AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025210203
Cite this article
45
Download
384
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Three-dimensional bioprinted silk fibroin-hydroxypropyl cellulose scaffold loaded with tendon stem/progenitor cells for the prevention of heterotopic ossification following Achilles tendon injury

Xianzong Ning1,2 Rui Du1 Minghao Zhang1 Yutao Yang1 Fei Yu1 Xiaoming Xu2 Baoyuan Meng2 Kai Yan1*
Show Less
1 Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
2 Division of Sports Medicine and Joint Surgery, Department of Orthopedic Surgery, Nanjing Pukou People’s Hospital, Liangjiang Hospital, Southeast University, Nanjing, Jiangsu, China
Received: 19 May 2025 | Accepted: 17 June 2025 | Published online: 17 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

 Achilles tendon injury is a common musculoskeletal disorder, particularly prevalent among athletes and middle-aged/elderly populations. Heterotopic ossification (HO) following Achilles tendon injury is a frequent complication that significantly compromises patients’ quality of life and athletic performance. Conventional conservative treatments and surgical interventions for HO often yield suboptimal outcomes, failing to restore native tendon functionality. Tissue engineering strategies integrating biomaterials and cells offer promising solutions for tendon regeneration and functional recovery. Three-dimensional bioprinting presents unique advantages in fabricating tissue-engineered scaffolds through precise control of architectural geometry and internal microstructure. In this study, we developed a novel silk fibroin (SF)–hydroxypropyl cellulose (HPC)–tendon stem/progenitor cell (TSPC) bioink with exceptional cytocompatibility and rheological properties. This bioink demonstrated superior printability for fabricating porous Achilles tendon scaffolds with high mechanical strength (elastic modulus: 85 MPa), controlled biodegradability, and optimal porosity (91%). In vitro experiments revealed that SF– HPC–TSPCs scaffolds promoted TSPC survival, migration, proliferation, and tenogenic differentiation within the scaffold microenvironment. In vivo assessments demonstrated that the scaffolds exhibited excellent biocompatibility, elicited no systemic inflammatory or immune responses, and effectively prevented HO in rat models of Achilles tendon injury. This study establishes a groundbreaking approach for addressing post-traumatic HO in tendon regeneration.

Graphical abstract
Keywords
Achilles tendon injury
Heterotopic ossification
Silk fibroin
Three-dimensional bioprinting
Tissue-engineered scaffold
Funding
This work was supported by the National Major Research Plan of the National Natural Science Foundation of China (NSFC) (92368201), the National Key Research and Development Project (2021YFA1201404), the Major Project of NSFC (81991514), and the Jiangsu Province Medical Innovation Center of Orthopedic Surgery (CXZX202214).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Traweger A, Scott A, Kjaer M, et al. Achilles tendinopathy. Nat Rev Dis Primers. 2025;11(1):20. doi: 10.1038/s41572-025-00602-9
  2. Fischer S. Acute rupture of the Achilles tendon: diagnostics, treatment and aftercare. Unfallchirurgie (Heidelb). 2024;127(8):597-606. doi: 10.1007/s00113-024-01454-w
  3. Geuskens W, Caekebeke P, VAN Riet R. Prevalence and clinical implications of heterotopic ossification after distal biceps tendon repair. Acta Orthop Belg. 2023;89(4):695-700. doi: 10.52628/89.4.12447
  4. Fischer CS, Porsche J, Leyder D, Schüll D, Histing T, Ziegler P. Heterotopic ossification following severe radial head fractures: clinical outcome and associated factors. Jt Dis Relat Surg. 2025;36(1):47-55. doi: 10.52312/jdrs.2025.1992
  5. Dai G, Li Y, Liu J, et al. Higher BMP Expression in tendon stem/progenitor cells contributes to the increased heterotopic ossification in achilles tendon with aging. Front Cell Dev Biol. 2020;8:570605. doi: 10.3389/fcell.2020.570605
  6. Yu T, Zhang J, Zhu W, et al. Chondrogenesis mediates progression of ankylosing spondylitis through heterotopic ossification. Bone Res. 2021;9(1):19. doi: 10.1038/s41413-021-00140-6
  7. Wang Z, Yi X, Liu Y, Liu Q, Li Z, Yu A. Differential expression profiles and functional prediction of circRNA in mice with traumatic heterotopic ossification. Front Immunol. 2022;13:1090529. doi: 10.3389/fimmu.2022.1090529
  8. Xu L, Xu K, Wu Z, et al. Pioglitazone attenuates advanced glycation end products-induced apoptosis and calcification by modulating autophagy in tendon-derived stem cells. J Cell Mol Med. 2020;24(3):2240-2251. doi: 10.1111/jcmm.14901
  9. Tachibana N, Chijimatsu R, Okada H, et al. RSPO2 defines a distinct undifferentiated progenitor in the tendon/ ligament and suppresses ectopic ossification. Sci Adv. 2022;8(33):eabn2138. doi: 10.1126/sciadv.abn2138
  10. Wang T, Chen P, Chen L, et al. Reduction of mechanical loading in tendons induces heterotopic ossification and activation of the β-catenin signaling pathway. J Orthop Transl. 2021;29:42-50. doi: 10.1016/j.jot.2021.03.004
  11. Pierantoni M, Hammerman M, Silva Barreto I, et al. Spatiotemporal and microstructural characterization of heterotopic ossification in healing rat Achilles tendons. FASEB J. 2023;37(6). doi: 10.1096/fj.202201018RRR
  12. Yamaguchi H, Li M, Kitami M, Swaminathan S, Mishina Y, Komatsu Y. Enhanced BMP signaling in Cathepsin K-positive tendon progenitors induces heterotopic ossification. Biochem Biophys Res Commun. 2023;688:149147. doi: 10.1016/j.bbrc.2023.149147
  13. Magnusson SP, Agergaard AS, Couppé C, et al. Heterotopic ossification after an achilles tendon rupture cannot be prevented by early functional rehabilitation: a cohort study. Clin Orthop Relat Res. 2020;478(5):1101-1108. doi: 10.1097/corr.0000000000001085
  14. Agarwal S, Loder S, Levi B. Heterotopic ossification following upper extremity injury. Hand Clin. 2017;33(2): 363-373. doi: 10.1016/j.hcl.2016.12.013
  15. Delgado Caceres M, Angerpointner K, Galler M, et al. Tenomodulin knockout mice exhibit worse late healing outcomes with augmented trauma-induced heterotopic ossification of Achilles tendon. Cell Death Dis. 2021;12(11):1049. doi: 10.1038/s41419-021-04298-z
  16. Walden G, Liao X, Donell S, Raxworthy MJ, Riley GP, Saeed A. A clinical, biological, and biomaterials perspective into tendon injuries and regeneration. Tissue Eng Part B Rev. 2017;23(1):44-58. doi: 10.1089/ten.TEB.2016.0181
  17. No YJ, Castilho M, Ramaswamy Y, Zreiqat H. Role of biomaterials and controlled architecture on tendon/ligament repair and regeneration. Adv Mater. 2020;32(18):e1904511. doi: 10.1002/adma.201904511
  18. Sensini A, Cristofolini L. Biofabrication of electrospun scaffolds for the regeneration of tendons and ligaments. Materials (Basel). 2018;11(10):1963. doi: 10.3390/ma11101963
  19. Yan K, Zhang X, Liu Y, et al. 3D-bioprinted silk fibroin-hydroxypropyl cellulose methacrylate porous scaffold with optimized performance for repairing articular cartilage defects. Mater Des. 2023;225:111531. doi: 10.1016/j.matdes.2022.111531
  20. Zhang X, Liu Y, Zuo Q, et al. 3D bioprinting of biomimetic bilayered scaffold consisting of decellularized extracellular matrix and silk fibroin for osteochondral repair. Int J Bioprint. 2021;7(4):401. doi: 10.18063/ijb.v7i4.401
  21. Park W, Gao G, Cho DW. Tissue-specific decellularized extracellular matrix bioinks for musculoskeletal tissue regeneration and modeling using 3d bioprinting technology. Int J Mol Sci. 2021;22(15):7837. doi: 10.3390/ijms22157837
  22. Jiu J, Liu H, Li D, et al. 3D bioprinting approaches for spinal cord injury repair. Biofabrication. 2024;16(3). doi: 10.1088/1758-5090/ad3a13
  23. Zhang Y, Sun Y, Luo J, et al. Hydrogel-based materials for mandibular reconstruction. MSAM. 2025;4(2). doi: 10.36922/msam025070006
  24. Li H, Zeng S, Zhou L. Biocompatible nanogels with tunable size and tailorable properties: a simple synthesis by self-assembly and disulfide crosslinking of amphiphilic hyperbranched peach gum polysaccharide. Int J Biol Macromol. 2025;309(Pt 4):143083. doi: 10.1016/j.ijbiomac.2025.143083
  25. Zhang DKY, Brockman JM, Adu-Berchie K, et al. Subcutaneous biodegradable scaffolds for restimulating the antitumour activity of pre-administered CAR-T cells. Nat Biomed Eng. 2025;9(2):268-278. doi: 10.1038/s41551-024-01216-4
  26. Xu Y, Huang J, Mai Y, et al. CBD-conjugated BMP-inhibiting exosomes on collagen scaffold dual-target Achilles tendon repair: synergistic regeneration and heterotopic ossification prevention. Mater Today Bio. 2025;32:101790. doi: 10.1016/j.mtbio.2025.101790
  27. Avenoso A, Bruschetta G, D’Ascola A, et al. Hyaluronan fragments produced during tissue injury: A signal amplifying the inflammatory response. Arch Biochem Biophys. 2019;663:228-238. doi: 10.1016/j.abb.2019.01.015
  28. Kim JK, Go EJ, Ko KW, et al. PLGA microspheres containing hydrophobically modified magnesium hydroxide particles for acid neutralization-mediated anti-inflammation. Tissue Eng Regen Med. 2021;18(4):613-622. doi: 10.1007/s13770-021-00338-z
  29. Wang Y, Feng X, Chen X. Autonomous bioelectronic devices based on silk fibroin. Adv Mater. 2025;37(22):e2500073. doi: 10.1002/adma.202500073
  30. Shen C, Zhou Z, Li R, et al. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Theranostics. 2025;15(2):560-584. doi: 10.7150/thno.103491
  31. Wang F, Lei H, Tian C, et al. An efficient biosynthetic system for developing functional silk fibroin-based biomaterials. Adv Mater. 2025;37(7):e2414878. doi: 10.1002/adma.202414878
  32. Cai G, Zhao W, Zhu T, Oliveira AL, Yao X, Zhang Y. Effects of protein conformational transition accompanied with crosslinking density cues in silk fibroin hydrogels on the proliferation and chondrogenesis of encapsulated stem cells. Regen Biomater. 2025;12:rbaf019. doi: 10.1093/rb/rbaf019
  33. Ben X, Lu X, Zhao G, Wei Z, Yang J, Kan Y. Internal secondary structural conformational states of silk fibroin studied by raman spectroscopy with band deconvolution analysis. Biomacromolecules. 2025;26(3):1992-2002. doi: 10.1021/acs.biomac.4c01827
  34. Ji X, Li Y, Wang J, et al. Silk protein gene engineering and its applications: recent advances in biomedicine driven by molecular biotechnology. Drug Des Devel Ther. 2025;19:599-626. doi: 10.2147/dddt.S504783
  35. Yin J, Fang Y, Xu L, Ahmed A. High-throughput fabrication of silk fibroin/hydroxypropyl methylcellulose (SF/HPMC) nanofibrous scaffolds for skin tissue engineering. Int J Biol Macromol. 2021;183:1210-1221. doi: 10.1016/j.ijbiomac.2021.05.026
  36. Su D, Yao M, Liu J, Zhong Y, Chen X, Shao Z. Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of β-sheet domains. ACS Appl Mater Interfaces. 2017;9(20):17489-17498. doi: 10.1021/acsami.7b04623
  37. Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219-1227. doi: 10.1038/nm1630
  38. He W, Jiang C, Zhou P, Hu X, Gu X, Zhang S. Role of tendon-derived stem cells in tendon and ligament repair: focus on tissue engineer. Front Bioeng Biotechnol. 2024;12: 1357696. doi: 10.3389/fbioe.2024.1357696
  39. Chen J, Jiang C, Yin L, et al. A review of the role of tendon stem cells in tendon-bone regeneration. Med Sci Monit. 2023;29:e940805. doi: 10.12659/msm.940805
  40. Lu J, Chen H, Lyu K, et al. The functions and mechanisms of tendon stem/progenitor cells in tendon healing. Stem Cells Int. 2023;2023:1258024. doi: 10.1155/2023/1258024
  41. Jahani A, Nourbakhsh MS, Ebrahimzadeh MH, Mohammadi M, Yari D, Moradi A. Biomolecules-loading of 3D-printed alginate-based scaffolds for cartilage tissue engineering applications: a review on current status and future prospective. Arch Bone Jt Surg. 2024;12(2):92-101. doi: 10.22038/abjs.2023.73275.3396
  42. Li M, Shi T, Yao D, Yue X, Wang H, Liu K. High-cytocompatible semi-IPN bio-ink with wide molecular weight distribution for extrusion 3D bioprinting. Sci Rep. 2022;12(1):6349. doi: 10.1038/s41598-022-10338-1
  43. Delkash Y, Gouin M, Rimbeault T, et al. Bioprinting and in vitro characterization of an eggwhite-based cell-laden patch for endothelialized tissue engineering applications. J Funct Biomater. 2021;12(3):45. doi: 10.3390/jfb12030045
  44. Kolluru PV, Lipner J, Liu W, et al. Strong and tough mineralized PLGA nanofibers for tendon-to-bone scaffolds. Acta Biomater. 2013;9(12):9442-9450. doi: 10.1016/j.actbio.2013.07.042
  45. Jacob S, Reshmy R, Antony S, et al. Nanocellulose in tissue engineering and bioremediation: mechanism of action. Bioengineered. 2022;13(5):12823-12833. doi: 10.1080/21655979.2022.2074739
  46. Veronesi F, Giavaresi G, Bellini D, Casagranda V, Pressato D, Fini M. Evaluation of a new collagen-based medical device (ElastiCo®) for the treatment of acute Achilles tendon injury and prevention of peritendinous adhesions: An in vitro biocompatibility and in vivo investigation. J Tissue Eng Regen Med. 2020;14(8):1113-1125. doi: 10.1002/term.3085
  47. Webb WR, Dale TP, Lomas AJ, et al. The application of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model. Biomaterials. 2013;34(28):6683-6694. doi: 10.1016/j.biomaterials.2013.05.041
  48. Kim SH, Park JH, Kwon JS, et al. NIR fluorescence for monitoring in vivo scaffold degradation along with stem cell tracking in bone tissue engineering. Biomaterials. 2020;258:120267. doi: 10.1016/j.biomaterials.2020.120267
  49. Salehi S, Koeck K, Scheibel T. Spider silk for tissue engineering applications. Molecules. 2020;25(3):737. doi: 10.3390/molecules25030737
  50. Xie Y, Zhang F, Akkus O, King MW. A collagen/PLA hybrid scaffold supports tendon-derived cell growth for tendon repair and regeneration. J Biomed Mater Res B Appl Biomater. 2022;110(12):2624-2635. doi: 10.1002/jbm.b.35116
  51. Shirosaki Y, Tsukatani Y, Okamoto K, Hayakawa S, Osaka A. Preparation and drug release profile of chitosan-siloxane hybrid capsules coated with hydroxyapatite. Pharmaceutics. 2022;14(5):1111. doi: 10.3390/pharmaceutics14051111
  52. Fei Y, Ma Y, Zhang H, Li H, Feng G, Fang J. Nanotechnology for research and treatment of the intestine. J Nanobiotechnol. 2022;20(1):430. doi: 10.1186/s12951-022-01517-3
  53. Sadeghzadeh H, Mehdipour A, Dianat-Moghadam H, et al. PCL/Col I-based magnetic nanocomposite scaffold provides an osteoinductive environment for ADSCs in osteogenic cues-free media conditions. Stem Cell Res Ther. 2022;13(1):143. doi: 10.1186/s13287-022-02816-0
  54. Zheng A, Wang X, Xin X, et al. Promoting lacunar bone regeneration with an injectable hydrogel adaptive to the microenvironment. Bioact Mater. 2023;21:403-421. doi: 10.1016/j.bioactmat.2022.08.031
  55. Eggermont LJ, Rogers ZJ, Colombani T, Memic A, Bencherif SA. Injectable cryogels for biomedical applications. Trends Biotechnol. 2020;38(4):418-431. doi: 10.1016/j.tibtech.2019.09.008
  56. Yao X, Yang Y, Zhou Z. Non-mulberry silk fiber-based composite scaffolds containing millichannels for auricular cartilage regeneration. ACS Omega. 2022;7(17):15064-15073. doi: 10.1021/acsomega.2c00846
  57. Wang Y, Jin S, Luo D, et al. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin. Nat Commun. 2021;12(1):1293. doi: 10.1038/s41467-021-21545-1
  58. Markel DC, Dietz P, Provenzano G, Bou-Akl T, Ren WP. Attachment and growth of fibroblasts and tenocytes within a porous titanium scaffold: a bioreactor approach. Arthroplast Today. 2022;14:231-236.e1. doi: 10.1016/j.artd.2021.12.003
  59. Lin L, Shen Q, Xue T, Yu C. Heterotopic ossification induced by Achilles tenotomy via endochondral bone formation: expression of bone and cartilage related genes. Bone. 2010;46(2):425-431. doi: 10.1016/j.bone.2009.08.057
  60. Cai Z, Wu B, Ye G, et al. Enhanced osteogenic differentiation of human bone marrow mesenchymal stem cells in ossification of the posterior longitudinal ligament through activation of the BMP2-Smad1/5/8 pathway. Stem Cells Dev. 2020;29(24):1567-1576. doi: 10.1089/scd.2020.0117
  61. Zhang H, Liu MF, Liu RC, Shen WL, Yin Z, Chen X. Physical microenvironment-based inducible scaffold for stem cell differentiation and tendon regeneration. Tissue Eng Part B Rev. 2018;24(6):443-453. doi: 10.1089/ten.TEB.2018.0018
  62. Brownley RC, Agarwal S, Loder S, et al. Characterization of heterotopic ossification using radiographic imaging: evidence for a paradigm shift. PLoS One. 2015;10(11):e0141432. doi: 10.1371/journal.pone.0141432
  63. Foley KL, Hebela N, Keenan MA, Pignolo RJ. Histopathology of periarticular non-hereditary heterotopic ossification. Bone. 2018;109:65-70. doi: 10.1016/j.bone.2017.12.006
  64. Ng J, Wei Y, Zhou B, et al. Ectopic implantation of juvenile osteochondral tissues recapitulates endochondral ossification. J Tissue Eng Regen Med. 2018;12(2):468-478. doi: 10.1002/term.2500
  65. Fujihara R, Chiba Y, Nakagawa T, et al. Histomorphometry of ectopic mineralization using undecalcified frozen bone sections. Microsc Res Tech. 2018;81(11):1318-1324. doi: 10.1002/jemt.23140
  66. Yuan J, Sun W, Zhang Z, et al. 5-Fluorouracil/curcumin loaded silk fibroin hydrogel for the adjuvant therapy in colorectal cancer. Biomater Adv. 2025;168:214108. doi: 10.1016/j.bioadv.2024.214108
  67. Yeo D, Hwang SJ, Song YS, Lee HJ. Humulene inhibits acute gastric mucosal injury by enhancing mucosal integrity. Antioxidants (Basel). 2021;10(5):761. doi: 10.3390/antiox10050761
  68. Jian J, Sun L, Cheng X, Hu X, Liang J, Chen Y. Calycosin-7- O-β-d-glucopyranoside stimulates osteoblast differentiation through regulating the BMP/WNT signaling pathways. Acta Pharm Sin B. 2015;5(5):454-460. doi: 10.1016/j.apsb.2015.06.005
  69. Winterbourn CC, Kettle AJ, Hampton MB. Reactive oxygen species and neutrophil function. Annu Rev Biochem. 2016;85:765-792. doi: 10.1146/annurev-biochem-060815-014442
  70. Hong SY, Jiang HC, Xu WC, Zeng HS, Wang SG, Qin BL. Bioinformatics analysis reveals the potential role of matrix metalloproteinases in immunity and urolithiasis. Front Immunol. 2023;14:1158379. doi: 10.3389/fimmu.2023.1158379
  71. Lu P, Chen Z, Wu M, et al. Type I collagen extracellular matrix facilitates nerve regeneration via the construction of a favourable microenvironment. Burns Trauma. 2024;12:tkae049. doi: 10.1093/burnst/tkae049
  72. Gong SQ, Tang L, Liu Z, et al. NDGA enhances the physicochemical and anti-biodegradation performance of dentin collagen. Oral Dis. 2023;29(8):3525-3539. doi: 10.1111/odi.14453
  73. Georgopoulou A, Papadogiannis F, Batsali A, et al. Chitosan/ gelatin scaffolds support bone regeneration. J Mater Sci Mater Med. 2018;29(5):59. doi: 10.1007/s10856-018-6064-2
  74. Chachlioutaki K, Karavasili C, Adamoudi E, et al. Silk sericin/PLGA electrospun scaffolds with anti-inflammatory drug-eluting properties for periodontal tissue engineering. Biomater Adv. 2022;133:112723. doi: 10.1016/j.msec.2022.112723

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing