Preparation and biocompatibility of 3D-printed partially degradable Ta–Mg interpenetrating composites

The treatment of large-area bone defects has the risk of poor healing, and the development of implantable materials with mechanical adaptability, biological activity, and degradability is a clinical challenge. In this study, we prepared a 3D-printed porous tantalum (Ta) scaffold with an elastic modulus comparable to human bone, combined with biologically active magnesium (Mg) using a pressure-free impregnation process. We then conducted a comprehensive evaluation of the material’s characteristics, mechanical properties, degradation process, and its impact on MC3T3 cells. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectrometer (EDS) results indicated that the composite scaffold consisted of Ta and Mg phases. Through compression testing, the Ta–Mg composite scaffold displayed higher strength compared to porous Ta scaffolds. In vitro experiments revealed good biological activity of the composite material. The degradation results demonstrated that the Mg concentration within the composite material was favorable for cell growth, while the Ta scaffold maintained the integrity of the substrate throughout the degradation process. Likewise, in vivo results revealed that the Ta–Mg composite scaffold has stronger biological activity. Taken together, the excellent in vitro and ex vivo osteogenic properties and favorable degradation characteristics suggest that the Ta–Mg composite could provide new strategies and methods for developing next-generation customizable bone repair implant materials.

- Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696-711. doi: 10.1038/s41580-020-00279-w
- Loi F, Córdova LA, Pajarin en J, Lin T, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone. 2016;86:119-130. doi: 10.1016/j.bone.2016.02.020
- Robinson PG, Gray AC, Cooper C, et al. Autologous bone grafting. Oper Tech Sports Med. 2020;28(4):150780. doi: 10.1016/j.otsm.2020.150780
- Seo Y, Wang ZJ. Measurement and evaluation of specific absorption rate and temperature elevation caused by an artificial hip joint during MRI scanning. Sci Rep. 2021;11(1):1134. doi: 10.1038/s41598-020-80828-7
- Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252-26262. doi: 10.1039/c9ra05214c
- Chen C, Lin C, Wang Q, et al. α-hemihydrate calcium sulfate/octacalcium phosphate combined with sodium hyaluronate promotes bone marrow-derived mesenchymal stem cell osteogenesis in vitro and in vivo. Drug Des Devel Ther. 2018;12:3269-3287. doi: 10.2147/DDDT.S173289
- Bandyopadhyay A, De A, Bose S. Improving biocompatibility for next generation of metallic implants. Prog Mater Sci. 2023;133:101053. doi: 10.1016/j.pmatsci.2022.101053
- Carraro F, Bagno A. Tantalum as trabecular metal for endosseous implantable applications. Biomimetics. 2023;8(1):49. doi: 10.3390/biomimetics8010049
- Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-112. doi: 10.1016/j.copbio.2016.03.014
- Li J, Wang C, Huang Y, Luo J. Materials evolution of bone plates for internal fixation of bone fractures: a review. J Mater Sci Technol. 2020;36:190-208. doi: 10.1016/j.jmst.2019.07.024
- Al-Tamimi AA, Totonchi A, Garcia-Gonzalez D, Harrysson OLA, Redondo J, Malakhov K. Stress analysis in a bone fracture fixed with topology-optimised plates. Biomech Model Mechanobiol. 2020;19:693-699. doi: 10.1007/s10237-019-01240-3
- Klingebiel S, Gosheger G, Nottrott M, et al. Periprosthetic stress shielding of the humerus after reconstruction with modular shoulder megaprostheses in patients with sarcoma. J Clin Med. 2021;10(15):3424. doi: 10.3390/jcm10153424
- Uslu E, Kucuk A, Yetmez M, Ozkan S, Celik E. Fabrication and cellular interactions of nanoporous tantalum oxide. J Biomed Mater Res B Appl Biomater. 2020;108(7): 2743-2753. doi: 10.1002/jbm.b.34604
- Wang X, Li L, Fu W, et al. Advances in surface modification of tantalum and porous tantalum for rapid osseointegration: a thematic review. Front Bioeng Biotechnol. 2022; 10:983695. doi: 10.3389/fbio.2022.983695
- Liu DC, Chen J, Li D, et al. Micro-arc oxidation coating containing phosphorus on tantalum substrates prepared by micro-arc oxidation. J Test Eval. 2021;49(6):4662-4670. doi: 10.1520/JTE20200647
- Wang H, Su K, Su L, Liang P, Ji P. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater Sci Eng C. 2019;104:109908. doi: 10.1016/j.msec.2019.109908
- Liu T, Wang J, Zhu L, et al. Biofunctionalization of 3D printed porous tantalum using a vancomycin–carboxymethyl chitosan composite coating to improve osteogenesis and antibiofilm properties. ACS Appl Mater Interfaces. 2022;14(37):41764-41778. doi: 10.1021/acsami.2c11715
- Fan L, Guo R, Zhang X, et al. Metallic materials for bone repair. Adv Healthc Mater. 2024;13(3):2302132. doi: 10.1016/j.jmrt.2025.05.069
- Zhi P, Li Y, Yuan J, et al. Advances in the study of magnesium alloys and their use in bone implant material. Metals. 2022;12(9):1500. doi: 10.3390/met12091500
- He M, Wu P, Tang Y, et al. Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization. J Mater Res Technol. 2023;23:4396-4419. doi: 10.1016/j.jmrt.2023.02.037
- Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160-1169. doi: 10.1038/nm.4162
- Song J, Atrens A, Wu Y, et al. Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloy. 2020;8(1):1-41. doi: 10.1016/j.jma.2020.02.003
- Pelczyńska M, Moszak M, Bogdański P. The role of magnesium in the pathogenesis of metabolic disorders. Nutrients. 2022;14(9):1714. doi: 10.3390/nu14091714
- Fattah-Alhosseini A, Kowalski D, Zakeri M, et al. Performance of PEO/polymer coatings on the biodegradability, antibacterial effect and biocompatibility of Mg-based materials. J Funct Biomater. 2022;13(4):267. doi: 10.3390/jfb13040267
- Kim KW, Padalhin A. Application of photobiomodulation therapy in the recovery of a fracture model in different countries: a concise review. Med Lasers Eng Basic Res Clin Appl. 2022;11(4):201-207. doi: 10.25289/ml.22.055
- Xue D, Yun Y, Yong Han E. In vivo and in vitro degradation behavior of magnesium alloys as biomaterials. J Mater Sci Technol. 2012;28(3):261-267. doi: 10.1016/S1005-0302(12)60051-6.
- Luo Y, Wu Y, Zhu W, et al. Update on the research and development of magnesium-based biodegradable implants and their clinical translation in orthopaedics. Biomater Transl. 2021;2(3):188-201. doi: 10.12336/biomatertransl.2021.03.003
- Zhang M, Wang Y, Zhang J, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency. Sci Adv. 2020;6(19):eaba5581. doi: 10.1126/sciadv.aba5581
- Ecarot-Charrier B, Glimcher MJ, Lian J, et al. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol. 1983;96(3):639-643. doi: 10.1083/jcb.96.3.639
- Liu J, Wang L, Chen X, et al. Effects of allogeneic bone substitute configurations on cell adhesion process in vitro. Orthop Surg. 2023;15(2):579-590. doi: 10.1111/os.13395
- Atrens A, Song G, Cao F, et al. Review of Mg alloy corrosion rates. J Magnes Alloy. 2020;8(4):989-998. doi: 10.1016/j.jma.2020.08.002
- Wauthle R, van der Stok J, Yavari SA, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217-225. doi: 10.1016/j.actbio.2014.12.003
- Shan Z, Qu H, Jia Y, et al. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism: a review. J Orthop Transl. 2022;36:184-193. doi: 10.1016/j.jot.2022.09.013
- Blake AH, Cáceres CH. Solid-solution hardening and softening in Mg–Zn alloys. Mater Sci Eng A. 2008;483–484:161-163. doi: 10.1016/j.msea.2006.10.205
- Bandyopadhyay A, Mitra I, Shivaram A, Dasgupta N, Bose S. Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration. Addit Manuf. 2019;28:259-266. doi: 10.1016/j.addma.2019.04.025
- Curto M, Schiavone G, Zappone B, et al. Multi-material 3D printed composites inspired by nacre: a hard/soft mechanical interplay. Sci Rep. 2025;15(1):6728. doi: 10.1038/s41598-025-91080-2
- Ning C, Zhou Y, Zhou X, et al. Influence of surrounding cations on the surface degradation of magnesium alloy implants under a compressive pressure. Langmuir. 2015;31(50):13561-13570. doi: 10.1021/acs.langmuir.5b03699
- Wen Y, Guo X, Zhang Y, et al. Improving in vitro and in vivo corrosion resistance and biocompatibility of Mg– 1Zn–1Sn alloys by microalloying with Sr. Bioact Mater. 2021;6(12):4654-4669. doi: 10.1016/j.bioactmat.2021.04.043
- Esen Z, Kaya AA, Gülmez T, et al. Corrosion behaviours of Ti6Al4V-Mg/Mg-alloy composites. Corros Sci. 2020;166:108470. doi: 10.1016/j.corsci.2020.108470
- Yang X, Wu H, Xu J, et al. Biodegradability and cytocompatibility of 3D-printed Mg-Ti interpenetrating phase composites. Front Bioeng Biotechnol. 2022; 10:891632. doi: 10.3389/fbioe.2022.891632
- Kim S. Hydrogen gas sensors using a thin Ta2O5 dielectric film. J Korean Phys Soc. 2014;65(11):1749-1753. doi: 10.3938/jkps.65.1749
- Gao J, Su Y, Qin Y. Calcium phosphate coatings enhance biocompatibility and degradation resistance of magnesium alloy: correlating in vitro and in vivo studies. Bioact Mater. 2021;6(5):1223-1229. doi: 10.1016/j.bioactmat.2020.10.024
- Wang J, Witte F, Xi T, et al. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater. 2015;21:237-249. doi: 10.1016/j.actbio.2015.04.011
- Nie X, Chen W, Zhu Y, et al. Effect of magnesium ions/ Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen Biomater. 2020; 7(1):53-61. doi: 10.1093/rb/rbz033
- Zhang X, Xu L, Zhong C, et al. Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: in vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater. 2017;63:369-382. doi: 10.1016/j.actbio.2017.08.051
- Maradze D, Seitz JM, Goldman J, Drelich J, Goldman R. High magnesium corrosion rate has an effect on osteoclast and mesenchymal stem cell role during bone remodelling. Sci Rep. 2018;8(1):10003. doi: 10.1038/s41598-018-28476-w
- Zheng LZ, Wang JL, Xu JK, et al. Magnesium and vitamin C supplementation attenuates steroid-associated osteonecrosis in a rat model. Biomaterials. 2020;238:119828. doi: 10.1016/j.biomaterials.2020.119828
- Wu X, Li S, Huang Y, et al. Laser powder bed fusion of biodegradable magnesium alloys: process, microstructure and properties. Int J Extrem Manuf. 2024;7(2):022007. doi: 10.1088/2631-7990/ad967e
- Hung HC, Chang GG. Differentiation of the slow-binding mechanism for magnesium ion activation and zinc ion inhibition of human placental alkaline phosphatase. Protein Sci. 2001;10(1):34-45. doi: 10.1110/ps.35201
- Vimalraj S. Alkaline phosphatase: structure, expression and its function in bone mineralization. Gene. 2020;754: 144855. doi: 10.1016/j.gene.2020.144855
- Zhang J, Li Y, Chen Z, et al. Molecular mechanism of magnesium ion promoting bone regeneration. Chin J Tissue Eng Res. 2022;26(33):5384-5390. doi: 10.12307/2022.779
- Maier T, Haraszti T. Reversibility and viscoelastic properties of micropillar supported and oriented magnesium bundled f-actin. PLoS One. 2015;10(8):e0136432. doi: 10.1371/journal.pone.0136432
- Ma L, Wang X, Zhao N, et al. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis. Mater Sci Eng C. 2020;117:111303. doi: 10.1016/j.msec.2020.111303