AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025060047
RESEARCH ARTICLE

3D bioprinting with high-viscosity bioinks: A custom-designed extrusion head for high resolution cellulose acetate scaffolds

Panagiotis Daskalakis1,2* Eleni Kanakousaki1,3 Christos Ntoulias1 Katerina Peponaki1,4 Paraskevi Kavatzikidou1 Alexandra Manousaki1 Dimitris Vlassopoulos1,4 Anthi Ranella1 Emmanuel Stratakis1,5
Show Less
1 Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete, Greece
2 School of Medicine, University of Crete, Heraklion, Crete, Greece
3 Department of Biology, University of Crete, Heraklion, Crete, Greece
4 Department of Materials Science and Engineering, University of Crete, Heraklion, Crete, Greece
5 Department of Physics, University of Crete, Heraklion, Crete, Greece
Received: 8 February 2025 | Accepted: 24 March 2025 | Published online: 24 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive manufacturing holds significant potential in the field of tissue engineering, particularly for healing, replacing, and regenerating damaged or diseased tissues. However, the high cost of commercially available bioprinters and the limited availability of suitable biomaterials for bioprinting have hindered its widespread implementation and practical application in clinical settings. The aim of this study was to identify printing parameters tailored to the viscosity of the bioink and the evaporation characteristics of the organic solvent used in its formulation, with the broader goal of developing a cost-effective and accessible bioprinting platform for scaffold fabrication. To this end, we present a novel approach involving the design and fabrication of a cost-effective three-dimensional (3D) bioprinter conversion kit, developed using commercially available 3D printers. Bioprinting high-viscosity bioinks present specific challenges due to their resistance to flow and a high tendency to clog printing nozzles; however, this issue was mitigated through comprehensive rheological characterization. By leveraging the favorable properties of cellulose acetate as the chosen biomaterial, scaffold fabrication via 3D bioprinting was achieved efficiently without the need for curing or post-processing steps. Furthermore, a parametric troubleshooting procedure was developed to optimize printing parameters, elucidate the material behavior, and improve scaffold resolution, as assessed through scanning electron microscopy. Additionally, preliminary cell culture studies were carried out to evaluate the influence of the printed scaffolds’ biophysical cues on cellular responses, including adhesion and proliferation. This innovative and cost-effective solution has great potential to support researchers in tissue engineering and facilitate further exploration of advanced bioprinting techniques.

Graphical abstract
Keywords
3D bioprinter conversion kit
Additive manufacturing
Bioprinting parameters optimization
Cellulose acetate bioink
High-viscosity polymer solutions
Tissue engineering
Funding
This research was supported by the CBE JU, BIOntier project under the Grant Agreement No 101155925, funded by the European Union.
Conflict of interest
E. Stratakis serves as the guest editor of the journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Shafiee A, Atala A. Tissue engineering: toward a new era of medicine. Annu Rev Med. 2017;68:29-40. doi: 10.1146/annurev-med-102715-092331
  2. Cai S, Wu C, Yang W, Liang W, Yu H, Liu L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev. 2020;9(1):971-989. doi: 10.1515/ntrev-2020-0076
  3. Valino AD, Dizon JRC, Espera AH, Chen Q, Messman J, Advincula RC. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci. 2019;98:101162. doi: 10.1016/j.progpolymsci.2019.101162
  4. Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication. 2021;13:032001. doi: 10.1088/1758-5090/ABEC2C
  5. Picard M, Mohanty AK, Misra M. Recent advances in additive manufacturing of engineering thermoplastics: challenges and opportunities. RSC Adv. 2020;10:36058-36089. doi: 10.1039/d0ra04857g
  6. Khoshnevisan K, Maleki H, Samadian H, et al. Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohydr Polym. 2018;198:131-141. doi: 10.1016/j.carbpol.2018.06.072
  7. Zuppolini S, Salama A, Cruz-Maya I, Guarino V, Borriello A. Cellulose amphiphilic materials: chemistry, process and applications. Pharmaceutics. 2022;14(2):386. doi: 10.3390/pharmaceutics14020386
  8. Courtenay JC, Deneke C, Lanzoni EM, et al. Modulating cell response on cellulose surfaces; tunable attachment and scaffold mechanics. Cellulose. 2018;25(2):925-940 doi: 10.1007/S10570-017-1612-3/FIGURES/6
  9. Sofi HS, Akram T, Shabir N, Vasita R, Jadhav AH, Sheikh FA. Regenerated cellulose nanofibers from cellulose acetate: incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Mater Sci Eng C. 2021;118:111547. doi: 10.1016/J.MSEC.2020.111547
  10. Chen C, Xi Y, Weng Y. Recent advances in cellulose-based hydrogels for tissue engineering applications. Polymers (Basel). 2022;14(16):3335. doi: 10.3390/polym14163335
  11. Tudoroiu EE, Dinu-Pîrvu CE, Albu Kaya MG, et al. An overview of cellulose derivatives-based dressings for wound-healing management. Pharmaceuticals (Basel). 2021;14(12):1215. doi: 10.3390/ph14121215
  12. Fooladi S, Nematollahi MH, Rabiee N, Iravani S. Bacterial cellulose-based materials: a perspective on cardiovascular tissue engineering applications. ACS Biomater Sci Eng. 2023;9(6):2949-2969. doi: 10.1021/acsbiomaterials.3c00300
  13. Janmohammadi M, Nazemi Z, Salehi AOM, et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater. 2022;20:137-163. doi: 10.1016/j.bioactmat.2022.05.018
  14. Golizadeh M, Karimi A, Gandomi-Ravandi S, et al. Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers. Carbohydr Polym. 2019;207:796-805. doi: 10.1016/j.carbpol.2018.12.028
  15. Gouma P, Xue R, Goldbeck C, et al. Nano-hydroxyapatite— cellulose acetate composites for growing of bone cells. Mater Sci Eng C. 2012;32(3):607-612. doi: 10.1016/j.msec.2011.12.019
  16. de Oliveira Neto GC, Teixeira MM, Souza GLV, et al. Assessment of the eco-efficiency of the circular economy in the recovery of cellulose from the shredding of textile waste, Polymers. 2022;14:1317. doi: 10.3390/POLYM14071317
  17. Jing L, Shi T, Chang Y, et al. Cellulose-based materials in environmental protection: a scientometric and visual analysis review. Sci Total Environ. 2024;929:172576. doi: 10.1016/j.scitotenv.2024.172576
  18. Wang Q, Sun J, Yao Q, Ji C, Liu J, Zhu Q. 3D Printing With Cellulose Materials. Netherlands: Springer; 2018. doi: 10.1007/s10570-018-1888-y
  19. Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A. Smart materials as scaffolds for tissue engineering. J Cell Physiol. 2005;203(3):465-470. doi: 10.1002/jcp.20270
  20. Özkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials. 2021;267:120497. doi: 10.1016/j.biomaterials.2020.120497
  21. Kim BS, Park IK, Hoshiba T, et al. Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci. 2011;36(2):238-268 doi: 10.1016/J.PROGPOLYMSCI.2010.10.001
  22. Huang H, Dean D. 3-D printed porous cellulose acetate tissue scaffolds for additive manufacturing. Addit Manuf. 2020;31:100927. doi: 10.1016/j.addma.2019.100927
  23. Papadimitriou L, Manganas P, Ranella A, Stratakis E. Biofabrication for neural tissue engineering applications. Mater Today Bio. 2020;6:100043. doi: 10.1016/J.MTBIO.2020.100043
  24. Grashoff C, Hoffman BD, Brenner MD, et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature. 2010;466(7303):263-266. doi: 10.1038/nature09198
  25. Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 2006;7(4):265-275. doi: 10.1038/nrm1890
  26. Han P, Gomez GA, Duda GN, Ivanovski S, Poh PSP. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater. 2023;163:259-274. doi: 10.1016/j.actbio.2022.01.020
  27. Penumakala PK, Santo J, Thomas A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos B Eng. 2020;201:108336. doi: 10.1016/j.compositesb.2020.108336
  28. Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks. Adv Healthc Mater. 2020;9(15):e1901648. doi: 10.1002/adhm.201901648
  29. Gillispie G, Prim P, Copus J, et al. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020;12(2):022003. doi: 10.1088/1758-5090/ab6f0d
  30. Zhang YS, Haghiashtiani G, Hübscher T, et al. 3D extrusion bioprinting. Nat Rev Methods Primers. 2021;1(1):1-20. doi: 10.1038/s43586-021-00073-8
  31. Moroni L, Boland T, Burdick JA, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 2018;36(4):384-402. doi: 10.1016/j.tibtech.2017.10.015
  32. Cindradewi AW, Bandi R, Park CW, et al. Preparation and characterization of cellulose acetate film reinforced with cellulose nanofibril. Polymers (Basel). 2021;13(17):2990. doi: 10.3390/polym13172990
  33. Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF. Ultra-low-cost 3D bioprinting: modification and application of an off-the-shelf desktop 3D-printer for biofabrication. Front Bioeng Biotechnol. 2019;7:184. doi: 10.3389/fbioe.2019.00184
  34. Costanzo S, Parisi D, Schweizer T, Vlassopoulos D. REVIEW: nonlinear shear rheometry: brief history, recent progress, and challenges. J Rheol. 2024;68(6):1013-1036. doi: 10.1122/8.0000897
  35. Lin L, Jiang S, Yang J, et al. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. Int J Bioprint. 2022;9(1):637. doi: 10.18063/ijb.v9i1.63
  36. Van den Eynde M, Van Puyvelde P. 3D printing of poly(lactic acid). Adv Polym Sci. 2018;282:139-158. doi: 10.1007/12_2017_28
  37. Tümer EH, Erbil HY. Extrusion-based 3D printing applications of PLA composites: a review. Coatings. 2021;11(4):390. doi: 10.3390/COATINGS11040390
  38. Zhang L, Yang Q, Zhang K, et al. Research on the integration of industrial design and mechanical product design. IOP Conf Ser Mater Sci Eng. 2020;772(1):012100. doi: 10.1088/1757-899X/772/1/012100
  39. Ji Y, Ji J, Kuang Y, Chen S, Wang D. Development and realization of computer three-dimensional aided design system for industrial design. J Phys Conf Ser. 2021;2074(1):012017. doi: 10.1088/1742-6596/2074/1/012017
  40. Song PP, Qi YM, Cai DC. Research and application of autodesk Fusion360 in industrial design. IOP Conf Ser Mater Sci Eng. 2018;359(1):012037. doi: 10.1088/1757-899X/359/1/012037
  41. Utomo NW, Nazari B, Parisi D, Colby RH. Determination of intrinsic viscosity of native cellulose solutions in ionic liquids. J Rheol. 2020;64(5):1063-1073. doi: 10.1122/8.0000015
  42. Yan ZC, Costanzo S, Jeong Y, Chang T, Vlassopoulos D. Linear and nonlinear shear rheology of a marginally entangled ring polymer. Macromolecules. 2016;49(4):1444-1453. doi: 10.1021/acs.macromol.5b02651
  43. Schweizer T, Schmidheiny W. A cone-partitioned plate rheometer cell with three partitions (CPP3) to determine shear stress and both normal stress differences for small quantities of polymeric fluids. J Rheol. 2013; 57:841-856. doi: 10.1122/1.4797458
  44. Snijkers F, Vlassopoulos D. Cone-partitioned-plate geometry for the ARES rheometer with temperature control. J Rheol. 2011;55:1167-1186. doi: 10.1122/1.3625559
  45. Rhee BO, Lee SH. Evaluation on accuracy of the rheological data of PIM feedstocks. J Jpn Soc Powder Powder Metall. 1999;46(8):830-836. doi: 10.2497/JJSPM.46.830
  46. Castellanos MM, Pathak JA, Colby RH. Both protein adsorption and aggregation contribute to shear yielding and viscosity increase in protein solutions. Soft Matter. 2014;10(1):122-131. doi: 10.1039/c3sm51994e
  47. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-682. doi: 10.1038/nmeth.2019
  48. Stirling DR, Swain-Bowden MJ, Lucas AM, et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics. 2021;22(1):433. doi: 10.1186/s12859-021-04344-9
  49. Kamentsky L, Jones TR, Fraser A, et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics. 2011;27(8):1179-1180. doi: 10.1093/bioinformatics/btr095
  50. Carpenter AE, Jones R, Lamprecht MR, et al. Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100. doi: 10.1186/gb-2006-7-10-r100
  51. Kurowski PM. Finite Element Analysis for Design Engineers. SAE International; 2022. Accessed: Jun. 27, 2023. [Online]. Available from: https:// books. google.gr/books?hl=en&lr=&id=yiOjEAAA QBAJ&oi=fnd&pg=PP1&dq=Finite+element+analysis&ots =pTv6Re0j8Y&sig=CR_7tnbL5aNGEEgOXYfL-QsYfr4& redir_esc=y#v=onepage&q=Finite%20element%20analysis &f=false
  52. Carrera E, Cinefra M, Petrolo M, Zappinno E. Finite Element Analysis of Structures through Unified Formulation; 2014. Accessed: Jun. 27, 2023. [Online]. Available: https://books.google.gr/books?hl=en&lr=&id=Ds0u BAAAQBAJ & oi = f nd & p g = P T 1 7 & d q = F i n it e + element+analysis+of+structures&ots=gS7YPRnJ3 _&sig=1zAQvApZnPqqe1VvAriyxOb0i9o&redir_ esc=y#v=onepage&q=Finite%20element%20analy sis%20of%20structures&f=false
  53. Szabó B, Babuška I. Finite Element Analysis: Method, Verification and Validation; 2021. Accessed: Jun. 27, 2023. [Online]. Available: https://books.google.gr/books?hl=en& lr=&id=V_UqEAAAQBAJ&oi=fnd&pg=PP12&dq= Finite+element+analysis&ots=GpxraDUPr9&sig= rt371KK9Ujp01k3vu1vThzxRIXg&redir_esc=y#v= onepage&q=Finite%20element%20analysis&f=false
  54. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev. 2016;107:367-392. doi: 10.1016/j.addr.2016.06.012
  55. Ramos N, Mittermeier C, Kiendl J. Experimental and numerical investigations on heat transfer in fused filament fabrication 3D-printed specimens. Int J Adv Manuf Technol. 2022;118(5–6):1367-1381. doi: 10.1007/S00170-021-07760-6
  56. Yenilmez B, Temirel M, Knowlton S, Lepowsky E, Tasoglu S. Development and characterization of a low-cost 3D bioprinter. Bioprinting. 2019;13:e00044. doi: 10.1016/J.BPRINT.2019.E00044
  57. Dávila JL, Manzini B, da Fonseca JHL, et al. A parameterized g-code compiler for scaffolds 3D bioprinting. Bioprinting. 2022;27:e00222. doi: 10.1016/J.BPRINT.2022.E00222
  58. Parisi D, Costanzo S, Jeong Y, et al. Nonlinear shear rheology of entangled polymer rings. Macromolecules. 2021;54(6):2811-2827. doi: 10.1021/ACS.MACROMOL.0C02839/ASSET/ IMAGES/LARGE/MA0C02839_0016.JPEG
  59. Appaw C, Gilbert RD, Khan SA. Viscoelastic behavior of cellulose acetate in a mixed solvent system. Biomacromolecules. 2007;8(5):1541-1547. doi: 10.1021/bm0611681
  60. Schulz L, Seger B, Burchard W. Structures of cellulose in solution. Macromol Chem Phys. 2000;201:2008-2022. doi: 10.1002/1521-3935(20001001)201:15<2008::AID-MAC P2008>3.0.CO;2-H
  61. Ferrarezi MMF, Rodrigues GV, Felisberti MI, Goncalves MC. Investigation of cellulose acetate viscoelastic properties in different solvents and microstructure. Eur Polym J. 2013;49:2730-2737. doi: 10.1016/j.eurpolymj.2013.06.007
  62. Lee H, Chaudhuri SR, Krantz WB, Hwang S-T. A model for evaporative casting of polymeric membranes incorporating convection due to density changes. J Membr Sci. 2016;284:161-172. doi: 10.1016/j.memsci.2006.07.032
  63. Das A, Gilmer EL, Biria S, Bortner MJ. Importance of polymer rheology on material extrusion additive manufacturing: correlating process physics to print properties. ACS Appl Polym Mater. 2021;3(3):1218-1249. doi: 10.1021/ACSAPM.0C01228/ASSET/IMAGES/LARGE/ AP0C01228_0011.JPEG
  64. Gudapati H, Parisi D, Colby RH, Ozbolat IT. Rheological investigation of collagen, fibrinogen, and thrombin solutions for drop-on-demand 3D bioprinting. Soft Matter. 2020;16(46):10506-10517. doi: 10.1039/D0SM01455A
  65. Liu Y, Hildner M, Roy O, et al. On the selection of rheological tests for the prediction of 3D printability. J Rheol. 2003;67(4):791. doi: 10.1122/8.0000612
  66. Wu P, Yu T, Chen M, Hui D. Effect of printing speed and part geometry on the self-deformation behaviors of 4D printed shape memory PLA using FDM. J Manuf Process. 2022;84:1507-1518. doi: 10.1016/J.JMAPRO.2022.11.007
  67. Tirumkudulu MS, Punati VS. Solventborne polymer coatings: drying, film formation, stress evolution, and failure. Langmuir. 2022;38(8):2409-2414. doi: 10.1021/acs.langmuir.1c03124
  68. Colby RH. Fiber spinning from polymer solutions. J Rheol. 2023;67(6):1251-1255. doi: 10.1122/8.0000726
  69. Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9(4):044107. doi: 10.1088/1758-5090/aa8dd8
  70. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44(22):3358-3393 doi: 10.1002/ANIE.200460587
  71. Liu G, Bhat MP, Kim CS, Kim J, Lee KH. Improved 3D-printability of cellulose acetate to mimic water absorption in plant roots through nanoporous networks. Macromolecules. 2022;55(5):1855-1865. doi: 10.1021/ACS.MACROMOL.2C00052/ASSET/ IMAGES/LARGE/MA2C00052_0007.JPEG
  72. Naghieh S, Chen X. Printability–a key issue in extrusion-based bioprinting. J Pharm Anal. 2021;11(5):564-579. doi: 10.1016/J.JPHA.2021.02.001
  73. Kostag M, Liebert T, Heinze T. Acetone-based cellulose solvent. Macromol Rapid Commun. 2014;35(16):1419-1422. doi: 10.1002/MARC.201400211
  74. Zhang F, Ma Y, Kondo Y, Breedveld V, Lively RP. A guide to solution-based additive manufacturing of polymeric structures: ink design, porosity manipulation, and printing strategy. J Adv Manuf Process. 2020;2(1):e10026. doi: 10.1002/AMP2.10026
  75. Thayer P, Martinez H, Gatenholm E. Manufacturing of biomaterials via a 3d printing platform. In: 3D and 4D Printing in Biomedical Applications; 2019:81-111. doi: 10.1002/9783527813704.CH4
  76. Łabowska MB, Jankowska AM, Michalak I, Detyna J. Shrinkage of alginate hydrogel bioinks potentially used in 3D bioprinting technology. Key Eng Mater. 2021; 885:39-45. doi: 10.4028/WWW.SCIENTIFIC.NET/KEM.885.39
  77. Zhao M, Geng Y, Fan S, Yao X, Zhu M, Zhang Y. 3D-printed strong hybrid materials with low shrinkage for dental restoration. Compos Sci Technol. 2021;213:108902. doi: 10.1016/J.COMPSCITECH.2021.108902
  78. Ozler SB, Bakirci E, Kucukgul C, Koc B. Three-dimensional direct cell bioprinting for tissue engineering. J Biomed Mater Res B Appl Biomater. 2017;105(8):2530-2544. doi: 10.1002/JBM.B.33768
  79. Zandrini T, Florczak S, Levato R, Ovsianikov A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol. 2023;41(5):604-614. doi: 10.1016/J.TIBTECH.2022.10.009/ASSET/69CE7A5F- 7F1D-4A33-8E82-FF41C5804A19/MAIN.ASSETS/GR4. JPG
  80. Ibrahim TO. 3D Bioprinting: Fundamentals, Principles and Applications; 2016. Accessed: Dec. 11, 2024. [Online]. Available from: https://books.google.gr/books?hl=en&lr= &id=vcEOCAAAQBAJ&oi=fnd&pg=PP1&dq=Microscale+3D+printing+for+biomedical+applications+ozbolat&ots=Uw 3RujHFUm&sig=nmeMiEbuc3I-5Z6_PQMYrqWHi10&redir_esc=y#v=onepage&q=Microscale%203D%20printing%20for%20biomedical%20 applications%20ozbolat&f=false
  81. Law ACC, Wang R, Chung J, et al. Process parameter optimization for reproducible fabrication of layer porosity quality of 3D-printed tissue scaffold. J Intell Manuf. 2024;359(4):1825-1844. doi: 10.1007/S10845-023-02141-0/TABLES/15
  82. Meka SRK, Chacko LA, Ravi A, Chatterjee K, Ananthanarayanan V. Role of microtubules in osteogenic differentiation of mesenchymal stem cells on 3D nanofibrous scaffolds. ACS Biomater Sci Eng. 2017;3(4):551-559. doi: 10.1021/acsbiomaterials.6b00725
  83. Radhakrishnan AV, Jokhun DS, Venkatachalapathy S, Shivashankar GV. Nuclear positioning and its translational dynamics are regulated by cell geometry. Biophys J. 2017;112(9):1920-1928. doi: 10.1016/j.bpj.2017.03.025
  84. Alisafaei F, Jokhun DS, Shivashankar GV, Shenoy VB. Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proc Natl Acad Sci U S A. 2019;116(27):13200-13209. doi: 10.1073/pnas.1902035116
  85. Du R, Li D, Huang Y, et al. Effect of mechanical stretching and substrate stiffness on the morphology, cytoskeleton and nuclear shape of corneal endothelial cells. Med Novel Technol Dev. 2022;16:100180. doi: 10.1016/j.medntd.2022.100180
  86. Werner M, Blanquer SB, Haimi SP, et al. Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv Sci. 2017;4(2):1600347. doi: 10.1002/advs.201600347
  87. Bidan CM, Kommareddy KP, Rumpler M, et al. How linear tension converts to curvature: geometric control of bone tissue growth. PLoS One. 2012;7(5):e36336. doi: 10.1371/journal.pone.0036336
  88. Ruiz SA, Chen CS. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells. 2008;26(11):2921-2927. doi: 10.1634/stemcells.2008-0432

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing