3D bioprinting with high-viscosity bioinks: A custom-designed extrusion head for high resolution cellulose acetate scaffolds

Additive manufacturing holds significant potential in the field of tissue engineering, particularly for healing, replacing, and regenerating damaged or diseased tissues. However, the high cost of commercially available bioprinters and the limited availability of suitable biomaterials for bioprinting have hindered its widespread implementation and practical application in clinical settings. The aim of this study was to identify printing parameters tailored to the viscosity of the bioink and the evaporation characteristics of the organic solvent used in its formulation, with the broader goal of developing a cost-effective and accessible bioprinting platform for scaffold fabrication. To this end, we present a novel approach involving the design and fabrication of a cost-effective three-dimensional (3D) bioprinter conversion kit, developed using commercially available 3D printers. Bioprinting high-viscosity bioinks present specific challenges due to their resistance to flow and a high tendency to clog printing nozzles; however, this issue was mitigated through comprehensive rheological characterization. By leveraging the favorable properties of cellulose acetate as the chosen biomaterial, scaffold fabrication via 3D bioprinting was achieved efficiently without the need for curing or post-processing steps. Furthermore, a parametric troubleshooting procedure was developed to optimize printing parameters, elucidate the material behavior, and improve scaffold resolution, as assessed through scanning electron microscopy. Additionally, preliminary cell culture studies were carried out to evaluate the influence of the printed scaffolds’ biophysical cues on cellular responses, including adhesion and proliferation. This innovative and cost-effective solution has great potential to support researchers in tissue engineering and facilitate further exploration of advanced bioprinting techniques.

- Shafiee A, Atala A. Tissue engineering: toward a new era of medicine. Annu Rev Med. 2017;68:29-40. doi: 10.1146/annurev-med-102715-092331
- Cai S, Wu C, Yang W, Liang W, Yu H, Liu L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev. 2020;9(1):971-989. doi: 10.1515/ntrev-2020-0076
- Valino AD, Dizon JRC, Espera AH, Chen Q, Messman J, Advincula RC. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci. 2019;98:101162. doi: 10.1016/j.progpolymsci.2019.101162
- Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication. 2021;13:032001. doi: 10.1088/1758-5090/ABEC2C
- Picard M, Mohanty AK, Misra M. Recent advances in additive manufacturing of engineering thermoplastics: challenges and opportunities. RSC Adv. 2020;10:36058-36089. doi: 10.1039/d0ra04857g
- Khoshnevisan K, Maleki H, Samadian H, et al. Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohydr Polym. 2018;198:131-141. doi: 10.1016/j.carbpol.2018.06.072
- Zuppolini S, Salama A, Cruz-Maya I, Guarino V, Borriello A. Cellulose amphiphilic materials: chemistry, process and applications. Pharmaceutics. 2022;14(2):386. doi: 10.3390/pharmaceutics14020386
- Courtenay JC, Deneke C, Lanzoni EM, et al. Modulating cell response on cellulose surfaces; tunable attachment and scaffold mechanics. Cellulose. 2018;25(2):925-940 doi: 10.1007/S10570-017-1612-3/FIGURES/6
- Sofi HS, Akram T, Shabir N, Vasita R, Jadhav AH, Sheikh FA. Regenerated cellulose nanofibers from cellulose acetate: incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Mater Sci Eng C. 2021;118:111547. doi: 10.1016/J.MSEC.2020.111547
- Chen C, Xi Y, Weng Y. Recent advances in cellulose-based hydrogels for tissue engineering applications. Polymers (Basel). 2022;14(16):3335. doi: 10.3390/polym14163335
- Tudoroiu EE, Dinu-Pîrvu CE, Albu Kaya MG, et al. An overview of cellulose derivatives-based dressings for wound-healing management. Pharmaceuticals (Basel). 2021;14(12):1215. doi: 10.3390/ph14121215
- Fooladi S, Nematollahi MH, Rabiee N, Iravani S. Bacterial cellulose-based materials: a perspective on cardiovascular tissue engineering applications. ACS Biomater Sci Eng. 2023;9(6):2949-2969. doi: 10.1021/acsbiomaterials.3c00300
- Janmohammadi M, Nazemi Z, Salehi AOM, et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater. 2022;20:137-163. doi: 10.1016/j.bioactmat.2022.05.018
- Golizadeh M, Karimi A, Gandomi-Ravandi S, et al. Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers. Carbohydr Polym. 2019;207:796-805. doi: 10.1016/j.carbpol.2018.12.028
- Gouma P, Xue R, Goldbeck C, et al. Nano-hydroxyapatite— cellulose acetate composites for growing of bone cells. Mater Sci Eng C. 2012;32(3):607-612. doi: 10.1016/j.msec.2011.12.019
- de Oliveira Neto GC, Teixeira MM, Souza GLV, et al. Assessment of the eco-efficiency of the circular economy in the recovery of cellulose from the shredding of textile waste, Polymers. 2022;14:1317. doi: 10.3390/POLYM14071317
- Jing L, Shi T, Chang Y, et al. Cellulose-based materials in environmental protection: a scientometric and visual analysis review. Sci Total Environ. 2024;929:172576. doi: 10.1016/j.scitotenv.2024.172576
- Wang Q, Sun J, Yao Q, Ji C, Liu J, Zhu Q. 3D Printing With Cellulose Materials. Netherlands: Springer; 2018. doi: 10.1007/s10570-018-1888-y
- Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A. Smart materials as scaffolds for tissue engineering. J Cell Physiol. 2005;203(3):465-470. doi: 10.1002/jcp.20270
- Özkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials. 2021;267:120497. doi: 10.1016/j.biomaterials.2020.120497
- Kim BS, Park IK, Hoshiba T, et al. Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci. 2011;36(2):238-268 doi: 10.1016/J.PROGPOLYMSCI.2010.10.001
- Huang H, Dean D. 3-D printed porous cellulose acetate tissue scaffolds for additive manufacturing. Addit Manuf. 2020;31:100927. doi: 10.1016/j.addma.2019.100927
- Papadimitriou L, Manganas P, Ranella A, Stratakis E. Biofabrication for neural tissue engineering applications. Mater Today Bio. 2020;6:100043. doi: 10.1016/J.MTBIO.2020.100043
- Grashoff C, Hoffman BD, Brenner MD, et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature. 2010;466(7303):263-266. doi: 10.1038/nature09198
- Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 2006;7(4):265-275. doi: 10.1038/nrm1890
- Han P, Gomez GA, Duda GN, Ivanovski S, Poh PSP. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater. 2023;163:259-274. doi: 10.1016/j.actbio.2022.01.020
- Penumakala PK, Santo J, Thomas A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos B Eng. 2020;201:108336. doi: 10.1016/j.compositesb.2020.108336
- Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks. Adv Healthc Mater. 2020;9(15):e1901648. doi: 10.1002/adhm.201901648
- Gillispie G, Prim P, Copus J, et al. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020;12(2):022003. doi: 10.1088/1758-5090/ab6f0d
- Zhang YS, Haghiashtiani G, Hübscher T, et al. 3D extrusion bioprinting. Nat Rev Methods Primers. 2021;1(1):1-20. doi: 10.1038/s43586-021-00073-8
- Moroni L, Boland T, Burdick JA, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 2018;36(4):384-402. doi: 10.1016/j.tibtech.2017.10.015
- Cindradewi AW, Bandi R, Park CW, et al. Preparation and characterization of cellulose acetate film reinforced with cellulose nanofibril. Polymers (Basel). 2021;13(17):2990. doi: 10.3390/polym13172990
- Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF. Ultra-low-cost 3D bioprinting: modification and application of an off-the-shelf desktop 3D-printer for biofabrication. Front Bioeng Biotechnol. 2019;7:184. doi: 10.3389/fbioe.2019.00184
- Costanzo S, Parisi D, Schweizer T, Vlassopoulos D. REVIEW: nonlinear shear rheometry: brief history, recent progress, and challenges. J Rheol. 2024;68(6):1013-1036. doi: 10.1122/8.0000897
- Lin L, Jiang S, Yang J, et al. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. Int J Bioprint. 2022;9(1):637. doi: 10.18063/ijb.v9i1.63
- Van den Eynde M, Van Puyvelde P. 3D printing of poly(lactic acid). Adv Polym Sci. 2018;282:139-158. doi: 10.1007/12_2017_28
- Tümer EH, Erbil HY. Extrusion-based 3D printing applications of PLA composites: a review. Coatings. 2021;11(4):390. doi: 10.3390/COATINGS11040390
- Zhang L, Yang Q, Zhang K, et al. Research on the integration of industrial design and mechanical product design. IOP Conf Ser Mater Sci Eng. 2020;772(1):012100. doi: 10.1088/1757-899X/772/1/012100
- Ji Y, Ji J, Kuang Y, Chen S, Wang D. Development and realization of computer three-dimensional aided design system for industrial design. J Phys Conf Ser. 2021;2074(1):012017. doi: 10.1088/1742-6596/2074/1/012017
- Song PP, Qi YM, Cai DC. Research and application of autodesk Fusion360 in industrial design. IOP Conf Ser Mater Sci Eng. 2018;359(1):012037. doi: 10.1088/1757-899X/359/1/012037
- Utomo NW, Nazari B, Parisi D, Colby RH. Determination of intrinsic viscosity of native cellulose solutions in ionic liquids. J Rheol. 2020;64(5):1063-1073. doi: 10.1122/8.0000015
- Yan ZC, Costanzo S, Jeong Y, Chang T, Vlassopoulos D. Linear and nonlinear shear rheology of a marginally entangled ring polymer. Macromolecules. 2016;49(4):1444-1453. doi: 10.1021/acs.macromol.5b02651
- Schweizer T, Schmidheiny W. A cone-partitioned plate rheometer cell with three partitions (CPP3) to determine shear stress and both normal stress differences for small quantities of polymeric fluids. J Rheol. 2013; 57:841-856. doi: 10.1122/1.4797458
- Snijkers F, Vlassopoulos D. Cone-partitioned-plate geometry for the ARES rheometer with temperature control. J Rheol. 2011;55:1167-1186. doi: 10.1122/1.3625559
- Rhee BO, Lee SH. Evaluation on accuracy of the rheological data of PIM feedstocks. J Jpn Soc Powder Powder Metall. 1999;46(8):830-836. doi: 10.2497/JJSPM.46.830
- Castellanos MM, Pathak JA, Colby RH. Both protein adsorption and aggregation contribute to shear yielding and viscosity increase in protein solutions. Soft Matter. 2014;10(1):122-131. doi: 10.1039/c3sm51994e
- Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-682. doi: 10.1038/nmeth.2019
- Stirling DR, Swain-Bowden MJ, Lucas AM, et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics. 2021;22(1):433. doi: 10.1186/s12859-021-04344-9
- Kamentsky L, Jones TR, Fraser A, et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics. 2011;27(8):1179-1180. doi: 10.1093/bioinformatics/btr095
- Carpenter AE, Jones R, Lamprecht MR, et al. Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100. doi: 10.1186/gb-2006-7-10-r100
- Kurowski PM. Finite Element Analysis for Design Engineers. SAE International; 2022. Accessed: Jun. 27, 2023. [Online]. Available from: https:// books. google.gr/books?hl=en&lr=&id=yiOjEAAA QBAJ&oi=fnd&pg=PP1&dq=Finite+element+analysis&ots =pTv6Re0j8Y&sig=CR_7tnbL5aNGEEgOXYfL-QsYfr4& redir_esc=y#v=onepage&q=Finite%20element%20analysis &f=false
- Carrera E, Cinefra M, Petrolo M, Zappinno E. Finite Element Analysis of Structures through Unified Formulation; 2014. Accessed: Jun. 27, 2023. [Online]. Available: https://books.google.gr/books?hl=en&lr=&id=Ds0u BAAAQBAJ & oi = f nd & p g = P T 1 7 & d q = F i n it e + element+analysis+of+structures&ots=gS7YPRnJ3 _&sig=1zAQvApZnPqqe1VvAriyxOb0i9o&redir_ esc=y#v=onepage&q=Finite%20element%20analy sis%20of%20structures&f=false
- Szabó B, Babuška I. Finite Element Analysis: Method, Verification and Validation; 2021. Accessed: Jun. 27, 2023. [Online]. Available: https://books.google.gr/books?hl=en& lr=&id=V_UqEAAAQBAJ&oi=fnd&pg=PP12&dq= Finite+element+analysis&ots=GpxraDUPr9&sig= rt371KK9Ujp01k3vu1vThzxRIXg&redir_esc=y#v= onepage&q=Finite%20element%20analysis&f=false
- Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev. 2016;107:367-392. doi: 10.1016/j.addr.2016.06.012
- Ramos N, Mittermeier C, Kiendl J. Experimental and numerical investigations on heat transfer in fused filament fabrication 3D-printed specimens. Int J Adv Manuf Technol. 2022;118(5–6):1367-1381. doi: 10.1007/S00170-021-07760-6
- Yenilmez B, Temirel M, Knowlton S, Lepowsky E, Tasoglu S. Development and characterization of a low-cost 3D bioprinter. Bioprinting. 2019;13:e00044. doi: 10.1016/J.BPRINT.2019.E00044
- Dávila JL, Manzini B, da Fonseca JHL, et al. A parameterized g-code compiler for scaffolds 3D bioprinting. Bioprinting. 2022;27:e00222. doi: 10.1016/J.BPRINT.2022.E00222
- Parisi D, Costanzo S, Jeong Y, et al. Nonlinear shear rheology of entangled polymer rings. Macromolecules. 2021;54(6):2811-2827. doi: 10.1021/ACS.MACROMOL.0C02839/ASSET/ IMAGES/LARGE/MA0C02839_0016.JPEG
- Appaw C, Gilbert RD, Khan SA. Viscoelastic behavior of cellulose acetate in a mixed solvent system. Biomacromolecules. 2007;8(5):1541-1547. doi: 10.1021/bm0611681
- Schulz L, Seger B, Burchard W. Structures of cellulose in solution. Macromol Chem Phys. 2000;201:2008-2022. doi: 10.1002/1521-3935(20001001)201:15<2008::AID-MAC P2008>3.0.CO;2-H
- Ferrarezi MMF, Rodrigues GV, Felisberti MI, Goncalves MC. Investigation of cellulose acetate viscoelastic properties in different solvents and microstructure. Eur Polym J. 2013;49:2730-2737. doi: 10.1016/j.eurpolymj.2013.06.007
- Lee H, Chaudhuri SR, Krantz WB, Hwang S-T. A model for evaporative casting of polymeric membranes incorporating convection due to density changes. J Membr Sci. 2016;284:161-172. doi: 10.1016/j.memsci.2006.07.032
- Das A, Gilmer EL, Biria S, Bortner MJ. Importance of polymer rheology on material extrusion additive manufacturing: correlating process physics to print properties. ACS Appl Polym Mater. 2021;3(3):1218-1249. doi: 10.1021/ACSAPM.0C01228/ASSET/IMAGES/LARGE/ AP0C01228_0011.JPEG
- Gudapati H, Parisi D, Colby RH, Ozbolat IT. Rheological investigation of collagen, fibrinogen, and thrombin solutions for drop-on-demand 3D bioprinting. Soft Matter. 2020;16(46):10506-10517. doi: 10.1039/D0SM01455A
- Liu Y, Hildner M, Roy O, et al. On the selection of rheological tests for the prediction of 3D printability. J Rheol. 2003;67(4):791. doi: 10.1122/8.0000612
- Wu P, Yu T, Chen M, Hui D. Effect of printing speed and part geometry on the self-deformation behaviors of 4D printed shape memory PLA using FDM. J Manuf Process. 2022;84:1507-1518. doi: 10.1016/J.JMAPRO.2022.11.007
- Tirumkudulu MS, Punati VS. Solventborne polymer coatings: drying, film formation, stress evolution, and failure. Langmuir. 2022;38(8):2409-2414. doi: 10.1021/acs.langmuir.1c03124
- Colby RH. Fiber spinning from polymer solutions. J Rheol. 2023;67(6):1251-1255. doi: 10.1122/8.0000726
- Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9(4):044107. doi: 10.1088/1758-5090/aa8dd8
- Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44(22):3358-3393 doi: 10.1002/ANIE.200460587
- Liu G, Bhat MP, Kim CS, Kim J, Lee KH. Improved 3D-printability of cellulose acetate to mimic water absorption in plant roots through nanoporous networks. Macromolecules. 2022;55(5):1855-1865. doi: 10.1021/ACS.MACROMOL.2C00052/ASSET/ IMAGES/LARGE/MA2C00052_0007.JPEG
- Naghieh S, Chen X. Printability–a key issue in extrusion-based bioprinting. J Pharm Anal. 2021;11(5):564-579. doi: 10.1016/J.JPHA.2021.02.001
- Kostag M, Liebert T, Heinze T. Acetone-based cellulose solvent. Macromol Rapid Commun. 2014;35(16):1419-1422. doi: 10.1002/MARC.201400211
- Zhang F, Ma Y, Kondo Y, Breedveld V, Lively RP. A guide to solution-based additive manufacturing of polymeric structures: ink design, porosity manipulation, and printing strategy. J Adv Manuf Process. 2020;2(1):e10026. doi: 10.1002/AMP2.10026
- Thayer P, Martinez H, Gatenholm E. Manufacturing of biomaterials via a 3d printing platform. In: 3D and 4D Printing in Biomedical Applications; 2019:81-111. doi: 10.1002/9783527813704.CH4
- Łabowska MB, Jankowska AM, Michalak I, Detyna J. Shrinkage of alginate hydrogel bioinks potentially used in 3D bioprinting technology. Key Eng Mater. 2021; 885:39-45. doi: 10.4028/WWW.SCIENTIFIC.NET/KEM.885.39
- Zhao M, Geng Y, Fan S, Yao X, Zhu M, Zhang Y. 3D-printed strong hybrid materials with low shrinkage for dental restoration. Compos Sci Technol. 2021;213:108902. doi: 10.1016/J.COMPSCITECH.2021.108902
- Ozler SB, Bakirci E, Kucukgul C, Koc B. Three-dimensional direct cell bioprinting for tissue engineering. J Biomed Mater Res B Appl Biomater. 2017;105(8):2530-2544. doi: 10.1002/JBM.B.33768
- Zandrini T, Florczak S, Levato R, Ovsianikov A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol. 2023;41(5):604-614. doi: 10.1016/J.TIBTECH.2022.10.009/ASSET/69CE7A5F- 7F1D-4A33-8E82-FF41C5804A19/MAIN.ASSETS/GR4. JPG
- Ibrahim TO. 3D Bioprinting: Fundamentals, Principles and Applications; 2016. Accessed: Dec. 11, 2024. [Online]. Available from: https://books.google.gr/books?hl=en&lr= &id=vcEOCAAAQBAJ&oi=fnd&pg=PP1&dq=Microscale+3D+printing+for+biomedical+applications+ozbolat&ots=Uw 3RujHFUm&sig=nmeMiEbuc3I-5Z6_PQMYrqWHi10&redir_esc=y#v=onepage&q=Microscale%203D%20printing%20for%20biomedical%20 applications%20ozbolat&f=false
- Law ACC, Wang R, Chung J, et al. Process parameter optimization for reproducible fabrication of layer porosity quality of 3D-printed tissue scaffold. J Intell Manuf. 2024;359(4):1825-1844. doi: 10.1007/S10845-023-02141-0/TABLES/15
- Meka SRK, Chacko LA, Ravi A, Chatterjee K, Ananthanarayanan V. Role of microtubules in osteogenic differentiation of mesenchymal stem cells on 3D nanofibrous scaffolds. ACS Biomater Sci Eng. 2017;3(4):551-559. doi: 10.1021/acsbiomaterials.6b00725
- Radhakrishnan AV, Jokhun DS, Venkatachalapathy S, Shivashankar GV. Nuclear positioning and its translational dynamics are regulated by cell geometry. Biophys J. 2017;112(9):1920-1928. doi: 10.1016/j.bpj.2017.03.025
- Alisafaei F, Jokhun DS, Shivashankar GV, Shenoy VB. Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proc Natl Acad Sci U S A. 2019;116(27):13200-13209. doi: 10.1073/pnas.1902035116
- Du R, Li D, Huang Y, et al. Effect of mechanical stretching and substrate stiffness on the morphology, cytoskeleton and nuclear shape of corneal endothelial cells. Med Novel Technol Dev. 2022;16:100180. doi: 10.1016/j.medntd.2022.100180
- Werner M, Blanquer SB, Haimi SP, et al. Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv Sci. 2017;4(2):1600347. doi: 10.1002/advs.201600347
- Bidan CM, Kommareddy KP, Rumpler M, et al. How linear tension converts to curvature: geometric control of bone tissue growth. PLoS One. 2012;7(5):e36336. doi: 10.1371/journal.pone.0036336
- Ruiz SA, Chen CS. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells. 2008;26(11):2921-2927. doi: 10.1634/stemcells.2008-0432