Three-dimensional bioprinting in human-relevant toxicology: Advanced organ models and translational strategies

Traditional toxicological testing, which relies on animal models and two-dimensional cell cultures, encounters challenges in accurately predicting human-specific responses due to interspecies variability and the inherent limitations of simplified in vitro systems. Three-dimensional (3D) bioprinting has emerged as a transformative approach, facilitating the fabrication of physiologically relevant tissue constructs with precise spatial control over cellular and extracellular matrix components. This review critically examines recent advancements in 3D-bioprinted organ models, such as the liver, kidney, and lung, for toxicological assessments, including their applications in drug safety evaluation, environmental pollutant screening, and nanomaterial risk assessment. We further analyze persistent technical barriers concerning resolution limitations, material biocompatibility, and the simulation of multi-organ interactions. Finally, we propose integrative strategies that combine organ-on-a-chip platforms, artificial intelligence-driven design, and standardized validation protocols, aiming to accelerate the translational potential of bioprinted models in regulatory toxicology.

- Guengerich FP. Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metab Pharmacok. 2011;26(1):3-14. doi: 10.2133/dmpk.dmpk-10-rv-062
- Tsaioun K. Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. ALTEX. 2016;33: 343-358. doi: 10.14573/altex.1610101
- Pognan F, Beilmann M, Boonen HCM, et al. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov. 2023;22(4):317-335. doi: 10.1038/s41573-022-00633-x
- Ng WL, Yeong WY. The future of skin toxicology testing – three-dimensional bioprinting meets microfluidics. IJB. 2019;5(1):237. doi: 10.18063/ijb.v5i2.1.237
- Worth AP, Berggren E, Prieto P. Chemicals 2.0 and why we need to bypass the gold standard in regulatory toxicology. Altern Lab Anim. 2025;53(1):21-25. doi: 10.1177/02611929241296328
- Hughes B. Industry concern over EU hepatotoxicity guidance. Nat Rev Drug Discov. 2008;7(9):719. doi: 10.1038/nrd2677
- Hu C, Yang S, Zhang T, et al. Organoids and organoids-on-a-chip as the new testing strategies for environmental toxicology-applications & advantages. Environ Int. 2024;184:108415. doi: 10.1016/j.envint.2024.108415
- Bock C, Boutros M, Camp JG, et al. The organoid cell atlas. Nat Biotechnol. 2021;39(1):13-17. doi: 10.1038/s41587-020-00762-x
- Park SB, Kim EA, Kim KY, Koh, B. Induction of toxicity in human colon cells and organoids by size- and composition-dependent road dust. RSC Adv. 2023;13(5):2833-2840. doi: 10.1039/D2RA07500H
- Vinken M, Grimm D, Baatout S, et al. Taking the 3Rs to a higher level: replacement and reduction of animal testing in life sciences in space research. Biotechnol Adv. 2025;81:108574. doi: 10.1016/j.biotechadv.2025.108574
- Markets and Markets. In Vitro Toxicology Testing Market Growth, Drivers, And Opportunities. MarketsandMarkets; 2023. Accessed May 6, 2025. https://www.marketsandmarkets.com/ Market-Reports/ in-vitro-toxicology- testing-market-209577065.html
- Saraswathibhatla A, Indana D, Chaudhuri O. Cell– extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24(7):495-516. doi: 10.1038/s41580-023-00583-1
- Sood D, Tang-Schomer M, Pouli D, et al. 3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors. Nat Commun. 2019;10(1):4529. doi: 10.1038/s41467-019-12420-1
- Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(Pt 13):3015-3024. doi: 10.1242/jcs.079509
- Jang KJ, Mehr AP, Hamilton GA, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb). 2013;5(9):1119-1129. doi: 10.1039/c3ib40049b
- Zhang B, Gao L, Ma L, Luo Y, Yang H, Cui Z. 3D bioprinting: a novel avenue for manufacturing tissues and organs. Engineering. 2019;5(4):777-794. doi: 10.1016/j.eng.2019.03.009
- Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen- Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep. 2015;5(1):7974. doi: 10.1038/srep07974
- Burke M, Carter BM, Perriman AW. Bioprinting: uncovering the utility layer-by-layer. J 3D Print Med. 2017;1(3): 165-179. doi: 10.2217/3dp-2017-0006
- Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016;6(1):34845. doi: 10.1038/srep34845
- Kang D, Hong G, An S, et al. Bioprinting of multiscaled hepatic lobules within a highly vascularized construct. Small. 2020;16(13):e1905505. doi: 10.1002/smll.201905505
- Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol. 2018;36(8):787-805. doi: 10.1016/j.tibtech.2018.03.003
- Kaden T, Graf K, Rennert K, Li R, Mosig AS, Raasch M. Evaluation of drug-induced liver toxicity of trovafloxacin and levofloxacin in a human microphysiological liver model. Sci Rep. 2023;13(1):13338. doi: 10.1038/s41598-023-40004-z
- Michaleas SN, Laios K, Tsoucalas G, Androutsos G. Theophrastus bombastus von hohenheim (paracelsus) (1493-1541): the eminent physician and pioneer of toxicology. Toxicol Rep. 2021;8:411-414. doi: 10.1016/j.toxrep.2021.02.012
- Herr HW. Percivall pott, the environment and cancer. BJU Int. 2011;108(4):479-481. doi: 10.1111/j.1464-410X.2011.10487.x
- Bertomeu-Sánchez JR. Animal experiments, vital forces and courtrooms: Mateu orfila, françois magendie and the study of poisons in nineteenth-century france. Ann Sci. 2012;69(1):1-26. doi: 10.1080/00033790.2011.637471
- Michaleas SN, Veskoukis AS, Samonis G, Pantos C, Androutsos G, Karamanou M. Mathieu joseph bonaventure orfila (1787-1853): the founder of modern toxicology. Maedica (Bucur). 2022;17(2):532-537. doi: 10.26574/maedica.2022.17.2.532
- Ayala RA. Welcome to the new age. Claude bernard’s “introduction to the study of experimental medicine” and the shift of medical thought towards science: 150 years later. Arch Med Res. 2017;48(4):393-396. doi: 10.1016/j.arcmed.2017.08.006
- An H, Sg G. Historical milestones and discoveries that shaped the toxicology sciences. EXS. 2009;99:1-35. doi: 10.1007/978-3-7643-8336-7_1
- DePass LR. Alternative approaches in median lethality (LD₅₀) and acute toxicity testing. Toxicol Lett. 1989;49(2‑3):159‑170. doi: 10.1016/0378‑4274(89)90030‑1
- Pillai S, Kobayashi K, Michael M, Mathai T, Sivakumar B, Sadasivan P. John william trevan’s concept of median lethal dose (LD50/LC50) – more misused than used. J Pre Clin Clin Res. 2021;15(3):137-141. doi: 10.26444/jpccr/139588
- Franco NH. Animal experiments in biomedical research: a historical perspective. Animals (Basel). 2013;3(1):238-273. doi: 10.3390/ani3010238
- Erhirhie EO, Ihekwereme CP, Ilodigwe EE. Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdiscip Toxicol. 2018;11(1):5-12. doi: 10.2478/intox-2018-0001
- Seidle T, Robinson S, Holmes T, et al. Cross-sector review of drivers and available 3Rs approaches for acute systemic toxicity testing. Toxicol Sci. 2010;116(2):382-396. doi: 10.1093/toxsci/kfq143
- Botham PA. Acute systemic toxicity–prospects for tiered testing strategies. Toxicol In Vitro. 2004;18(2):227-230. doi: 10.1016/S0887-2333(03)00143-7
- Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res. 2022;38:18. doi: 10.1186/s42826-022-00128-1
- Khabib MNH, Sivasanku Y, Lee HB, Kumar S, Kue CS. Alternative animal models in predictive toxicology. Toxicology. 2022;465:153053. doi: 10.1016/j.tox.2021.153053
- Harrison RG, Greenman MJ, Mall FP, Jackson CM. Observations of the living developing nerve fiber. Anat Rec. 1907;1(5):116-128. doi: 10.1002/ar.1090010503
- Jones HW. Record of the first physician to see henrietta lacks at the johns hopkins hospital: history of the beginning of the HeLa cell line. Am J Obstet Gynecol. 1997;176(6):s227-s228. doi: 10.1016/S0002-9378(97)70379-X
- Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145-1147. doi: 10.1126/science.282.5391.1145
- Martin G. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. PNAS. 1981;78(12): 7634-7638. doi: 10.1073/pnas.78.12.7634
- Ames BN, Lee FD, Durston WE. An improved bacterial test system for the detection and classification of mutagens and carcinogens. PNAS. 1973;70(3):782-786. doi: 10.1073/pnas.70.3.782
- Zeiger E. The test that changed the world: The ames test and the regulation of chemicals. Mutat Res Genet Toxicol Environ Mutagene. 2019;841:43-48. doi: 10.1016/j.mrgentox.2019.05.007
- Volpe DA. Drug-permeability and transporter assays in caco-2 and mdck cell lines. Future Med Chem. 2011;3(16):2063-2077. doi: 10.4155/fmc.11.149
- Kwatra D, Budda B, Vadlapudi AD, Vadlapatla RK, Pal D, Mitra AK. Transfected mdck cell line with enhanced expression of Cyp3a4 and P-glycoprotein as a model to study their role in drug transport and metabolism. Mol Pharm. 2012;9(7):1877-1886. doi: 10.1021/mp200487h
- Garcia-Canton C, Minet E, Anadon A, Meredith C. Metabolic characterization of cell systems used in in vitro toxicology testing: lung cell system BEAS-2B as a working example. Toxicol In Vitro. 2013;27(6):1719-1727. doi: 10.1016/j.tiv.2013.05.001
- Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207-218. doi: 10.1089/adt.2014.573
- Kapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14(4):910-919. doi: 10.5114/aoms.2016.63743
- Deguchi S, Shintani T, Harada K, et al. In vitro model for a drug assessment of cytochrome P450 family 3 subfamily a member 4 substrates using human induced pluripotent stem cells and genome editing technology. Hepatol Commun. 2021;5(8):1385-1399. doi: 10.1002/hep4.1729
- Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33. doi: 10.3389/fmolb.2020.00033
- Astashkina AI, Mann BK, Prestwich GD, Grainger DW. Comparing predictive drug nephrotoxicity biomarkers in kidney 3-D primary organoid culture and immortalized cell lines. Biomaterials. 2012;33(18):4712-4721. doi: 10.1016/j.biomaterials.2012.03.001
- Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Primers. 2022;2:94. doi: 10.1038/s43586-022-00174-y
- Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262-265. doi: 10.1038/nature07935
- Broda TR, McCracken KW, Wells JM. Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat Protoc. 2019;14(1):28-50. doi: 10.1038/s41596-018-0080-z
- Miller AJ, Dye BR, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 2019;14(2):518-540. doi: 10.1038/s41596-018-0104-8
- Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373-379. doi: 10.1038/nature12517
- Huch M, Dorrell C, Boj SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by wnt-driven regeneration. Nature. 2013;494(7436):247-250. doi: 10.1038/nature11826
- Lewis-Israeli YR, Wasserman AH, Gabalski MA, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun. 2021;12(1):5142. doi: 10.1038/s41467-021-25329-5
- Takasato M, Er PX, Chiu HS, et al. Erratum: kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2016;536(7615):238. doi: 10.1038/nature17982
- Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol. 2020;319(1): C151-C165. doi: 10.1152/ajpcell.00120.2020
- Winkler AS, Cherubini A, Rusconi F, et al. Human airway organoids and microplastic fibers: a new exposure model for emerging contaminants. Environ Int. 2022;163:107200. doi: 10.1016/j.envint.2022.107200
- Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662-1668. doi: 10.1126/science.1188302
- Oleaga C, Bernabini C, Smith AST, et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep. 2016; 6(1):20030. doi: 10.1038/srep20030
- Liu X, Wang X, Zhang L, et al. 3D liver tissue model with branched vascular networks by multimaterial bioprinting. Adv Healthc Mater. 2021;10(23):e2101405. doi: 10.1002/adhm.202101405
- Xu Y, Hu Y, Liu C, Yao H, Liu B, Mi S. A novel strategy for creating tissue-engineered biomimetic blood vessels using 3D bioprinting technology. Materials (Basel). 2018;11(9):1581. doi: 10.3390/ma11091581
- Richards D, Jia J, Yost M, Markwald R, Mei Y. 3D bioprinting for vascularized tissue fabrication. Ann Biomed Eng. 2017;45(1):132-147. doi: 10.1007/s10439-016-1653-z
- Liu J, Miller K, Ma X, et al. Direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium. Biomaterials. 2020;256:120204. doi: 10.1016/j.biomaterials.2020.120204
- Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue engineering. Theranostics. 2021;11(16):7948-7969. doi: 10.7150/thno.61621
- Zhou W, Yuan W, Chen Y, et al. Single-cell transcriptomics reveals the pulmonary inflammation induced by inhalation of subway fine particles. J Hazard Mater. 2024; 463:132896. doi: 10.1016/j.jhazmat.2023.132896
- Bai C, Wu L, Li R, Cao Y, He S, Bo X. Machine learning‐enabled drug‐induced toxicity prediction. Adv Sci (Weinh). 2025;12(16):e2413405. doi: 10.1002/advs.202413405
- Guan D, Fan K, Spence I, Matthews S. Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction. Regul Toxicol Pharmacol. 2018;94:8-15. doi: 10.1016/j.yrtph.2018.01.008
- Yavvari P, Laporte A, Elomaa L, et al. 3D-cultured vascular-like networks enable validation of vascular disruption properties of drugs in vitro. Front Bioeng Biotechnol. 2022;10:888492. doi: 10.3389/fbioe.2022.888492
- Berglund JD, Galis ZS. Designer blood vessels and therapeutic revascularization. Br J Pharmacol. 2003; 140(4):627-636. doi: 10.1038/sj.bjp.0705457
- Cook JC, Wu H, Aleo MD, Adkins K. Principles of precision medicine and its application in toxicology. J Toxicol Sci. 2018;43(10):565-577. doi: 10.2131/jts.43.565
- Guillemot F, Souquet A, Catros S, Guillotin B. Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond). 2010;5(3):507-515. doi: 10.2217/nnm.10.14
- Guillotin B, Catros S, Guillemot F. Laser assisted bio-printing (LAB) of cells and bio-materials based on laser induced forward transfer (LIFT). In: Schmidt V, Belegratis MR, eds. Biological and Medical Physics, Biomedical Engineering. Springer Berlin Heidelberg; 2014:193-209. doi: 10.1007/978-3-642-41341-4_8
- Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60(3):691-699. doi: 10.1109/TBME.2013.2243912
- Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002. doi: 10.1088/1758-5090/8/3/032002
- Koch F, Tröndle K, Finkenzeller G, Zengerle R, Zimmermann S, Koltay P. Generic method of printing window adjustment for extrusion-based 3D-bioprinting to maintain high viability of mesenchymal stem cells in an alginate-gelatin hydrogel. Bioprinting. 2020;20:e00094. doi: 10.1016/j.bprint.2020.e00094
- Yin Z, Guo H, Li Y, Chiu J, Tian L. Ultrastable plasmonic bioink for printable point-of-care biosensors. ACS Appl Mater Interfaces. 2020;12(32):35977-35985. doi: 10.1021/acsami.0c11799
- Persaud A, Maus A, Strait L, Zhu D. 3D bioprinting with live cells. Eng Regen. 2022;3(3):292-309. doi: 10.1016/j.engreg.2022.07.002
- Lin H, Zhang D, Alexander PG, et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials. 2013;34(2):331-339. doi: 10.1016/j.biomaterials.2012.09.048
- Dubbin K, Dong Z, Park DM, et al. Projection microstereolithographic microbial bioprinting for engineered biofilms. Nano Lett. 2021;21(3):1352-1359. doi: 10.1021/acs.nanolett.0c04100
- Lai J, Wang C, Wang M. 3D printing in biomedical engineering: processes, materials, and applications. Appl Phy Rev. 2021;8(2):021322. doi: 10.1063/5.0024177
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
- Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital light processing based three-dimensional printing for medical applications. Int J Bioprint. 2020;6(1):242. doi: 10.18063/ijb.v6i1.242
- Ma X, Qu X, Zhu W, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA. 2016;113(8): 2206-2211. doi: 10.1073/pnas.1524510113
- Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev. 2014;59(8):430-448. doi: 10.1179/1743280414Y.0000000040
- Zhang J, Chen F, He Z, Ma Y, Uchiyama K, Lin JM. A novel approach for precisely controlled multiple cell patterning in microfluidic chips by inkjet printing and the detection of drug metabolism and diffusion. Analyst. 2016;141(10): 2940-2947. doi: 10.1039/C6AN00395H
- Gruene M, Deiwick A, Koch L, et al. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods. 2011;17(1):79-87. doi: 10.1089/ten.TEC.2010.0359
- Xu T, Baicu C, Aho M, Zile M, Boland, T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication. 2009;1(3):035001. doi: 10.1088/1758-5082/1/3/035001
- Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012;109(7):1855-1863. doi: 10.1002/bit.24455
- Han W, Kong L, Xu M. Advances in selective laser sintering of polymers. Int J Extrem Manuf. 2022;4(4):042002. doi: 10.1088/2631-7990/ac9096
- Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010;6(12):4495-4505. doi: 10.1016/j.actbio.2010.06.024
- Jang J, Yi HG, Cho DW. 3D printed tissue models: present and future. ACS Biomater Sci Eng. 2016;2(10):1722-1731. doi: 10.1021/acsbiomaterials.6b00129
- Jabbari E. Hydrogels for cell delivery. Gels. 2018;4(3):58. doi: 10.3390/gels4030058
- Liu J, Wang Q, Le Y., et al. 3D-bioprinting for precision microtissue engineering: advances, applications, and prospects. Adv Healthc Mater. 2025;14(10):e2403781. doi: 10.1002/adhm.202403781
- Zhang T, Yan KC, Ouyang L, Sun W. Mechanical characterization of bioprinted in vitro soft tissue models. Biofabrication. 2013;5(4):045010. doi: 10.1088/1758-5082/5/4/045010
- Gudapati H, Yan J, Huang Y, Chrisey DB. Alginate gelation-induced cell death during laser-assisted cell printing. Biofabrication. 2014;6(3):035022. doi: 10.1088/1758-5082/6/3/035022
- Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mat Sci Eng R Rep. 2020;140:100543. doi: 10.1016/j.mser.2020.100543
- Widhe M, Johansson U, Hillerdahl CO, Hedhammar M. Recombinant spider silk with cell binding motifs for specific adherence of cells. Biomaterials. 2013;34(33): 8223-8234. doi: 10.1016/j.biomaterials.2013.07.058
- Aigner TB, DeSimone E, Scheibel T. Biomedical applications of recombinant silk-based materials. Adv Mater. 2018;30(19):e1704636. doi: 10.1002/adma.201704636
- Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NYK. Decellularized extracellular matrix: new promising and challenging biomaterials for regenerative medicine. Biomaterials. 2022;289:121786. doi: 10.1016/j.biomaterials.2022.121786
- Kim BS, Das S, Jang J, Cho DW. Decellularized extracellular matrix-based bioinks for engineering tissue-and organ-specific microenvironments. Chem Rev. 2020;120(19):10608-10661. doi: 10.1021/acs.chemrev.9b00808
- D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13(9):1257-1275. doi: 10.1080/17425247.2016.1182485
- Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21): 1451-1458. doi: 10.1016/S1359-6446(05)03575-0
- Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci. 1994;83(4):601-606. doi: 10.1002/jps.2600830432
- Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials. 2002;23(22):4325-4332. doi: 10.1016/S0142-9612(02)00177-1
- Cheng Y, Deng S, Chen P, Ruan R. Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China. 2009;4(3):259-264. doi: 10.1007/s11458-009-0092-x
- Bee SL, Hamid ZAA, Mariatti M, et al. Approaches to improve therapeutic efficacy of biodegradable PLA/PLGA microspheres: a review. Polym Rev. 2018;58(3):495-536. doi: 10.1080/15583724.2018.1437547
- Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38(12):3484-3504. doi: 10.1039/B820162P
- Kim J, Park SA, Kim J, Lee J. Fabrication and characterization of bioresorbable drug-coated porous scaffolds for vascular tissue engineering. Materials. 2019;12(9):1438. doi: 10.3390/ma12091438
- Zhang W, Weng T, Li Q, et al. Applications of poly(caprolactone)-based nanofibre electrospun scaffolds in tissue engineering and regenerative medicine. Curr Stem Cell Res Ther. 2021;16(4):414-442. doi: 10.2174/1574888X15666201014145703
- Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19): 3124-3130. doi: 10.1002/adma.201305506
- Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M. Nanostructured pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication. 2015;7(3):035006. doi: 10.1088/1758-5090/7/3/035006
- Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing. Materials. 2017; 10(2):190. doi: 10.3390/ma10020190
- Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: State-of-the-art and future perspectives. Arch Toxicol. 2022;96(3): 691-710. doi: 10.1007/s00204-021-03212-y
- Szűcs D, Fekete Z, Guba M, et al. Toward better drug development: three-dimensional bioprinting in toxicological research. Int J Bioprint. 2023;9(2):663. doi: 10.18063/ijb.v9i2.663
- Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639. doi: 10.1016/j.biomaterials.2022.121639
- Wu X, Shi W, Liu X, Gu Z. Recent advances in 3D-printing-based organ-on-a-chip. EngMedicine. 2024;1(1):100003. doi: 10.1016/j.engmed.2024.100003
- Yoon S, Kilicarslan YD, Jeong U, et al. Microfluidics in high-throughput drug screening: Organ-on-a-chip and C. elegans-based innovations. Biosensors. 2024;14(1):55. doi: 10.3390/bios14010055
- Fuchs S, Johansson S, Tjell AØ, Werr G, Mayr T, Tenje M. In-line analysis of organ-on-chip systems with sensors: integration, fabrication, challenges, and potential. ACS Biomater Sci Eng. 2021;7(7):2926-2948. doi: 10.1021/acsbiomaterials.0c01110
- Zafeiris K, Brasinika D, Karatza A, et al. Additive manufacturing of hydroxyapatite–chitosan–genipin composite scaffolds for bone tissue engineering applications. Mat Sci Eng C. 2021;119:111639. doi: 10.1016/j.msec.2020.111639
- Lee V, Singh G, Trasatti JP, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods. 2014;20(6):473-484. doi: 10.1089/ten.tec.2013.0335
- Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34(1):130-139. doi: 10.1016/j.biomaterials.2012.09.035
- Jodat YA, Kiaee K, Vela Jarquin D, et al. A 3D‐printed hybrid nasal cartilage with functional electronic olfaction. Adv Sci. 2020;7(5):1901878. doi: 10.1002/advs.201901878
- Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication. 2015;7(4):045009. doi: 10.1088/1758-5090/7/4/045009
- Anada T, Pan CC, Stahl AM, et al. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. IJMS. 2019; 20(5):1096. doi: 10.3390/ijms20051096
- Yin M, Yao M, Gao S, Zhang AP, Tam H, Wai PA. Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors. Adv Mater. 2016;28(7):1394-1399. doi: 10.1002/adma.201504021
- Kanaki Z, Chandrinou C, Orfanou IM, et al. Laser-induced forward transfer printing on microneedles for transdermal delivery of gemcitabine. IJB. 2022;8(2):554. doi: 10.18063/ijb.v8i2.554
- Wang L, Cao H, Jiang H, Fang Y, Jiang D. A novel 3D bio-printing “liver lobule” microtissue biosensor for the detection of AFB1. Food Res Int. 2023;168:112778. doi: 10.1016/j.foodres.2023.112778
- Shrestha J, Ghadiri M, Shanmugavel M, et al. A rapidly prototyped lung-on-a-chip model using 3D-printed molds. Organs-on-a-Chip. 2019;1:100001. doi: 10.1016/j.ooc.2020.100001
- Yu C, Ma X, Zhu W, et al. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials. 2019;194:1-13. doi: 10.1016/j.biomaterials.2018.12.009
- Zhang JXJ, Hoshino K. Nanomaterials for molecular sensing. Molecular Sensors and Nanodevices: Principles, Designs and Applications in Biomedical Engineering. Academic Press; 2019:413-487 . doi: 10.1016/b978-0-12-814862-4.00007-7
- Pan C, Xu J, Gao Q, et al. Sequentially suspended 3D bioprinting of multiple-layered vascular models with tunable geometries for in vitro modeling of arterial disorders initiation. Biofabrication. 2023;15(4):045017. doi: 10.1088/1758-5090/aceffa
- Song KH, Highley CB, Rouff A, Burdick JA. Complex 3D‐printed microchannels within cell‐degradable hydrogels. Adv Funct Mater. 2018;28(31):1801331. doi: 10.1002/adfm.201801331
- Tonti OR, Larson H, Lipp SN, et al. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater. 2021;132:83-102. doi: 10.1016/j.actbio.2021.04.017
- Ma X, Liu J, Zhu W., et al. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliver Rev. 2018;132: 235-251. doi: 10.1016/j.addr.2018.06.011
- Almutary AG, Alnuqaydan AM, Almatroodi SA, Bakshi HA, Chellappan DK, Tambuwala MM. Development of 3D-bioprinted colitis-mimicking model to assess epithelial barrier function using albumin nano-encapsulated anti-inflammatory drugs. Biomimetics. 2023;8(1):41. doi: 10.3390/biomimetics8010041
- Kim BS, Ahn M, Cho WW, Gao G, Jang J, Cho DW. Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro. Biomaterials. 2021; 272:120776. doi: 10.1016/j.biomaterials.2021.120776
- Vázquez‐Aristizabal P, Henriksen‐Lacey M, García‐ Astrain C, et al. Biofabrication and monitoring of a 3D printed skin model for melanoma. Adv Healthc Mater. 2024;13(27):e2401136. doi: 10.1002/adhm.202401136
- Tijore A, Irvine SA, Sarig U, Mhaisalkar P, Baisane V, Venkatraman S. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication. 2018;10(2):025003. doi: 10.1088/1758-5090/aaa15d
- Melhem MR, Park J, Knapp L, et al. 3D printed stem-cell-laden, microchanneled hydrogel patch for the enhanced release of cell-secreting factors and treatment of myocardial infarctions. ACS Biomater Sci Eng. 2017;3(9):1980-1987. doi: 10.1021/acsbiomaterials.6b00176
- Ong CS, Fukunishi T, Zhang H, et al. Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep. 2017;7(1):4566. doi: 10.1038/s41598-017-05018-4
- Arai K, Murata D, Takao S, Verissiomo AR, Nakayama K. Cryopreservation method for spheroids and fabrication of scaffold-free tubular constructs. PLoS One. 2020;15(4):e0230428. doi: 10.1371/journal.pone.0230428
- Arai K, Kitsuka T, Nakayama K. Scaffold-based and scaffold-free cardiac constructs for drug testing. Biofabrication. 2021;13(4):1-14. doi: 10.1088/1758-5090/ac1257
- Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21(4):157-161. doi: 10.1016/S0167-7799(03)00033-7
- Utama RH, Atapattu L, O’Mahony AP, et al. A 3D bioprinter specifically designed for the high-throughput production of matrix-embedded multicellular spheroids. iScience. 2020;23(10):101621. doi: 10.1016/j.isci.2020.101621
- Matsusaki M, Sakaue K, Kadowaki K, Akashi M. Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater. 2013;2(4):534-539. doi: 10.1002/adhm.201200299
- Gale, B.K., Jafek, A.R., Lambert, C.J., et al. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions. 2018; 3(3):60. doi: 10.3390/inventions3030060
- Wu J, Gu M. Microfluidic sensing: state of the art fabrication and detection techniques. J Biomed Opt. 2011; 16(8):080901. doi: 10.1117/1.3607430
- Wu Q, Liu J, Wang X, et al. Organ-on-a-chip: Recent breakthroughs and future prospects. Biomed Eng Online. 2020;19(1):9. doi: 10.1186/s12938-020-0752-0
- Mehrotra S, de Melo BAG, Hirano M, et al. Nonmulberry silk based ink for fabricating mechanically robust cardiac patches and endothelialized myocardium-on-a-chip application. Adv Funct Mater. 2020;30(12): 1907436. doi: 10.1002/adfm.201907436
- Bhise NS, Manoharan V, Massa S, et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication. 2016;8(1):014101. doi: 10.1088/1758-5090/8/1/014101
- Park JY, Ryu H, Lee B, et al. Development of a functional airway-on-a-chip by 3D cell printing. Biofabrication. 2018;11(1):015002. doi: 10.1088/1758-5090/aae545
- Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication. 2010;2(4): 045004. doi: 10.1088/1758-5082/2/4/045004
- Chang R, Nam J, Sun W. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods. 2008;14(2):157-166. doi: 10.1089/ten.tec.2007.0392
- Lee H, Cho DW. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip. 2016;16(14):2618-2625. doi: 10.1039/C6LC00450D
- Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3D vascularized proximal tubule models. PNAS. 2019;116(12):5399-5404. doi: 10.1073/pnas.1815208116
- Fritschen A, Lindner N, Scholpp S, et al. High‐scale 3D‐bioprinting platform for the automated production of vascularized organs‐on‐a‐chip. Adv Healthc Mater. 2024;13(17):2304028. doi: 10.1002/adhm.202304028
- Zhang YS, Davoudi F, Walch P, et al. Bioprinted thrombosis-on-a-chip. Lab Chip. 2016;16(21):4097-4105. doi: 10.1039/C6LC00380J
- Abudupataer M, Chen N, Yan S, et al. Bioprinting a 3D vascular construct for engineering a vessel-on-a-chip. Biomed Microdevices. 2019;22(1):10. doi: 10.1007/s10544-019-0460-3
- Cao X, Ashfaq R, Cheng F, et al. A tumor‐on‐a‐chip system with bioprinted blood and lymphatic vessel pair. Adv Funct Mater. 2019;29(31):1807173. doi: 10.1002/adfm.201807173
- Xie M, Gao Q, Fu J, Chen Z, He Y. Bioprinting of novel 3D tumor array chip for drug screening. Bio-des Manuf. 2020;3(3):175-188. doi: 10.1007/s42242-020-00078-4
- Johnson BN, Lancaster KZ, Hogue IB, et al. 3D printed nervous system on a chip. Lab Chip. 2016;16(8):1393-1400. doi: 10.1039/C5LC01270H
- Skardal A, Murphy SV, Devarasetty M, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep. 2017;7(1):8837. doi: 10.1038/s41598-017-08879-x
- Elezoglou E, Chliara M, Chatzipetrou M, et al. Laser bioprinting of cells and tumor organoids for organ-on-chip applications. In: Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXIII. Vol PC12411. SPIE; 2023:PC1241107. doi: 10.1117/12.2648068
- Bowser DA, Moore MJ. Biofabrication of neural microphysiological systems using magnetic spheroid bioprinting. Biofabrication. 2019;12(1):015002. doi: 10.1088/1758-5090/ab41b4
- Han T, Kundu S, Nag A, Xu Y. 3D printed sensors for biomedical applications: a review. Sensors. 2019; 19(7):1706. doi: 10.3390/s19071706
- Cagnani GR, Ibáñez-Redín G, Tirich B, Gonçalves D, Balogh DT, Oliveira ON. Fully-printed electrochemical sensors made with flexible screen-printed electrodes modified by roll-to-roll slot-die coating. Biosens Bioelectron. 2020;165:112428. doi: 10.1016/j.bios.2020.112428
- Wang R, Zhu X, Sun L, et al. Cost-effective fabrication of transparent strain sensors via micro-scale 3D printing and imprinting. Nanomaterials. 2021;12(1):120. doi: 10.3390/nano12010120
- Wu D, Peng Q, Wu S, et al. A simple graphene NH3 gas sensor via laser direct writing. Sensors. 2018; 18(12):4405. doi: 10.3390/s18124405
- Hecht L, Rager K, Davidonis M, Weber P, Gauglitz G, Dietzel A. Blister-actuated LIFT printing for multiparametric functionalization of paper-like biosensors. Micromachines. 2019;10(4):221. doi: 10.3390/mi10040221
- Cao L, Han GC, Xiao H, Chen Z, Fang C. A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Anal Chim Acta. 2020;1096:34-43. doi: 10.1016/j.aca.2019.10.049
- López Marzo AM, Mayorga-Martinez CC, Pumera M. 3D-printed graphene direct electron transfer enzyme biosensors. Biosens Bioelectron. 2020;151:111980. doi: 10.1016/j.bios.2019.111980
- Lee J, Maji S, Lee H. Fabrication and integration of a low‐cost 3D printing‐based glucose biosensor for bioprinted liver‐on‐a‐chip. Biotechnol J. 2023;18(12):e2300154. doi: 10.1002/biot.202300154
- Guo X, Wang Z, Hou J, et al. A novel magnetoelastic biosensor consisting of carbon quantum dots/nitrocellulose membranes and NiFe2O4/ polylactic acid based on 3D printing for α2-macroglobulin detection. Chin J Anal Chem. 2024;52(9):100420. doi: 10.1016/j.cjac.2024.100420
- Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022;12(7):3049-3062. doi: 10.1016/j.apsb.2022.02.002
- Li X, Zhang R, Zhao B, Lossin C, Cao Z. Cardiotoxicity screening: a review of rapid-throughput in vitro approaches. Arch Toxicol. 2016;90(8):1803-1816. doi: 10.1007/s00204-015-1651-1
- Muir DCG, Getzinger GJ, McBride M, Ferguson PL. How many chemicals in commerce have been analyzed in environmental media? A 50 year bibliometric analysis. Environ Sci Technol. 2023;57(25):9119-9129. doi: 10.1021/acs.est.2c09353
- Godoy P, Hewitt NJ, Albrecht U, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87(8):1315-1530. doi: 10.1007/s00204-013-1078-5
- Scharff RL. Economic burden from health losses due to foodborne illness in the united states. J Food Prot. 2012;75(1):123-131. doi: 10.4315/0362-028X.JFP-11-058
- Hussain MA, Dawson CO. Economic impact of food safety outbreaks on food businesses. Foods. 2013;2(4):585-589. doi: 10.3390/foods2040585
- Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach? JACC: Basic Transl Sci. 2019;4(7): 845-854. doi: 10.1016/j.jacbts.2019.10.008
- Monteiro‐Riviere NA. Perspectives of nanotoxicology: introduction. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(6):e1843. doi: 10.1002/wnan.1843
- Johnston LJ, Gonzalez-Rojano N, Wilkinson KJ, Xing B. Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact. 2020;18:100219. doi: 10.1016/j.impact.2020.100219
- Clark KA, White RH, Silbergeld EK. Predictive models for nanotoxicology: current challenges and future opportunities. Regul Toxicol Pharmacol. 2011;59(3):361-363. doi: 10.1016/j.yrtph.2011.02.002
- Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW. Application of 3D bioprinting in the prevention and the therapy for human diseases. Sig Transduct Target Ther. 2021; 6(1):1-17. doi: 10.1038/s41392-021-00566-8
- Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016;5(3):326-333. doi: 10.1002/adhm.201500677
- Liang S, Luo Y, Su Y, et al. Distinct toxicity of microplastics/ TBBPA co-exposure to bioprinted liver organoids derived from hiPSCs of healthy and patient donors. IJB. 2024;10(3):1403. doi: 10.36922/ijb.1403
- Kang D, Lee H, Jung S. Use of a 3D inkjet‐printed model to access dust particle toxicology in the human alveolar barrier. Biotechnol Bioeng. 2022;119(12):3668-3677. doi: 10.1002/bit.28220
- Yong U, Kim D, Kim H, et al. Biohybrid 3D printing of a tissue-sensor platform for wireless, real-time, and continuous monitoring of drug-induced cardiotoxicity. Adv Mater. 2023;35(11):2208983. doi: 10.1002/adma.202208983
- Madden LR, Nguyen TV, Garcia-Mojica S, et al. Bioprinted 3D primary human intestinal tissues model aspects of native physiology and ADME/Tox Functions. iScience. 2018;2:156-167. doi: 10.1016/j.isci.2018.03.015
- Wei Z, Liu X, Ooka M, et al. Two-dimensional cellular and three-dimensional bio-printed skin models to screen topical-use compounds for irritation potential. Front Bioeng Biotechnol. 2020;8:109. doi: 10.3389/fbioe.2020.00109
- Nguyen DG, Funk J, Robbins JB, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One. 2016;11(7):e0158674. doi: 10.1371/journal.pone.0158674
- He J, Wang J, Pang Y, et al. Bioprinting of a hepatic tissue model using humaninduced pluripotent stem cell-derived hepatocytes for drug-induced hepatotoxicity evaluation. IJB. 2022;8(3):581. doi: 10.18063/ijb.v8i3.581
- Janani G, Priya S, Dey S, Mandal BB. Mimicking native liver lobule microarchitecture in vitro with parenchymal and non-parenchymal cells using 3D bioprinting for drug toxicity and drug screening applications. ACS Appl Mater Interfaces. 2022;14(8):10167-10186. doi: 10.1021/acsami.2c00312
- Ali ASM, Berg J, Roehrs V, et al. Xeno-free 3D bioprinted liver model for hepatotoxicity assessment. Int J Mol Sci. 2024;25(3):1811. doi: 10.3390/ijms25031811
- Khanal D, Zhang F, Song Y, et al. Biological impact of nanodiamond particles – label free, high-resolution methods for nanotoxicity assessment. Nanotoxicology. 2019;13(9):1210-1226. doi: 10.1080/17435390.2019.1650970
- Singh NK, Kim JY, Jang J, Kim YK, Cho DW. 3D cell printing of advanced vascularized proximal tubule-on-a-chip for drug induced nephrotoxicity advancement. ACS Appl Bio Mater. 2023;6(9):3750-3758. doi: 10.1021/acsabm.3c00421
- Khalid MAU, Kim YS, Ali M, Lee BG, Cho YJ, Choi KH. A lung cancer-on-chip platform with integrated biosensors for physiological monitoring and toxicity assessment. Biochem Engi J. 2020;155:107469. doi: 10.1016/j.bej.2019.107469
- Chandiramohan A, Dabaghi M, Aguiar JA, et al. Development and validation of an open-source, disposable, 3D-printed in vitro environmental exposure system for transwell culture inserts. ERJ Open Res. 2021;7(1):00705-02020. doi: 10.1183/23120541.00705-2020
- Gerbolés AG, Galetti M, Rossi S, et al. Three-dimensional bioprinting of organoid-based scaffolds (OBST) for long-term nanoparticle toxicology investigation. IJMS. 2023;24(7):6595. doi: 10.3390/ijms24076595
- Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45-59. doi: 10.1016/j.biomaterials.2016.09.003
- Miller KL, Sit I, Xiang Y, et al. Evaluation of CuO nanoparticle toxicity on 3D bioprinted human iPSC-derived cardiac tissues. Bioprinting. 2023;32:e00284. doi: 10.1016/j.bprint.2023.e00284
- Jiang D, Sheng K, Jiang H, Wang L. A biomimetic “intestinal microvillus” cell sensor based on 3D bioprinting for the detection of wheat allergen gliadin. Bioelectrochemistry. 2021;142:107919. doi: 10.1016/j.bioelechem.2021.107919
- Tofani LB, Avelino TM, De Azevedo RJ, et al. Biofabricated 3D intestinal models as an alternative to animal based approaches for drug toxicity assays. Tissue Eng Regen Med. 2025;22(2):181-194. doi: 10.1007/s13770-024-00694-6
- Cuvellier M, Ezan F, Oliveira H, et al. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials. 2021;269:120611. doi: 10.1016/j.biomaterials.2020.120611
- Nguyen DG, Pentoney SL. Bioprinted three dimensional human tissues for toxicology and disease modeling. Drug Discov Today Technol. 2017;23:37-44. doi: 10.1016/j.ddtec.2017.03.001
- Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Adv Drug Deliv Rev. 2014;69-70:81-102. doi: 10.1016/j.addr.2013.12.006
- Michael S, Sorg H, Peck CT, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741. doi: 10.1371/journal.pone.0057741
- Pourchet LJ, Thepot A, Albouy M, et al. Human skin 3D bioprinting using scaffold‐free approach. Adv Healthc Mater. 2017;6(4):1601101. doi: 10.1002/adhm.201601101
- Hsu YT, Lee SP, Li CH, Ho MH, Kao CY. Preparation of 3D-printed gastric models with biomimetic mechanical, topographical and fluid dynamic properties. J Taiwan Inst Chem Eng. 2024;160:105389. doi: 10.1016/j.jtice.2024.105389
- Ozbek II, Saybasili H, Ulgen KO. Applications of 3D bioprinting technology to brain cells and brain tumor models: special emphasis to glioblastoma. ACS Biomater Sci Eng. 2024;10(5):2616-2635. doi: 10.1021/acsbiomaterials.3c01569
- Kiemen AL, Forjaz A, Sousa R, et al. High‐resolution 3D printing of pancreatic ductal microanatomy enabled by serial histology. Adv Mater Technol. 2024;9(6):2301837. doi: 10.1002/admt.202301837