AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025210209
REVIEW ARTICLE

Three-dimensional bioprinting in human-relevant toxicology: Advanced organ models and translational strategies

Yinpeng Le1,2 Tanqing Long2,3 Qi Wang2 Mengcheng Tang1 Mingyue Pan2,4 Qingru Song2,5 Wenrui Ma5 Yuxin Su2 Yutian Feng2 Ni An5 Wenzhen Yin5 Xiangdong Kong1* Yunfang Wang2,5,6* Juan Liu2,6*
Show Less
1 Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
2 Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China
3 Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
4 State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, Jiangsu, China
5 Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China
6 Ministry of Education Key Laboratory of Digital Intelligence Hepatology, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China
Received: 21 May 2025 | Accepted: 3 July 2025 | Published online: 3 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Traditional toxicological testing, which relies on animal models and two-dimensional cell cultures, encounters challenges in accurately predicting human-specific responses due to interspecies variability and the inherent limitations of simplified in vitro systems. Three-dimensional (3D) bioprinting has emerged as a transformative approach, facilitating the fabrication of physiologically relevant tissue constructs with precise spatial control over cellular and extracellular matrix components. This review critically examines recent advancements in 3D-bioprinted organ models, such as the liver, kidney, and lung, for toxicological assessments, including their applications in drug safety evaluation, environmental pollutant screening, and nanomaterial risk assessment. We further analyze persistent technical barriers concerning resolution limitations, material biocompatibility, and the simulation of multi-organ interactions. Finally, we propose integrative strategies that combine organ-on-a-chip platforms, artificial intelligence-driven design, and standardized validation protocols, aiming to accelerate the translational potential of bioprinted models in regulatory toxicology.

Graphical abstract
Keywords
Functional simulation
Organ models
Three-dimensional bioprinting
Toxicology testing
Funding
This project was partially supported by grants from the following sources: the National Key Research and Development Program of China (No. 2022YFA1103400, 2022YFC2406704), the National Natural Science Foundation of China (No. 32371477, 82090051, 92168207), and the Research & Development Program of Zhejiang Province (No. 2024C03075 and No. 2019C04020).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Guengerich FP. Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metab Pharmacok. 2011;26(1):3-14. doi: 10.2133/dmpk.dmpk-10-rv-062
  2. Tsaioun K. Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. ALTEX. 2016;33: 343-358. doi: 10.14573/altex.1610101
  3. Pognan F, Beilmann M, Boonen HCM, et al. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov. 2023;22(4):317-335. doi: 10.1038/s41573-022-00633-x
  4. Ng WL, Yeong WY. The future of skin toxicology testing – three-dimensional bioprinting meets microfluidics. IJB. 2019;5(1):237. doi: 10.18063/ijb.v5i2.1.237
  5. Worth AP, Berggren E, Prieto P. Chemicals 2.0 and why we need to bypass the gold standard in regulatory toxicology. Altern Lab Anim. 2025;53(1):21-25. doi: 10.1177/02611929241296328
  6. Hughes B. Industry concern over EU hepatotoxicity guidance. Nat Rev Drug Discov. 2008;7(9):719. doi: 10.1038/nrd2677
  7. Hu C, Yang S, Zhang T, et al. Organoids and organoids-on-a-chip as the new testing strategies for environmental toxicology-applications & advantages. Environ Int. 2024;184:108415. doi: 10.1016/j.envint.2024.108415
  8. Bock C, Boutros M, Camp JG, et al. The organoid cell atlas. Nat Biotechnol. 2021;39(1):13-17. doi: 10.1038/s41587-020-00762-x
  9. Park SB, Kim EA, Kim KY, Koh, B. Induction of toxicity in human colon cells and organoids by size- and composition-dependent road dust. RSC Adv. 2023;13(5):2833-2840. doi: 10.1039/D2RA07500H
  10. Vinken M, Grimm D, Baatout S, et al. Taking the 3Rs to a higher level: replacement and reduction of animal testing in life sciences in space research. Biotechnol Adv. 2025;81:108574. doi: 10.1016/j.biotechadv.2025.108574
  11. Markets and Markets. In Vitro Toxicology Testing Market Growth, Drivers, And Opportunities. MarketsandMarkets; 2023. Accessed May 6, 2025. https://www.marketsandmarkets.com/ Market-Reports/ in-vitro-toxicology- testing-market-209577065.html
  12. Saraswathibhatla A, Indana D, Chaudhuri O. Cell– extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24(7):495-516. doi: 10.1038/s41580-023-00583-1
  13. Sood D, Tang-Schomer M, Pouli D, et al. 3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors. Nat Commun. 2019;10(1):4529. doi: 10.1038/s41467-019-12420-1
  14. Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(Pt 13):3015-3024. doi: 10.1242/jcs.079509
  15. Jang KJ, Mehr AP, Hamilton GA, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb). 2013;5(9):1119-1129. doi: 10.1039/c3ib40049b
  16. Zhang B, Gao L, Ma L, Luo Y, Yang H, Cui Z. 3D bioprinting: a novel avenue for manufacturing tissues and organs. Engineering. 2019;5(4):777-794. doi: 10.1016/j.eng.2019.03.009
  17. Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen- Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep. 2015;5(1):7974. doi: 10.1038/srep07974
  18. Burke M, Carter BM, Perriman AW. Bioprinting: uncovering the utility layer-by-layer. J 3D Print Med. 2017;1(3): 165-179. doi: 10.2217/3dp-2017-0006
  19. Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016;6(1):34845. doi: 10.1038/srep34845
  20. Kang D, Hong G, An S, et al. Bioprinting of multiscaled hepatic lobules within a highly vascularized construct. Small. 2020;16(13):e1905505. doi: 10.1002/smll.201905505
  21. Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol. 2018;36(8):787-805. doi: 10.1016/j.tibtech.2018.03.003
  22. Kaden T, Graf K, Rennert K, Li R, Mosig AS, Raasch M. Evaluation of drug-induced liver toxicity of trovafloxacin and levofloxacin in a human microphysiological liver model. Sci Rep. 2023;13(1):13338. doi: 10.1038/s41598-023-40004-z
  23. Michaleas SN, Laios K, Tsoucalas G, Androutsos G. Theophrastus bombastus von hohenheim (paracelsus) (1493-1541): the eminent physician and pioneer of toxicology. Toxicol Rep. 2021;8:411-414. doi: 10.1016/j.toxrep.2021.02.012
  24. Herr HW. Percivall pott, the environment and cancer. BJU Int. 2011;108(4):479-481. doi: 10.1111/j.1464-410X.2011.10487.x
  25. Bertomeu-Sánchez JR. Animal experiments, vital forces and courtrooms: Mateu orfila, françois magendie and the study of poisons in nineteenth-century france. Ann Sci. 2012;69(1):1-26. doi: 10.1080/00033790.2011.637471
  26. Michaleas SN, Veskoukis AS, Samonis G, Pantos C, Androutsos G, Karamanou M. Mathieu joseph bonaventure orfila (1787-1853): the founder of modern toxicology. Maedica (Bucur). 2022;17(2):532-537. doi: 10.26574/maedica.2022.17.2.532
  27. Ayala RA. Welcome to the new age. Claude bernard’s “introduction to the study of experimental medicine” and the shift of medical thought towards science: 150 years later. Arch Med Res. 2017;48(4):393-396. doi: 10.1016/j.arcmed.2017.08.006
  28. An H, Sg G. Historical milestones and discoveries that shaped the toxicology sciences. EXS. 2009;99:1-35. doi: 10.1007/978-3-7643-8336-7_1
  29. DePass LR. Alternative approaches in median lethality (LD₅₀) and acute toxicity testing. Toxicol Lett. 1989;49(2‑3):159‑170. doi: 10.1016/0378‑4274(89)90030‑1
  30. Pillai S, Kobayashi K, Michael M, Mathai T, Sivakumar B, Sadasivan P. John william trevan’s concept of median lethal dose (LD50/LC50) – more misused than used. J Pre Clin Clin Res. 2021;15(3):137-141. doi: 10.26444/jpccr/139588
  31. Franco NH. Animal experiments in biomedical research: a historical perspective. Animals (Basel). 2013;3(1):238-273. doi: 10.3390/ani3010238
  32. Erhirhie EO, Ihekwereme CP, Ilodigwe EE. Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdiscip Toxicol. 2018;11(1):5-12. doi: 10.2478/intox-2018-0001
  33. Seidle T, Robinson S, Holmes T, et al. Cross-sector review of drivers and available 3Rs approaches for acute systemic toxicity testing. Toxicol Sci. 2010;116(2):382-396. doi: 10.1093/toxsci/kfq143
  34. Botham PA. Acute systemic toxicity–prospects for tiered testing strategies. Toxicol In Vitro. 2004;18(2):227-230. doi: 10.1016/S0887-2333(03)00143-7
  35. Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res. 2022;38:18. doi: 10.1186/s42826-022-00128-1
  36. Khabib MNH, Sivasanku Y, Lee HB, Kumar S, Kue CS. Alternative animal models in predictive toxicology. Toxicology. 2022;465:153053. doi: 10.1016/j.tox.2021.153053
  37. Harrison RG, Greenman MJ, Mall FP, Jackson CM. Observations of the living developing nerve fiber. Anat Rec. 1907;1(5):116-128. doi: 10.1002/ar.1090010503
  38. Jones HW. Record of the first physician to see henrietta lacks at the johns hopkins hospital: history of the beginning of the HeLa cell line. Am J Obstet Gynecol. 1997;176(6):s227-s228. doi: 10.1016/S0002-9378(97)70379-X
  39. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145-1147. doi: 10.1126/science.282.5391.1145
  40. Martin G. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. PNAS. 1981;78(12): 7634-7638. doi: 10.1073/pnas.78.12.7634
  41. Ames BN, Lee FD, Durston WE. An improved bacterial test system for the detection and classification of mutagens and carcinogens. PNAS. 1973;70(3):782-786. doi: 10.1073/pnas.70.3.782
  42. Zeiger E. The test that changed the world: The ames test and the regulation of chemicals. Mutat Res Genet Toxicol Environ Mutagene. 2019;841:43-48. doi: 10.1016/j.mrgentox.2019.05.007
  43. Volpe DA. Drug-permeability and transporter assays in caco-2 and mdck cell lines. Future Med Chem. 2011;3(16):2063-2077. doi: 10.4155/fmc.11.149
  44. Kwatra D, Budda B, Vadlapudi AD, Vadlapatla RK, Pal D, Mitra AK. Transfected mdck cell line with enhanced expression of Cyp3a4 and P-glycoprotein as a model to study their role in drug transport and metabolism. Mol Pharm. 2012;9(7):1877-1886. doi: 10.1021/mp200487h
  45. Garcia-Canton C, Minet E, Anadon A, Meredith C. Metabolic characterization of cell systems used in in vitro toxicology testing: lung cell system BEAS-2B as a working example. Toxicol In Vitro. 2013;27(6):1719-1727. doi: 10.1016/j.tiv.2013.05.001
  46. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207-218. doi: 10.1089/adt.2014.573
  47. Kapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14(4):910-919. doi: 10.5114/aoms.2016.63743
  48. Deguchi S, Shintani T, Harada K, et al. In vitro model for a drug assessment of cytochrome P450 family 3 subfamily a member 4 substrates using human induced pluripotent stem cells and genome editing technology. Hepatol Commun. 2021;5(8):1385-1399. doi: 10.1002/hep4.1729
  49. Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33. doi: 10.3389/fmolb.2020.00033
  50. Astashkina AI, Mann BK, Prestwich GD, Grainger DW. Comparing predictive drug nephrotoxicity biomarkers in kidney 3-D primary organoid culture and immortalized cell lines. Biomaterials. 2012;33(18):4712-4721. doi: 10.1016/j.biomaterials.2012.03.001
  51. Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Primers. 2022;2:94. doi: 10.1038/s43586-022-00174-y
  52. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262-265. doi: 10.1038/nature07935
  53. Broda TR, McCracken KW, Wells JM. Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat Protoc. 2019;14(1):28-50. doi: 10.1038/s41596-018-0080-z
  54. Miller AJ, Dye BR, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 2019;14(2):518-540. doi: 10.1038/s41596-018-0104-8
  55. Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373-379. doi: 10.1038/nature12517
  56. Huch M, Dorrell C, Boj SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by wnt-driven regeneration. Nature. 2013;494(7436):247-250. doi: 10.1038/nature11826
  57. Lewis-Israeli YR, Wasserman AH, Gabalski MA, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun. 2021;12(1):5142. doi: 10.1038/s41467-021-25329-5
  58. Takasato M, Er PX, Chiu HS, et al. Erratum: kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2016;536(7615):238. doi: 10.1038/nature17982
  59. Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol. 2020;319(1): C151-C165. doi: 10.1152/ajpcell.00120.2020
  60. Winkler AS, Cherubini A, Rusconi F, et al. Human airway organoids and microplastic fibers: a new exposure model for emerging contaminants. Environ Int. 2022;163:107200. doi: 10.1016/j.envint.2022.107200
  61. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662-1668. doi: 10.1126/science.1188302
  62. Oleaga C, Bernabini C, Smith AST, et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep. 2016; 6(1):20030. doi: 10.1038/srep20030
  63. Liu X, Wang X, Zhang L, et al. 3D liver tissue model with branched vascular networks by multimaterial bioprinting. Adv Healthc Mater. 2021;10(23):e2101405. doi: 10.1002/adhm.202101405
  64. Xu Y, Hu Y, Liu C, Yao H, Liu B, Mi S. A novel strategy for creating tissue-engineered biomimetic blood vessels using 3D bioprinting technology. Materials (Basel). 2018;11(9):1581. doi: 10.3390/ma11091581
  65. Richards D, Jia J, Yost M, Markwald R, Mei Y. 3D bioprinting for vascularized tissue fabrication. Ann Biomed Eng. 2017;45(1):132-147. doi: 10.1007/s10439-016-1653-z
  66. Liu J, Miller K, Ma X, et al. Direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium. Biomaterials. 2020;256:120204. doi: 10.1016/j.biomaterials.2020.120204
  67. Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue engineering. Theranostics. 2021;11(16):7948-7969. doi: 10.7150/thno.61621
  68. Zhou W, Yuan W, Chen Y, et al. Single-cell transcriptomics reveals the pulmonary inflammation induced by inhalation of subway fine particles. J Hazard Mater. 2024; 463:132896. doi: 10.1016/j.jhazmat.2023.132896
  69. Bai C, Wu L, Li R, Cao Y, He S, Bo X. Machine learning‐enabled drug‐induced toxicity prediction. Adv Sci (Weinh). 2025;12(16):e2413405. doi: 10.1002/advs.202413405
  70. Guan D, Fan K, Spence I, Matthews S. Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction. Regul Toxicol Pharmacol. 2018;94:8-15. doi: 10.1016/j.yrtph.2018.01.008
  71. Yavvari P, Laporte A, Elomaa L, et al. 3D-cultured vascular-like networks enable validation of vascular disruption properties of drugs in vitro. Front Bioeng Biotechnol. 2022;10:888492. doi: 10.3389/fbioe.2022.888492
  72. Berglund JD, Galis ZS. Designer blood vessels and therapeutic revascularization. Br J Pharmacol. 2003; 140(4):627-636. doi: 10.1038/sj.bjp.0705457
  73. Cook JC, Wu H, Aleo MD, Adkins K. Principles of precision medicine and its application in toxicology. J Toxicol Sci. 2018;43(10):565-577. doi: 10.2131/jts.43.565
  74. Guillemot F, Souquet A, Catros S, Guillotin B. Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond). 2010;5(3):507-515. doi: 10.2217/nnm.10.14
  75. Guillotin B, Catros S, Guillemot F. Laser assisted bio-printing (LAB) of cells and bio-materials based on laser induced forward transfer (LIFT). In: Schmidt V, Belegratis MR, eds. Biological and Medical Physics, Biomedical Engineering. Springer Berlin Heidelberg; 2014:193-209. doi: 10.1007/978-3-642-41341-4_8
  76. Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60(3):691-699. doi: 10.1109/TBME.2013.2243912
  77. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002. doi: 10.1088/1758-5090/8/3/032002
  78. Koch F, Tröndle K, Finkenzeller G, Zengerle R, Zimmermann S, Koltay P. Generic method of printing window adjustment for extrusion-based 3D-bioprinting to maintain high viability of mesenchymal stem cells in an alginate-gelatin hydrogel. Bioprinting. 2020;20:e00094. doi: 10.1016/j.bprint.2020.e00094
  79. Yin Z, Guo H, Li Y, Chiu J, Tian L. Ultrastable plasmonic bioink for printable point-of-care biosensors. ACS Appl Mater Interfaces. 2020;12(32):35977-35985. doi: 10.1021/acsami.0c11799
  80. Persaud A, Maus A, Strait L, Zhu D. 3D bioprinting with live cells. Eng Regen. 2022;3(3):292-309. doi: 10.1016/j.engreg.2022.07.002
  81. Lin H, Zhang D, Alexander PG, et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials. 2013;34(2):331-339. doi: 10.1016/j.biomaterials.2012.09.048
  82. Dubbin K, Dong Z, Park DM, et al. Projection microstereolithographic microbial bioprinting for engineered biofilms. Nano Lett. 2021;21(3):1352-1359. doi: 10.1021/acs.nanolett.0c04100
  83. Lai J, Wang C, Wang M. 3D printing in biomedical engineering: processes, materials, and applications. Appl Phy Rev. 2021;8(2):021322. doi: 10.1063/5.0024177
  84. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  85. Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital light processing based three-dimensional printing for medical applications. Int J Bioprint. 2020;6(1):242. doi: 10.18063/ijb.v6i1.242
  86. Ma X, Qu X, Zhu W, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA. 2016;113(8): 2206-2211. doi: 10.1073/pnas.1524510113
  87. Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev. 2014;59(8):430-448. doi: 10.1179/1743280414Y.0000000040
  88. Zhang J, Chen F, He Z, Ma Y, Uchiyama K, Lin JM. A novel approach for precisely controlled multiple cell patterning in microfluidic chips by inkjet printing and the detection of drug metabolism and diffusion. Analyst. 2016;141(10): 2940-2947. doi: 10.1039/C6AN00395H
  89. Gruene M, Deiwick A, Koch L, et al. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods. 2011;17(1):79-87. doi: 10.1089/ten.TEC.2010.0359
  90. Xu T, Baicu C, Aho M, Zile M, Boland, T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication. 2009;1(3):035001. doi: 10.1088/1758-5082/1/3/035001
  91. Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012;109(7):1855-1863. doi: 10.1002/bit.24455
  92. Han W, Kong L, Xu M. Advances in selective laser sintering of polymers. Int J Extrem Manuf. 2022;4(4):042002. doi: 10.1088/2631-7990/ac9096
  93. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010;6(12):4495-4505. doi: 10.1016/j.actbio.2010.06.024
  94. Jang J, Yi HG, Cho DW. 3D printed tissue models: present and future. ACS Biomater Sci Eng. 2016;2(10):1722-1731. doi: 10.1021/acsbiomaterials.6b00129
  95. Jabbari E. Hydrogels for cell delivery. Gels. 2018;4(3):58. doi: 10.3390/gels4030058
  96. Liu J, Wang Q, Le Y., et al. 3D-bioprinting for precision microtissue engineering: advances, applications, and prospects. Adv Healthc Mater. 2025;14(10):e2403781. doi: 10.1002/adhm.202403781
  97. Zhang T, Yan KC, Ouyang L, Sun W. Mechanical characterization of bioprinted in vitro soft tissue models. Biofabrication. 2013;5(4):045010. doi: 10.1088/1758-5082/5/4/045010
  98. Gudapati H, Yan J, Huang Y, Chrisey DB. Alginate gelation-induced cell death during laser-assisted cell printing. Biofabrication. 2014;6(3):035022. doi: 10.1088/1758-5082/6/3/035022
  99. Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mat Sci Eng R Rep. 2020;140:100543. doi: 10.1016/j.mser.2020.100543
  100. Widhe M, Johansson U, Hillerdahl CO, Hedhammar M. Recombinant spider silk with cell binding motifs for specific adherence of cells. Biomaterials. 2013;34(33): 8223-8234. doi: 10.1016/j.biomaterials.2013.07.058
  101. Aigner TB, DeSimone E, Scheibel T. Biomedical applications of recombinant silk-based materials. Adv Mater. 2018;30(19):e1704636. doi: 10.1002/adma.201704636
  102. Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NYK. Decellularized extracellular matrix: new promising and challenging biomaterials for regenerative medicine. Biomaterials. 2022;289:121786. doi: 10.1016/j.biomaterials.2022.121786
  103. Kim BS, Das S, Jang J, Cho DW. Decellularized extracellular matrix-based bioinks for engineering tissue-and organ-specific microenvironments. Chem Rev. 2020;120(19):10608-10661. doi: 10.1021/acs.chemrev.9b00808
  104. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13(9):1257-1275. doi: 10.1080/17425247.2016.1182485
  105. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21): 1451-1458. doi: 10.1016/S1359-6446(05)03575-0
  106. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci. 1994;83(4):601-606. doi: 10.1002/jps.2600830432
  107. Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials. 2002;23(22):4325-4332. doi: 10.1016/S0142-9612(02)00177-1
  108. Cheng Y, Deng S, Chen P, Ruan R. Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China. 2009;4(3):259-264. doi: 10.1007/s11458-009-0092-x
  109. Bee SL, Hamid ZAA, Mariatti M, et al. Approaches to improve therapeutic efficacy of biodegradable PLA/PLGA microspheres: a review. Polym Rev. 2018;58(3):495-536. doi: 10.1080/15583724.2018.1437547
  110. Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38(12):3484-3504. doi: 10.1039/B820162P
  111. Kim J, Park SA, Kim J, Lee J. Fabrication and characterization of bioresorbable drug-coated porous scaffolds for vascular tissue engineering. Materials. 2019;12(9):1438. doi: 10.3390/ma12091438
  112. Zhang W, Weng T, Li Q, et al. Applications of poly(caprolactone)-based nanofibre electrospun scaffolds in tissue engineering and regenerative medicine. Curr Stem Cell Res Ther. 2021;16(4):414-442. doi: 10.2174/1574888X15666201014145703
  113. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19): 3124-3130. doi: 10.1002/adma.201305506
  114. Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M. Nanostructured pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication. 2015;7(3):035006. doi: 10.1088/1758-5090/7/3/035006
  115. Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing. Materials. 2017; 10(2):190. doi: 10.3390/ma10020190
  116. Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: State-of-the-art and future perspectives. Arch Toxicol. 2022;96(3): 691-710. doi: 10.1007/s00204-021-03212-y
  117. Szűcs D, Fekete Z, Guba M, et al. Toward better drug development: three-dimensional bioprinting in toxicological research. Int J Bioprint. 2023;9(2):663. doi: 10.18063/ijb.v9i2.663
  118. Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639. doi: 10.1016/j.biomaterials.2022.121639
  119. Wu X, Shi W, Liu X, Gu Z. Recent advances in 3D-printing-based organ-on-a-chip. EngMedicine. 2024;1(1):100003. doi: 10.1016/j.engmed.2024.100003
  120. Yoon S, Kilicarslan YD, Jeong U, et al. Microfluidics in high-throughput drug screening: Organ-on-a-chip and C. elegans-based innovations. Biosensors. 2024;14(1):55. doi: 10.3390/bios14010055
  121. Fuchs S, Johansson S, Tjell AØ, Werr G, Mayr T, Tenje M. In-line analysis of organ-on-chip systems with sensors: integration, fabrication, challenges, and potential. ACS Biomater Sci Eng. 2021;7(7):2926-2948. doi: 10.1021/acsbiomaterials.0c01110
  122. Zafeiris K, Brasinika D, Karatza A, et al. Additive manufacturing of hydroxyapatite–chitosan–genipin composite scaffolds for bone tissue engineering applications. Mat Sci Eng C. 2021;119:111639. doi: 10.1016/j.msec.2020.111639
  123. Lee V, Singh G, Trasatti JP, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods. 2014;20(6):473-484. doi: 10.1089/ten.tec.2013.0335
  124. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34(1):130-139. doi: 10.1016/j.biomaterials.2012.09.035
  125. Jodat YA, Kiaee K, Vela Jarquin D, et al. A 3D‐printed hybrid nasal cartilage with functional electronic olfaction. Adv Sci. 2020;7(5):1901878. doi: 10.1002/advs.201901878
  126. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication. 2015;7(4):045009. doi: 10.1088/1758-5090/7/4/045009
  127. Anada T, Pan CC, Stahl AM, et al. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. IJMS. 2019; 20(5):1096. doi: 10.3390/ijms20051096
  128. Yin M, Yao M, Gao S, Zhang AP, Tam H, Wai PA. Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors. Adv Mater. 2016;28(7):1394-1399. doi: 10.1002/adma.201504021
  129. Kanaki Z, Chandrinou C, Orfanou IM, et al. Laser-induced forward transfer printing on microneedles for transdermal delivery of gemcitabine. IJB. 2022;8(2):554. doi: 10.18063/ijb.v8i2.554
  130. Wang L, Cao H, Jiang H, Fang Y, Jiang D. A novel 3D bio-printing “liver lobule” microtissue biosensor for the detection of AFB1. Food Res Int. 2023;168:112778. doi: 10.1016/j.foodres.2023.112778
  131. Shrestha J, Ghadiri M, Shanmugavel M, et al. A rapidly prototyped lung-on-a-chip model using 3D-printed molds. Organs-on-a-Chip. 2019;1:100001. doi: 10.1016/j.ooc.2020.100001
  132. Yu C, Ma X, Zhu W, et al. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials. 2019;194:1-13. doi: 10.1016/j.biomaterials.2018.12.009
  133. Zhang JXJ, Hoshino K. Nanomaterials for molecular sensing. Molecular Sensors and Nanodevices: Principles, Designs and Applications in Biomedical Engineering. Academic Press; 2019:413-487 . doi: 10.1016/b978-0-12-814862-4.00007-7
  134. Pan C, Xu J, Gao Q, et al. Sequentially suspended 3D bioprinting of multiple-layered vascular models with tunable geometries for in vitro modeling of arterial disorders initiation. Biofabrication. 2023;15(4):045017. doi: 10.1088/1758-5090/aceffa
  135. Song KH, Highley CB, Rouff A, Burdick JA. Complex 3D‐printed microchannels within cell‐degradable hydrogels. Adv Funct Mater. 2018;28(31):1801331. doi: 10.1002/adfm.201801331
  136. Tonti OR, Larson H, Lipp SN, et al. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater. 2021;132:83-102. doi: 10.1016/j.actbio.2021.04.017
  137. Ma X, Liu J, Zhu W., et al. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliver Rev. 2018;132: 235-251. doi: 10.1016/j.addr.2018.06.011
  138. Almutary AG, Alnuqaydan AM, Almatroodi SA, Bakshi HA, Chellappan DK, Tambuwala MM. Development of 3D-bioprinted colitis-mimicking model to assess epithelial barrier function using albumin nano-encapsulated anti-inflammatory drugs. Biomimetics. 2023;8(1):41. doi: 10.3390/biomimetics8010041
  139. Kim BS, Ahn M, Cho WW, Gao G, Jang J, Cho DW. Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro. Biomaterials. 2021; 272:120776. doi: 10.1016/j.biomaterials.2021.120776
  140. Vázquez‐Aristizabal P, Henriksen‐Lacey M, García‐ Astrain C, et al. Biofabrication and monitoring of a 3D printed skin model for melanoma. Adv Healthc Mater. 2024;13(27):e2401136. doi: 10.1002/adhm.202401136
  141. Tijore A, Irvine SA, Sarig U, Mhaisalkar P, Baisane V, Venkatraman S. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication. 2018;10(2):025003. doi: 10.1088/1758-5090/aaa15d
  142. Melhem MR, Park J, Knapp L, et al. 3D printed stem-cell-laden, microchanneled hydrogel patch for the enhanced release of cell-secreting factors and treatment of myocardial infarctions. ACS Biomater Sci Eng. 2017;3(9):1980-1987. doi: 10.1021/acsbiomaterials.6b00176
  143. Ong CS, Fukunishi T, Zhang H, et al. Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep. 2017;7(1):4566. doi: 10.1038/s41598-017-05018-4
  144. Arai K, Murata D, Takao S, Verissiomo AR, Nakayama K. Cryopreservation method for spheroids and fabrication of scaffold-free tubular constructs. PLoS One. 2020;15(4):e0230428. doi: 10.1371/journal.pone.0230428
  145. Arai K, Kitsuka T, Nakayama K. Scaffold-based and scaffold-free cardiac constructs for drug testing. Biofabrication. 2021;13(4):1-14. doi: 10.1088/1758-5090/ac1257
  146. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21(4):157-161. doi: 10.1016/S0167-7799(03)00033-7
  147. Utama RH, Atapattu L, O’Mahony AP, et al. A 3D bioprinter specifically designed for the high-throughput production of matrix-embedded multicellular spheroids. iScience. 2020;23(10):101621. doi: 10.1016/j.isci.2020.101621
  148. Matsusaki M, Sakaue K, Kadowaki K, Akashi M. Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater. 2013;2(4):534-539. doi: 10.1002/adhm.201200299
  149. Gale, B.K., Jafek, A.R., Lambert, C.J., et al. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions. 2018; 3(3):60. doi: 10.3390/inventions3030060
  150. Wu J, Gu M. Microfluidic sensing: state of the art fabrication and detection techniques. J Biomed Opt. 2011; 16(8):080901. doi: 10.1117/1.3607430
  151. Wu Q, Liu J, Wang X, et al. Organ-on-a-chip: Recent breakthroughs and future prospects. Biomed Eng Online. 2020;19(1):9. doi: 10.1186/s12938-020-0752-0
  152. Mehrotra S, de Melo BAG, Hirano M, et al. Nonmulberry silk based ink for fabricating mechanically robust cardiac patches and endothelialized myocardium-on-a-chip application. Adv Funct Mater. 2020;30(12): 1907436. doi: 10.1002/adfm.201907436
  153. Bhise NS, Manoharan V, Massa S, et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication. 2016;8(1):014101. doi: 10.1088/1758-5090/8/1/014101
  154. Park JY, Ryu H, Lee B, et al. Development of a functional airway-on-a-chip by 3D cell printing. Biofabrication. 2018;11(1):015002. doi: 10.1088/1758-5090/aae545
  155. Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication. 2010;2(4): 045004. doi: 10.1088/1758-5082/2/4/045004
  156. Chang R, Nam J, Sun W. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods. 2008;14(2):157-166. doi: 10.1089/ten.tec.2007.0392
  157. Lee H, Cho DW. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip. 2016;16(14):2618-2625. doi: 10.1039/C6LC00450D
  158. Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3D vascularized proximal tubule models. PNAS. 2019;116(12):5399-5404. doi: 10.1073/pnas.1815208116
  159. Fritschen A, Lindner N, Scholpp S, et al. High‐scale 3D‐bioprinting platform for the automated production of vascularized organs‐on‐a‐chip. Adv Healthc Mater. 2024;13(17):2304028. doi: 10.1002/adhm.202304028
  160. Zhang YS, Davoudi F, Walch P, et al. Bioprinted thrombosis-on-a-chip. Lab Chip. 2016;16(21):4097-4105. doi: 10.1039/C6LC00380J
  161. Abudupataer M, Chen N, Yan S, et al. Bioprinting a 3D vascular construct for engineering a vessel-on-a-chip. Biomed Microdevices. 2019;22(1):10. doi: 10.1007/s10544-019-0460-3
  162. Cao X, Ashfaq R, Cheng F, et al. A tumor‐on‐a‐chip system with bioprinted blood and lymphatic vessel pair. Adv Funct Mater. 2019;29(31):1807173. doi: 10.1002/adfm.201807173
  163. Xie M, Gao Q, Fu J, Chen Z, He Y. Bioprinting of novel 3D tumor array chip for drug screening. Bio-des Manuf. 2020;3(3):175-188. doi: 10.1007/s42242-020-00078-4
  164. Johnson BN, Lancaster KZ, Hogue IB, et al. 3D printed nervous system on a chip. Lab Chip. 2016;16(8):1393-1400. doi: 10.1039/C5LC01270H
  165. Skardal A, Murphy SV, Devarasetty M, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep. 2017;7(1):8837. doi: 10.1038/s41598-017-08879-x
  166. Elezoglou E, Chliara M, Chatzipetrou M, et al. Laser bioprinting of cells and tumor organoids for organ-on-chip applications. In: Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXIII. Vol PC12411. SPIE; 2023:PC1241107. doi: 10.1117/12.2648068
  167. Bowser DA, Moore MJ. Biofabrication of neural microphysiological systems using magnetic spheroid bioprinting. Biofabrication. 2019;12(1):015002. doi: 10.1088/1758-5090/ab41b4
  168. Han T, Kundu S, Nag A, Xu Y. 3D printed sensors for biomedical applications: a review. Sensors. 2019; 19(7):1706. doi: 10.3390/s19071706
  169. Cagnani GR, Ibáñez-Redín G, Tirich B, Gonçalves D, Balogh DT, Oliveira ON. Fully-printed electrochemical sensors made with flexible screen-printed electrodes modified by roll-to-roll slot-die coating. Biosens Bioelectron. 2020;165:112428. doi: 10.1016/j.bios.2020.112428
  170. Wang R, Zhu X, Sun L, et al. Cost-effective fabrication of transparent strain sensors via micro-scale 3D printing and imprinting. Nanomaterials. 2021;12(1):120. doi: 10.3390/nano12010120
  171. Wu D, Peng Q, Wu S, et al. A simple graphene NH3 gas sensor via laser direct writing. Sensors. 2018; 18(12):4405. doi: 10.3390/s18124405
  172. Hecht L, Rager K, Davidonis M, Weber P, Gauglitz G, Dietzel A. Blister-actuated LIFT printing for multiparametric functionalization of paper-like biosensors. Micromachines. 2019;10(4):221. doi: 10.3390/mi10040221
  173. Cao L, Han GC, Xiao H, Chen Z, Fang C. A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Anal Chim Acta. 2020;1096:34-43. doi: 10.1016/j.aca.2019.10.049
  174. López Marzo AM, Mayorga-Martinez CC, Pumera M. 3D-printed graphene direct electron transfer enzyme biosensors. Biosens Bioelectron. 2020;151:111980. doi: 10.1016/j.bios.2019.111980
  175. Lee J, Maji S, Lee H. Fabrication and integration of a low‐cost 3D printing‐based glucose biosensor for bioprinted liver‐on‐a‐chip. Biotechnol J. 2023;18(12):e2300154. doi: 10.1002/biot.202300154
  176. Guo X, Wang Z, Hou J, et al. A novel magnetoelastic biosensor consisting of carbon quantum dots/nitrocellulose membranes and NiFe2O4/ polylactic acid based on 3D printing for α2-macroglobulin detection. Chin J Anal Chem. 2024;52(9):100420. doi: 10.1016/j.cjac.2024.100420
  177. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022;12(7):3049-3062. doi: 10.1016/j.apsb.2022.02.002
  178. Li X, Zhang R, Zhao B, Lossin C, Cao Z. Cardiotoxicity screening: a review of rapid-throughput in vitro approaches. Arch Toxicol. 2016;90(8):1803-1816. doi: 10.1007/s00204-015-1651-1
  179. Muir DCG, Getzinger GJ, McBride M, Ferguson PL. How many chemicals in commerce have been analyzed in environmental media? A 50 year bibliometric analysis. Environ Sci Technol. 2023;57(25):9119-9129. doi: 10.1021/acs.est.2c09353
  180. Godoy P, Hewitt NJ, Albrecht U, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87(8):1315-1530. doi: 10.1007/s00204-013-1078-5
  181. Scharff RL. Economic burden from health losses due to foodborne illness in the united states. J Food Prot. 2012;75(1):123-131. doi: 10.4315/0362-028X.JFP-11-058
  182. Hussain MA, Dawson CO. Economic impact of food safety outbreaks on food businesses. Foods. 2013;2(4):585-589. doi: 10.3390/foods2040585
  183. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach? JACC: Basic Transl Sci. 2019;4(7): 845-854. doi: 10.1016/j.jacbts.2019.10.008
  184. Monteiro‐Riviere NA. Perspectives of nanotoxicology: introduction. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(6):e1843. doi: 10.1002/wnan.1843
  185. Johnston LJ, Gonzalez-Rojano N, Wilkinson KJ, Xing B. Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact. 2020;18:100219. doi: 10.1016/j.impact.2020.100219
  186. Clark KA, White RH, Silbergeld EK. Predictive models for nanotoxicology: current challenges and future opportunities. Regul Toxicol Pharmacol. 2011;59(3):361-363. doi: 10.1016/j.yrtph.2011.02.002
  187. Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW. Application of 3D bioprinting in the prevention and the therapy for human diseases. Sig Transduct Target Ther. 2021; 6(1):1-17. doi: 10.1038/s41392-021-00566-8
  188. Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016;5(3):326-333. doi: 10.1002/adhm.201500677
  189. Liang S, Luo Y, Su Y, et al. Distinct toxicity of microplastics/ TBBPA co-exposure to bioprinted liver organoids derived from hiPSCs of healthy and patient donors. IJB. 2024;10(3):1403. doi: 10.36922/ijb.1403
  190. Kang D, Lee H, Jung S. Use of a 3D inkjet‐printed model to access dust particle toxicology in the human alveolar barrier. Biotechnol Bioeng. 2022;119(12):3668-3677. doi: 10.1002/bit.28220
  191. Yong U, Kim D, Kim H, et al. Biohybrid 3D printing of a tissue-sensor platform for wireless, real-time, and continuous monitoring of drug-induced cardiotoxicity. Adv Mater. 2023;35(11):2208983. doi: 10.1002/adma.202208983
  192. Madden LR, Nguyen TV, Garcia-Mojica S, et al. Bioprinted 3D primary human intestinal tissues model aspects of native physiology and ADME/Tox Functions. iScience. 2018;2:156-167. doi: 10.1016/j.isci.2018.03.015
  193. Wei Z, Liu X, Ooka M, et al. Two-dimensional cellular and three-dimensional bio-printed skin models to screen topical-use compounds for irritation potential. Front Bioeng Biotechnol. 2020;8:109. doi: 10.3389/fbioe.2020.00109
  194. Nguyen DG, Funk J, Robbins JB, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One. 2016;11(7):e0158674. doi: 10.1371/journal.pone.0158674
  195. He J, Wang J, Pang Y, et al. Bioprinting of a hepatic tissue model using humaninduced pluripotent stem cell-derived hepatocytes for drug-induced hepatotoxicity evaluation. IJB. 2022;8(3):581. doi: 10.18063/ijb.v8i3.581
  196. Janani G, Priya S, Dey S, Mandal BB. Mimicking native liver lobule microarchitecture in vitro with parenchymal and non-parenchymal cells using 3D bioprinting for drug toxicity and drug screening applications. ACS Appl Mater Interfaces. 2022;14(8):10167-10186. doi: 10.1021/acsami.2c00312
  197. Ali ASM, Berg J, Roehrs V, et al. Xeno-free 3D bioprinted liver model for hepatotoxicity assessment. Int J Mol Sci. 2024;25(3):1811. doi: 10.3390/ijms25031811
  198. Khanal D, Zhang F, Song Y, et al. Biological impact of nanodiamond particles – label free, high-resolution methods for nanotoxicity assessment. Nanotoxicology. 2019;13(9):1210-1226. doi: 10.1080/17435390.2019.1650970
  199. Singh NK, Kim JY, Jang J, Kim YK, Cho DW. 3D cell printing of advanced vascularized proximal tubule-on-a-chip for drug induced nephrotoxicity advancement. ACS Appl Bio Mater. 2023;6(9):3750-3758. doi: 10.1021/acsabm.3c00421
  200. Khalid MAU, Kim YS, Ali M, Lee BG, Cho YJ, Choi KH. A lung cancer-on-chip platform with integrated biosensors for physiological monitoring and toxicity assessment. Biochem Engi J. 2020;155:107469. doi: 10.1016/j.bej.2019.107469
  201. Chandiramohan A, Dabaghi M, Aguiar JA, et al. Development and validation of an open-source, disposable, 3D-printed in vitro environmental exposure system for transwell culture inserts. ERJ Open Res. 2021;7(1):00705-02020. doi: 10.1183/23120541.00705-2020
  202. Gerbolés AG, Galetti M, Rossi S, et al. Three-dimensional bioprinting of organoid-based scaffolds (OBST) for long-term nanoparticle toxicology investigation. IJMS. 2023;24(7):6595. doi: 10.3390/ijms24076595
  203. Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45-59. doi: 10.1016/j.biomaterials.2016.09.003
  204. Miller KL, Sit I, Xiang Y, et al. Evaluation of CuO nanoparticle toxicity on 3D bioprinted human iPSC-derived cardiac tissues. Bioprinting. 2023;32:e00284. doi: 10.1016/j.bprint.2023.e00284
  205. Jiang D, Sheng K, Jiang H, Wang L. A biomimetic “intestinal microvillus” cell sensor based on 3D bioprinting for the detection of wheat allergen gliadin. Bioelectrochemistry. 2021;142:107919. doi: 10.1016/j.bioelechem.2021.107919
  206. Tofani LB, Avelino TM, De Azevedo RJ, et al. Biofabricated 3D intestinal models as an alternative to animal based approaches for drug toxicity assays. Tissue Eng Regen Med. 2025;22(2):181-194. doi: 10.1007/s13770-024-00694-6
  207. Cuvellier M, Ezan F, Oliveira H, et al. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials. 2021;269:120611. doi: 10.1016/j.biomaterials.2020.120611
  208. Nguyen DG, Pentoney SL. Bioprinted three dimensional human tissues for toxicology and disease modeling. Drug Discov Today Technol. 2017;23:37-44. doi: 10.1016/j.ddtec.2017.03.001
  209. Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Adv Drug Deliv Rev. 2014;69-70:81-102. doi: 10.1016/j.addr.2013.12.006
  210. Michael S, Sorg H, Peck CT, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741. doi: 10.1371/journal.pone.0057741
  211. Pourchet LJ, Thepot A, Albouy M, et al. Human skin 3D bioprinting using scaffold‐free approach. Adv Healthc Mater. 2017;6(4):1601101. doi: 10.1002/adhm.201601101
  212. Hsu YT, Lee SP, Li CH, Ho MH, Kao CY. Preparation of 3D-printed gastric models with biomimetic mechanical, topographical and fluid dynamic properties. J Taiwan Inst Chem Eng. 2024;160:105389. doi: 10.1016/j.jtice.2024.105389
  213. Ozbek II, Saybasili H, Ulgen KO. Applications of 3D bioprinting technology to brain cells and brain tumor models: special emphasis to glioblastoma. ACS Biomater Sci Eng. 2024;10(5):2616-2635. doi: 10.1021/acsbiomaterials.3c01569
  214. Kiemen AL, Forjaz A, Sousa R, et al. High‐resolution 3D printing of pancreatic ductal microanatomy enabled by serial histology. Adv Mater Technol. 2024;9(6):2301837. doi: 10.1002/admt.202301837

 

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing