AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025240238
RESEARCH ARTICLE

 3D-bioprinted osteocytes expressing Wnt7b protect osteoblast differentiation from microgravity

Jinling Zhang1† Pengtao Wang1† Xiaoling Chen1 Saima Khan1 Haiping Ouyang2 Yangxi Liu2 Bo He2 Xian Li3 Xing Liu2* Xiaolin Tu1*
Show Less
1 Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
2 Department of Orthopedics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
3 College of Medical Informatics, Chongqing Medical University, Chongqing, China
†These authors contributed equally to this work.
Received: 12 June 2025 | Accepted: 3 July 2025 | Published online: 3 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Maintaining bone formation in microgravity/weightless environments remains a major challenge. Under weightless conditions, osteocytes act as mechanosensors to inhibit Wnt canonical signaling and bone formation by secreting sclerostin. This study explores whether osteocytic Wnt7b can counteract microgravity-induced bone loss through Wnt non-canonical signaling. Unlike previous bioprinting studies that focused on structural scaffolds or generic cell types, a novel bioprinted scaffold consisting of polycaprolactone (supportive) and osteocyte (functional) hydrogels was constructed in this study. Osteocytes overexpressing Wnt7b were co-cultured with bone marrow stromal cells (ST2) in a 3D biomimetic weightless biomicroenvironmental system (3D-BWBM) to assess osteogenic and lipogenic differentiation. The results indicated that osteocytic Wnt7b enhanced osteogenic differentiation and mineralization of ST2 cells via the Wnt non-canonical pathway PKCδ, while suppressing the expression of lipogenic markers (Pparg, Cebpa) and adipogenesis. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis revealed elevated expression of Sost and Mef2c, downregulation of the Wnt target gene Opg, and elevated expression of pro-osteoclastogenic cytokine Rankl and pro-inflammatory cytokines Tnfa and Il1b, thus validating the microgravity effect. Unlike conventional 2D culture of RCCS™ cells, the 3D hydrogels were printed with tunnels (500 μm) for efficient nutrient/ metabolite exchange, resulting in good cell growth, high cell viability (97%), and a six-fold increase in proliferative activity within 7 days. Wnt7b osteocytes were still able to maintain the osteogenic differentiation of ST2 cells, as evidenced by elevated alkaline phosphatase activity, mineralization (1.8-fold increase), and a decrease in osteoblast marker genes (Alpl, Runx2, Col1a1). In conclusion, Wnt7b-PCKδ signaling counteracts microgravity-induced bone loss, and further in vivo studies on osteocytic Wnt7b are warranted to confirm this causal relationship.

 

Graphical abstract
Keywords
3D bioprinting
Microgravity
Osteogenic differentiation
Wnt7b
Wnt noncanonical signaling
Funding
This work was supported by the National Natural Science Foundation of China (grant numbers: 82471909, 81672118, and 32101053) and the Chongqing Natural Science Foundation (grant numbers: CSTB2022NSCQ-LZX0048 and CSTB2023NSCQ-MSX0424).
Conflict of interest
The authors declare they have no competing interests.
References
  1. McCarthy ID. Fluid shifts due to microgravity and their effects on bone: a review of current knowledge. Ann Biomed Eng. 2005;33:95-103. doi: 10.1007/s10439-005-8967-6
  2. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19: 1006-1012. doi: 10.1359/jbmr.040307
  3. Durnova G, Kaplansky A, Morey-Holton E. Histomorphometric study of tibia of rats exposed aboard American spacelab life sciences 2 shuttle mission. J Gravit Physiol. 1996;3:80-81.
  4. Carmeliet G, Bouillon R. The effect of microgravity on morphology and gene expression of osteoblasts in vitro. Faseb J. 1999; 13(Suppl):S129-S134. doi: 10.1096/fasebj.13.9001.s129
  5. Smith SM, Wastney ME, O’Brien KO, et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station. J Bone Miner Res. 2005; 20:208-218. doi: 10.1359/jbmr.041105
  6. Vico L, Hargens A. Skeletal changes during and after spaceflight. Nat Rev Rheumatol. 2018;14: 229-245. doi: 10.1038/nrrheum.2018.37
  7. Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485-506. doi: 10.1146/annurev-physiol-021119-034332
  8. Delgado-Calle J, Bellido T. The osteocyte as a signaling cell. Physiol Rev. 2022;102:379-410. doi: 10.1152/physrev.00043.2020
  9. Spatz JM, Wein MN, Gooi JH, et al. The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem. 2015;290:16744-16758. doi: 10.1074/jbc.M114.628313
  10. Lin C, Jiang X, Dai Z, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009;24:1651-1661. doi: 10.1359/jbmr.090411
  11. Tu X, Rhee Y, Condon KW, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012;50:209-217. doi: 10.1016/j.bone.2011.10.025
  12. Bloomfield SA, Martinez DA, Boudreaux RD, Mantri AV. Microgravity stress: bone and connective tissue. Compr Physiol. 2016;6:645-686. doi: 10.1002/cphy.c130027
  13. Tu X, Joeng KS, Nakayama KI, et al. Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell. 2007;12:113-127. doi: 10.1016/j.devcel.2006.11.003
  14. Chen J, Tu X, Esen E, et al. WNT7B promotes bone formation in part through mTORC1. PLoS Genet. 2014;10:e1004145. doi: 10.1371/journal.pgen.1004145
  15. Cui Y, Liu W, Zhao S, Zhao Y, Dai J. Advances in microgravity directed tissue engineering. Adv Healthc Mater. 2023;12:e2202768. doi: 10.1002/adhm.202202768
  16. Bradbury P, Wu H, Choi JU, et al. Modeling the impact of microgravity at the cellular level: implications for human disease. Front Cell Dev Biol. 2020;8;96. doi: 10.3389/fcell.2020.00096
  17. Silvani G, Basirun C, Wu H, et al. A 3D‐bioprinted vascularized glioblastoma‐on‐a‐chip for studying the impact of simulated microgravity as a novel pre‐clinical approach in brain tumor therapy. Adv Ther. 2021;4:2100106. doi: 10.1002/adtp.202100106
  18. Van Ombergen A, Chalupa-Gantner F, Chansoria P, et al. 3D bioprinting in microgravity: opportunities, challenges, and possible applications in space. Adv Healthc Mater. 2023;12:e2300443. doi: 10.1002/adhm.202300443
  19. Kang HW, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312-319. doi: 10.1038/nbt.3413
  20. Mochi F, Scatena E, Rodriguez D, Ginebra M-P, Del Gaudio C. Scaffold-based bone tissue engineering in microgravity: potential, concerns and implications. NPJ Microgravity. 2022;8:45. doi: 10.1038/s41526-022-00236-1
  21. Tu X, Delgado-Calle J, Condon KW, et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci USA. 2015;112:E478-E486. doi: 10.1073/pnas.1409857112
  22. Morey-Holton ER, Globus RK. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight. Bone. 1998;22:83S-88S. doi: 10.1016/S8756-3282(98)00019-2
  23. Wang P, Wang X, Wang B, Li X. 3D printing of osteocytic Dll4 integrated with PCL for cell fate determination towards osteoblasts in vitro. Bio-Design Manuf. 2022;5: 497-511. doi: 10.1007/s42242-022-00196-1
  24. Gong W, Li M, Zhao L, et al. Sustained release of a highly specific GSK3β inhibitor SB216763 in the PCL scaffold creates an osteogenic niche for osteogenesis, anti-adipogenesis, and potential angiogenesis. Front Bioeng Biotechnol. 2023;11:1215233. doi: 10.3389/fbioe.2023.1215233
  25. Liu Y, Ruan X, Li J, et al. The osteocyte stimulated by Wnt agonist SKL2001 is a safe osteogenic niche improving bioactivities in a polycaprolactone and cell integrated 3d module. Cells. 2022;11:831. doi: 10.3390/cells11050831
  26. Yuste I, Luciano FC, González-Burgos E, Lalatsa A, Serrano DR. Mimicking bone microenvironment: 2D and 3D in vitro models of human osteoblasts. Pharmacol Res. 2021;169:105626. doi: 10.1016/j.phrs.2021.105626
  27. Zhou Z, Pang Y, Ji J, et al. Harnessing 3D in vitro systems to model immune responses to solid tumours: a step towards improving and creating personalized immunotherapies. Nat Rev Immunol. 2024;24:18-32.doi: 10.1038/s41577-023-00896-4
  28. Hammond TG, Hammond JM. Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol. 2001;281:F12-F25. doi: 10.1152/ajprenal.2001.281.1.F12
  29. Wang X, Tu X, Ma Y, et al. Wnt3a-induced ST2 decellularized matrix ornamented PCL scaffold for bone tissue engineering. Biocell. 2022;46:2089-2099. doi: 10.32604/biocell.2022.020069
  30. Luo Y, Liu Y, Wang B, Tu X. CHIR99021-treated osteocytes with Wnt activation in 3D-printed module form an osteogenic microenvironment for enhanced osteogenesis and vasculogenesis. Int J Mol Sci. 2023;24:6008. doi: 10.3390/ijms24066008
  31. Zhang J, Zhang Y, Chen J, Gong W, Tu X. The osteocyte with SB216763-activated canonical Wnt signaling constructs a multifunctional 4D intelligent osteogenic module. Biomolecules. 2024;14:354. doi: 10.3390/biom14030354
  32. Liu G, Chen J, Wang X, Liu Y, Ma Y, Tu X. Functionalized 3D-printed ST2/gelatin methacryloyl/polcaprolactone scaffolds for enhancing bone regeneration with vascularization. Int J Mol Sci. 2022;23:8347. doi: 10.3390/ijms23158347
  33. Abraham RT. Identification of TOR signaling complexes: more TORC for the cell growth engine. Cell. 2002;111:9-12. doi: 10.1016/s0092-8674(02)01009-7
  34. Gschwendt M, Muller HJ, Kielbassa K, et al. Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun. 1994;199:93-98. doi: 10.1006/bbrc.1994.1199
  35. Aderem A. The MARCKS brothers: a family of protein kinase C substrates. Cell. 1992;71:713-716. doi: 10.1016/0092-8674(92)90546-o
  36. Leupin O, Kramer I, Collette NM, et al. Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J Bone Miner Res. 2007;22:1957-1967. doi: 10.1359/jbmr.070804
  37. Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283:5866-5875. doi: 10.1074/jbc.M705092200
  38. Spatz JM, Fields EE, Yu EW, et al. Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab. 2012;97:E1736-E1740. doi: 10.1210/jc.2012-1579
  39. Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte mechanobiology. Curr Osteoporos Rep. 2017;15: 318-325. doi: 10.1007/s11914-017-0373-0
  40. Metzger CE, Anand Narayanan S, Phan PH, Bloomfield SA. Hindlimb unloading causes regional loading-dependent changes in osteocyte inflammatory cytokines that are modulated by exogenous irisin treatment. NPJ Microgravity. 2020;6:28. doi: 10.1038/s41526-020-00118-4
  41. Lau P, Vico L, Rittweger J. Dissociation of bone resorption and formation in spaceflight and simulated microgravity: potential role of myokines and osteokines? Biomedicines. 2022;10:342. doi: 10.3390/biomedicines10020342.
  42. Zhang Y, Zhao Y, Xie Z, Li M, Liu Y, Tu X. Activating Wnt/β-catenin signaling in osteocytes promotes osteogenic differentiation of BMSCs through BMP-7. Int J Mol Sci. 2022;23:16045. doi: 10.3390/ijms232416045
  43. Sapir-Koren R, Livshits G. Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles? Osteoporos Int. 2014;25:2685-2700. doi: 10.1007/s00198-014-2808-0
  44. Yuan Z, Li Q, Luo S, et al. PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 2016;11:216-225. doi: 10.2174/1574888x10666150519093429
  45. Borner C, Guadagno SN, Fabbro D, et al. Expression of four protein kinase C isoforms in rat fibroblasts. Differential alterations in ras-, src-, and fos-transformed cells. J Biol Chem. 1992; 267:12900-12910. doi: 10.1016/S0021-9258(18)42360-5
  46. Ohno S, Akita Y, Hata A, et al. Structural and functional diversities of a family of signal transducing protein kinases, protein kinase C family; two distinct classes of PKC, conventional cPKC and novel nPKC. Adv Enzyme Regul. 1991;31:287-303. doi: 10.1016/0065-2571(91)90018-h
  47. Hug H, Sarre TF. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J. 1993;291(Pt 2): 329-343. doi: 10.1042/bj2910329
  48. Fleming I, MacKenzie SJ, Vernon RG, et al. Protein kinase C isoforms play differential roles in the regulation of adipocyte differentiation. Biochem J. 1998;333(Pt 3):719-727. doi: 10.1042/bj3330719
  49. Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15:757-765. doi: 10.1038/nm.1979
  50. Smith SM, Heer MA, Shackelford LC, et al. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res. 2012;27:1896-1906. doi: 10.1002/jbmr.1647
  51. Halloran BP, Bikle DD, Harris J, et al. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading. J Bone Miner Res. 1997;12:1068-1074. doi: 10.1359/jbmr.1997.12.7.1068
  52. Spatz JM, Ellman R, Cloutier AM, et al. Sclerostin antibody inhibits skeletal deterioration in mice exposed to partial weight-bearing. Life Sci Space Res (Amst). 2017;12: 32-38. doi: 10.1016/j.lssr.2017.01.001
  53. Barbehenn EK, Lurie P, Wolfe SM. Osteosarcoma risk in rats using PTH 1-34. Trends Endocrinol Metab. 2001; 12:383. doi: 10.1016/s1043-2760(01)00489-1
  54. Hildreth BE, 3rd, Werbeck JL, Thudi NK, et al. PTHrP 1-141 and 1-86 increase in vitro bone formation. J Surg Res. 2010;162:e9-e17. doi: 10.1016/j.jss.2010.02.023
  55. Costa-Almeida R, Granja PL, Gomes ME. Gravity, tissue engineering, and the missing link. Trends Biotechnol. 2018;36:343-347. doi: 10.1016/j.tibtech.2017.10.017
  56. Artegiani B, Clevers H. Use and application of 3D-organoid technology. Hum Mol Genet. 2018;27:R99-R107. doi: 10.1093/hmg/ddy187
  57. He J, Zhang X, Xia X, et al. Organoid technology for tissue engineering. J Mol Cell Biol. 2020;12:569-579. doi: 10.1093/jmcb/mjaa012
  58. Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee KB. Bioengineering approaches for the advanced organoid research. Adv Mater. 2021;33:e2007949. doi: 10.1002/adma.202007949
  59. Hwang YS, Cho J, Tay F, et al. The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials. 2009;30:499-507. doi: 10.1016/j.biomaterials.2008.07.028
  60. Avitabile E, Fusco L, Minardi S, et al. Bioinspired scaffold action under the extreme physiological conditions of simulated space flights: osteogenesis enhancing under microgravity. Front Bioeng Biotechnol. 2020;8:722. doi: 10.3389/fbioe.2020.00722
  61. Hann SY, Cui H, Esworthy T, et al. Dual 3D printing for vascularized bone tissue regeneration. Acta Biomater. 2021;123:263-274. doi: 10.1016/j.actbio.2021.01.012
  62. Zhou F, Hong Y, Liang R, et al. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials. 2020;258:120287. doi: 10.1016/j.biomaterials.2020.120287
  63. Zhang W, Shi W, Wu S, et al. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication. 2020;12:035020. doi: 10.1088/1758-5090/ab906e
  64. Chen S, Shi Y, Zhang X, Ma J. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2020;112:110893. doi: 10.1016/j.msec.2020.110893
  65. West-Livingston LN, Park J, Lee SJ, Atala A, Yoo JJ. The role of the microenvironment in controlling the fate of bioprinted stem cells. Chem Rev. 2020; 120:11056-11092. doi: 10.1021/acs.chemrev.0c00126

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing