Biomater. 2021;132(1):227-244. doi: 10.1016/j.actbio.2021.05.020
  183. Tejedera-Villafranca A, Montolio M, Ramón-Azcón J, Fernández-Costa JM. Mimicking sarcolemmal damagein vitro: a contractile 3D model of skeletal muscle for drug testing in duchenne muscular dystrophy. Biofabrication. 2023;15(4). doi: 10.1088/1758-5090/acfb3d
  184. Torres MJ, Zhang X, Slentz DH, et al. Chemotherapeutic drug screening in 3D-bioengineered human myobundles provides insight into taxane-induced myotoxicities. Iscience. 2022;25(10):105189. doi: 10.1016/j.isci.2022.105189
  185. Madden L, Juhas M, Kraus WE, Truskey GA, Bursac N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Wagers AJ, ed. Elife. 2015;4:e04885. doi: 10.7554/eLife.04885
  186. Raman R, Cvetkovic C, Uzel SGM, et al. Optogenetic skeletal muscle-powered adaptive biological machines. Proc Natl Acad Sci U S A. 2016;113(13):3497-3502. doi: 10.1073/pnas.1516139113
  187. Filippi M, Badolato A, Georgopoulou A, et al. Bioprinting of piezoresistive organohydrogel networks for advanced real-time mechanosensing in engineered tissue models. Trends Biotechnol. 2025:S0167-7799(25)00212-4. doi: 10.1016/j.tibtech.2025.05.026
  188. Loi G, Scocozza F, Benedetti L, et al. Design, development, and benchmarking of a bioreactor integrated with 3D bioprinting: application to skeletal muscle regeneration. Bioprinting. 2024;42:e00352. doi: 10.1016/j.bprint.2024.e00352
  189. Rodriguez Ayala A, Christ G, Griffin D. Cell-scale porosity minimizes foreign body reaction and promotes innervated myofiber formation after volumetric muscle loss. NPJ Regen Med. 2025;10(1):12. doi: 10.1038/s41536-025-00395-1
  190. Niknezhad SV, Mehrali M, Khorasgani FR, et al. Enhancing volumetric muscle loss (VML) recovery in a rat model using super durable hydrogels derived from bacteria. Bioact Mater. 2024;38:540-558. doi: 10.1016/j.bioactmat.2024.04.006
  191. Zhao N, Huang Y, Cheng X, et al. A critical size volumetric muscle loss model in mouse masseter with impaired mastication on nutrition. Cell Proliferat. 2024; 57(6):e13610. doi: 10.1111/cpr.13610
  192. Whitaker R, Sung S, Tylek T, et al. Effects of injury size on local and systemic immune cell dynamics in volumetric muscle loss. NPJ Regen Med. 2025;10(1):9. doi: 10.1038/s41536-025-00397-z
  193. Fischer EO, Tsukerman A, Machour M, et al. Bioprinting perfusable and vascularized skeletal muscle flaps for the treatment of volumetric muscle loss. Adv Healthc Mater. 2025;14(13):e2404542. doi: 10.1002/adhm.202404542
  194. Yamaoka Y, Chan WI, Seno S, Iwamori K, Fukada SI, Matsuda H. Quantifying the recovery process of skeletal muscle on hematoxylin and eosin stained images via learning from label proportion. Sci Rep. 2024; 14(1):27044. doi: 10.1038/s41598-024-78433-z
  195. Rana SP, Dey M. Detrended fluctuation analysis of gait cycles: a study of neuromuscular and ground force dynamics. Sensors Basel. 2025;25(13):4122. doi: 10.3390/s25134122
  196. Hoffman DB, Schifino AG, Cooley MA, et al. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of volumetric muscle loss. J Orthop Res. 2025;43(3):622-631. doi: 10.1002/jor.26023
  197. Johnson D, Tobo C, Au J, et al. Combined regenerative rehabilitation improves recovery following volumetric muscle loss injury in a rat model. J Biomed Mater Res B. 2024;112(7):e35438. doi: 10.1002/jbm.b.35438
  198. Mehrotra P, Jablonski J, Toftegaard J, et al. Skeletal muscle reprogramming enhances reinnervation after peripheral nerve injury. Nat Commun. 2024;15(1):9218. doi: 10.1038/s41467-024-53276-4
  199. Hoffman DB, Raymond-Pope CJ, Pritchard EE, et al. Differential evaluation of neuromuscular injuries to understand re-innervation at the neuromuscular junction. Exp Neurol. 2024;382(1):114996. doi: 10.1016/j.expneurol.2024.114996
  200. Fabre P, Molina T, Larose J, et al. Bioactive lipid mediator class switching regulates myogenic cell progression and muscle regeneration. Nat Commun. 2025;16(1):5578. doi: 10.1038/s41467-025-60586-8
  201. Zhu C, Sklyar K, Karvar M, Endo Y, Sinha I. Scaffold tissue engineering strategies for volumetric muscle loss. PAR. 2023;10:58. doi: 10.20517/2347-9264.2022.89
  202. Bülow A, Schäfer B, Beier JP. Three-dimensional bioprinting in soft tissue engineering for plastic and reconstructive surgery. Bioengineering. 2023;10(10):1232. doi: 10.3390/bioengineering10101232
  203. Lee MC, Jodat YA, Endo Y, et al. Engineering large-scale hiPSC-derived vessel-integrated muscle-like lattices for enhanced volumetric muscle regeneration. Trends Biotechnol. 2024;42(12):1715-1744. doi: 10.1016/j.tibtech.2024.08.001
  204. Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering innervated musculoskeletal tissues for regenerative orthopedics and disease modeling. Small. 2024;20(23):2310614. doi: 10.1002/smll.202310614
  205. Sicherer ST, Venkatarama RS, Grasman JM. Recent trends in injury models to study skeletal muscle regeneration and repair. Bioengineering. 2020;7(3):76. doi: 10.3390/bioengineering7030076
  206. Fakhr MJ, Kavakebian F, Ababzadeh S, Rezapour A. Challenges and advances in peripheral nerve tissue engineering critical factors affecting nerve regeneration. J Tissue Eng Regen Med. 2024;1:8868411. doi: 10.1155/2024/8868411
  207. Garg K, Brockhouse J, McAndrew CM, et al. Regenerative rehabilitation: navigating the gap between preclinical promises and clinical realities for treating trauma‐induced volumetric muscle loss. J Physiol. 2025. doi: 10.1113/JP286551
  208. Jo B, Motoi K, Morimoto Y, Takeuchi S. Dynamic and static workout of in vitro skeletal muscle tissue through a weight training device. Adv Healthc Mater. 2024. doi: 10.1002/adhm.202401844
  209. Vesga-Castro C, Mosqueira-Martín L, Ubiria-Urkola P, et al. Development of an in vitro platform for the analysis of contractile and calcium dynamics in single human myotubes. Lab Chip. 2024;24(20):4741-4754. doi: 10.1039/D3LC00442B
  210. Rousseau E, Raman R, Tamir T, et al. Actuated tissue engineered muscle grafts restore functional mobility after volumetric muscle loss. Biomaterials. 2023;302(1): 122317. doi: 10.1016/j.biomaterials.2023.122317
  211. De Paolis F, Testa S, Guarnaccia G, et al. Long-term longitudinal study on swine VML model. Biol Direct. 2023;18(1):42. doi: 10.1186/s13062-023-00399-1
  212. Costantini M, Testa S, Fornetti E, et al. Biofabricating murine and human myo-substitutes for rapid volumetric muscle loss restoration. EMBO Mol Med. 2021;13(3): e12778. doi: 10.15252/emmm.202012778
  213. Humphrey JD. Constrained mixture models of soft tissue growth and remodeling – twenty years after. J Elasticity. 2021;145(1):49-75. doi: 10.1007/s10659-020-09809-1
  214. Roche CD, Sharma P, Ashton AW, Jackson C, Xue M, Gentile C. Printability, durability, contractility and vascular network formation in 3D bioprinted cardiac endothelial cells using alginate–gelatin hydrogels. Front Bioeng Biotechnol. 2021;9. doi: 10.3389/fbioe.2021.636257
  215. Kamaraj M, Moghimi N, Joshi A, et al. Recent advances in handheld and robotic bioprinting approach for tissue engineering. Adv Mater Technol. 2025;10(15):2500206. doi: 10.1002/admt.202500206
  216. Freeman S, Calabro S, Williams R, Jin S, Ye K. Bioink formulation and machine learning-empowered bioprinting optimization. Front Bioeng Biotechnol. 2022;10. doi: 10.3389/fbioe.2022.913579
  217. Chen H, Liu Y, Balabani S, Hirayama R, Huang J. Machine learning in predicting printable biomaterial formulations for direct ink writing. Research. 2023;0197. doi: 10.34133/research.0197
  218. Zhang Z, Zhou X, Fang Y, Xiong Z, Zhang T. AI-driven 3D bioprinting for regenerative medicine: from bench to bedside. Bioact Mater. 2025;45:201-230. doi: 10.1016/j.bioactmat.2024.11.021
  219. Kim MH, Singh YP, Celik N, et al. High-throughput bioprinting of spheroids for scalable tissue fabrication. Nat Commun. 2024;15(1):10083. doi: 10.1038/s41467-024-54504-7
  220. Jung H, Lee H, Shin M, Son D. Adhesive bioelectronics for closed-loop therapy. Med-X. 2025;3(1):11. doi: 10.1007/s44258-025-00055-5
  221. Boufidis D, Garg R, Angelopoulos E, Cullen DK, Vitale F. Bio-inspired electronics: Soft, biohybrid, and “living” neural interfaces. Nat Commun. 2025;16(1):1861. doi: 10.1038/s41467-025-57016-0
  222. Ploeger H, Gonzalez-Molina J. Designing biomimetic protocells and prototissues as smart biomaterials. Cell Biomater. 2025;(in press) doi: 10.1016/j.celbio.2025.100097
  223. Briones Y, Pascua B, Tiangco N, Crisostomo I, Casiguran S, Remenyi R. Assessing the landscape of clinical and observational trials involving bioprinting: a scoping review. 3D Print Med. 2025;11(1):5. doi: 10.1186/s41205-025-00253-2



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing