AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025290287
RESEARCH ARTICLE

Preparation and biocompatibility of 3D-printed partially degradable Ta–Mg interpenetrating composites

Jingchao Xu1 Yanru Zhang1* ShuiXian Guo1 Yue Yang1 JinWei Yu2
Show Less
1 School of Medicine, Henan Polytechnic University, Jiaozuo, China
2 Third Department of Orthopedics, First Affiliated Hospital, Henan Polytechnic University, Jiaozuo, Henan, China
Received: 14 July 2025 | Accepted: 11 August 2025 | Published online: 11 August 2025
(This article belongs to the Special Issue 3D Printing for Advancing Orthopedic Applications)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The treatment of large-area bone defects has the risk of poor healing, and the development of implantable materials with mechanical adaptability, biological activity, and degradability is a clinical challenge. In this study, we prepared a 3D-printed porous tantalum (Ta) scaffold with an elastic modulus comparable to human bone, combined with biologically active magnesium (Mg) using a pressure-free impregnation process. We then conducted a comprehensive evaluation of the material’s characteristics, mechanical properties, degradation process, and its impact on MC3T3 cells. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectrometer (EDS) results indicated that the composite scaffold consisted of Ta and Mg phases. Through compression testing, the Ta–Mg composite scaffold displayed higher strength compared to porous Ta scaffolds. In vitro experiments revealed good biological activity of the composite material. The degradation results demonstrated that the Mg concentration within the composite material was favorable for cell growth, while the Ta scaffold maintained the integrity of the substrate throughout the degradation process. Likewise, in vivo results revealed that the Ta–Mg composite scaffold has stronger biological activity. Taken together, the excellent in vitro and ex vivo osteogenic properties and favorable degradation characteristics suggest that the Ta–Mg composite could provide new strategies and methods for developing next-generation customizable bone repair implant materials.

Graphical abstract
Keywords
3D printing
Ta–Mg composite
Localized degradation
Biological activity
Osteogenesis
Funding
This work was supported by the Horizontal Research Project of Henan Polytechnic University (grant no. 12200442). The funding source had no involvement in the study design; collection, analysis, and interpretation of data; article preparation; or the decision to submit the article for publication.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696-711. doi: 10.1038/s41580-020-00279-w
  2. Loi F, Córdova LA, Pajarin en J, Lin T, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone. 2016;86:119-130. doi: 10.1016/j.bone.2016.02.020
  3. Robinson PG, Gray AC, Cooper C, et al. Autologous bone grafting. Oper Tech Sports Med. 2020;28(4):150780. doi: 10.1016/j.otsm.2020.150780
  4. Seo Y, Wang ZJ. Measurement and evaluation of specific absorption rate and temperature elevation caused by an artificial hip joint during MRI scanning. Sci Rep. 2021;11(1):1134. doi: 10.1038/s41598-020-80828-7
  5. Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252-26262. doi: 10.1039/c9ra05214c
  6. Chen C, Lin C, Wang Q, et al. α-hemihydrate calcium sulfate/octacalcium phosphate combined with sodium hyaluronate promotes bone marrow-derived mesenchymal stem cell osteogenesis in vitro and in vivo. Drug Des Devel Ther. 2018;12:3269-3287. doi: 10.2147/DDDT.S173289
  7. Bandyopadhyay A, De A, Bose S. Improving biocompatibility for next generation of metallic implants. Prog Mater Sci. 2023;133:101053. doi: 10.1016/j.pmatsci.2022.101053
  8. Carraro F, Bagno A. Tantalum as trabecular metal for endosseous implantable applications. Biomimetics. 2023;8(1):49. doi: 10.3390/biomimetics8010049
  9. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-112. doi: 10.1016/j.copbio.2016.03.014
  10. Li J, Wang C, Huang Y, Luo J. Materials evolution of bone plates for internal fixation of bone fractures: a review. J Mater Sci Technol. 2020;36:190-208. doi: 10.1016/j.jmst.2019.07.024
  11. Al-Tamimi AA, Totonchi A, Garcia-Gonzalez D, Harrysson OLA, Redondo J, Malakhov K. Stress analysis in a bone fracture fixed with topology-optimised plates. Biomech Model Mechanobiol. 2020;19:693-699. doi: 10.1007/s10237-019-01240-3
  12. Klingebiel S, Gosheger G, Nottrott M, et al. Periprosthetic stress shielding of the humerus after reconstruction with modular shoulder megaprostheses in patients with sarcoma. J Clin Med. 2021;10(15):3424. doi: 10.3390/jcm10153424
  13. Uslu E, Kucuk A, Yetmez M, Ozkan S, Celik E. Fabrication and cellular interactions of nanoporous tantalum oxide. J Biomed Mater Res B Appl Biomater. 2020;108(7): 2743-2753. doi: 10.1002/jbm.b.34604
  14. Wang X, Li L, Fu W, et al. Advances in surface modification of tantalum and porous tantalum for rapid osseointegration: a thematic review. Front Bioeng Biotechnol. 2022; 10:983695. doi: 10.3389/fbio.2022.983695
  15. Liu DC, Chen J, Li D, et al. Micro-arc oxidation coating containing phosphorus on tantalum substrates prepared by micro-arc oxidation. J Test Eval. 2021;49(6):4662-4670. doi: 10.1520/JTE20200647
  16. Wang H, Su K, Su L, Liang P, Ji P. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater Sci Eng C. 2019;104:109908. doi: 10.1016/j.msec.2019.109908
  17. Liu T, Wang J, Zhu L, et al. Biofunctionalization of 3D printed porous tantalum using a vancomycin–carboxymethyl chitosan composite coating to improve osteogenesis and antibiofilm properties. ACS Appl Mater Interfaces. 2022;14(37):41764-41778. doi: 10.1021/acsami.2c11715
  18. Fan L, Guo R, Zhang X, et al. Metallic materials for bone repair. Adv Healthc Mater. 2024;13(3):2302132. doi: 10.1016/j.jmrt.2025.05.069
  19. Zhi P, Li Y, Yuan J, et al. Advances in the study of magnesium alloys and their use in bone implant material. Metals. 2022;12(9):1500. doi: 10.3390/met12091500
  20. He M, Wu P, Tang Y, et al. Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization. J Mater Res Technol. 2023;23:4396-4419. doi: 10.1016/j.jmrt.2023.02.037
  21. Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160-1169. doi: 10.1038/nm.4162
  22. Song J, Atrens A, Wu Y, et al. Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloy. 2020;8(1):1-41. doi: 10.1016/j.jma.2020.02.003
  23. Pelczyńska M, Moszak M, Bogdański P. The role of magnesium in the pathogenesis of metabolic disorders. Nutrients. 2022;14(9):1714. doi: 10.3390/nu14091714
  24. Fattah-Alhosseini A, Kowalski D, Zakeri M, et al. Performance of PEO/polymer coatings on the biodegradability, antibacterial effect and biocompatibility of Mg-based materials. J Funct Biomater. 2022;13(4):267. doi: 10.3390/jfb13040267
  25. Kim KW, Padalhin A. Application of photobiomodulation therapy in the recovery of a fracture model in different countries: a concise review. Med Lasers Eng Basic Res Clin Appl. 2022;11(4):201-207. doi: 10.25289/ml.22.055
  26. Xue D, Yun Y, Yong Han E. In vivo and in vitro degradation behavior of magnesium alloys as biomaterials. J Mater Sci Technol. 2012;28(3):261-267. doi: 10.1016/S1005-0302(12)60051-6.
  27. Luo Y, Wu Y, Zhu W, et al. Update on the research and development of magnesium-based biodegradable implants and their clinical translation in orthopaedics. Biomater Transl. 2021;2(3):188-201. doi: 10.12336/biomatertransl.2021.03.003
  28. Zhang M, Wang Y, Zhang J, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency. Sci Adv. 2020;6(19):eaba5581. doi: 10.1126/sciadv.aba5581
  29. Ecarot-Charrier B, Glimcher MJ, Lian J, et al. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol. 1983;96(3):639-643. doi: 10.1083/jcb.96.3.639
  30. Liu J, Wang L, Chen X, et al. Effects of allogeneic bone substitute configurations on cell adhesion process in vitro. Orthop Surg. 2023;15(2):579-590. doi: 10.1111/os.13395
  31. Atrens A, Song G, Cao F, et al. Review of Mg alloy corrosion rates. J Magnes Alloy. 2020;8(4):989-998. doi: 10.1016/j.jma.2020.08.002
  32. Wauthle R, van der Stok J, Yavari SA, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217-225. doi: 10.1016/j.actbio.2014.12.003
  33. Shan Z, Qu H, Jia Y, et al. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism: a review. J Orthop Transl. 2022;36:184-193. doi: 10.1016/j.jot.2022.09.013
  34. Blake AH, Cáceres CH. Solid-solution hardening and softening in Mg–Zn alloys. Mater Sci Eng A. 2008;483–484:161-163. doi: 10.1016/j.msea.2006.10.205
  35. Bandyopadhyay A, Mitra I, Shivaram A, Dasgupta N, Bose S. Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration. Addit Manuf. 2019;28:259-266. doi: 10.1016/j.addma.2019.04.025
  36. Curto M, Schiavone G, Zappone B, et al. Multi-material 3D printed composites inspired by nacre: a hard/soft mechanical interplay. Sci Rep. 2025;15(1):6728. doi: 10.1038/s41598-025-91080-2
  37. Ning C, Zhou Y, Zhou X, et al. Influence of surrounding cations on the surface degradation of magnesium alloy implants under a compressive pressure. Langmuir. 2015;31(50):13561-13570. doi: 10.1021/acs.langmuir.5b03699
  38. Wen Y, Guo X, Zhang Y, et al. Improving in vitro and in vivo corrosion resistance and biocompatibility of Mg– 1Zn–1Sn alloys by microalloying with Sr. Bioact Mater. 2021;6(12):4654-4669. doi: 10.1016/j.bioactmat.2021.04.043
  39. Esen Z, Kaya AA, Gülmez T, et al. Corrosion behaviours of Ti6Al4V-Mg/Mg-alloy composites. Corros Sci. 2020;166:108470. doi: 10.1016/j.corsci.2020.108470
  40. Yang X, Wu H, Xu J, et al. Biodegradability and cytocompatibility of 3D-printed Mg-Ti interpenetrating phase composites. Front Bioeng Biotechnol. 2022; 10:891632. doi: 10.3389/fbioe.2022.891632
  41. Kim S. Hydrogen gas sensors using a thin Ta2O5 dielectric film. J Korean Phys Soc. 2014;65(11):1749-1753. doi: 10.3938/jkps.65.1749
  42. Gao J, Su Y, Qin Y. Calcium phosphate coatings enhance biocompatibility and degradation resistance of magnesium alloy: correlating in vitro and in vivo studies. Bioact Mater. 2021;6(5):1223-1229. doi: 10.1016/j.bioactmat.2020.10.024
  43. Wang J, Witte F, Xi T, et al. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater. 2015;21:237-249. doi: 10.1016/j.actbio.2015.04.011
  44. Nie X, Chen W, Zhu Y, et al. Effect of magnesium ions/ Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen Biomater. 2020; 7(1):53-61. doi: 10.1093/rb/rbz033
  45. Zhang X, Xu L, Zhong C, et al. Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: in vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater. 2017;63:369-382. doi: 10.1016/j.actbio.2017.08.051
  46. Maradze D, Seitz JM, Goldman J, Drelich J, Goldman R. High magnesium corrosion rate has an effect on osteoclast and mesenchymal stem cell role during bone remodelling. Sci Rep. 2018;8(1):10003. doi: 10.1038/s41598-018-28476-w
  47. Zheng LZ, Wang JL, Xu JK, et al. Magnesium and vitamin C supplementation attenuates steroid-associated osteonecrosis in a rat model. Biomaterials. 2020;238:119828. doi: 10.1016/j.biomaterials.2020.119828
  48. Wu X, Li S, Huang Y, et al. Laser powder bed fusion of biodegradable magnesium alloys: process, microstructure and properties. Int J Extrem Manuf. 2024;7(2):022007. doi: 10.1088/2631-7990/ad967e
  49. Hung HC, Chang GG. Differentiation of the slow-binding mechanism for magnesium ion activation and zinc ion inhibition of human placental alkaline phosphatase. Protein Sci. 2001;10(1):34-45. doi: 10.1110/ps.35201
  50. Vimalraj S. Alkaline phosphatase: structure, expression and its function in bone mineralization. Gene. 2020;754: 144855. doi: 10.1016/j.gene.2020.144855
  51. Zhang J, Li Y, Chen Z, et al. Molecular mechanism of magnesium ion promoting bone regeneration. Chin J Tissue Eng Res. 2022;26(33):5384-5390. doi: 10.12307/2022.779
  52. Maier T, Haraszti T. Reversibility and viscoelastic properties of micropillar supported and oriented magnesium bundled f-actin. PLoS One. 2015;10(8):e0136432. doi: 10.1371/journal.pone.0136432
  53. Ma L, Wang X, Zhao N, et al. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis. Mater Sci Eng C. 2020;117:111303. doi: 10.1016/j.msec.2020.111303

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing