Painting bio: A vector-based method for precise G-code generation across scales in biofabrication

This study introduces a standardized approach to generating and assembling G-code for biofabrication, ensuring compatibility and convergence across diverse machines and scales. By using vector-based drawing software, such as Adobe Illustrator, shapes are designed as paths and converted into modular G-code blocks (subroutines). This vector-based approach allows for the straightforward design of complex structures, such as organic shapes, by simply drawing them to scale, avoiding the need for labor-intensive construction. These blocks are assembled into a final script with a modified version of Notepad++ that enhances code segmentation and provides real-time visualization. Unlike many commercial slicers, this method offers precise control over the print path—a critical advantage in biofabrication, where anisotropic structures are essential for directed cell growth and orientation-specific mechanical properties needed in biomimetic tissue design. The method’s versatility is demonstrated across techniques from micro-scale applications, such as melt electrowriting, to macro-scale approaches like bioprinting, freeform printing, and in-gel printing. This process streamlines code generation, allowing both simple and complex shapes to be efficiently produced. Although paths are drawn in 2D, stacking layers enables 3D constructs. The method’s standardized, relative G-code format—compatible with most devices—supports easy transfer across machines with clearly marked, machine-specific segments, creating a unified and adaptable codebase for a range of fabrication scales and techniques.

- Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication. 2016;8(1):13001. doi: 10.1088/1758-5090/8/1/013001
- Eichholz KF, Gonçalves I, Barceló X, Federici AS, Hoey DA, Kelly DJ. How to design, develop and build a fully-integrated melt electrowriting 3D printer. Addit Manuf. 2022;58:102998. doi: 10.1016/j.addma.2022.102998
- Tofail SA, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018; 21(1):22-37. doi: 10.1016/j.mattod.2017.07.001
- Brown AC, Beer D de. Development of a stereolithography (STL) slicing and G-code generation algorithm for an entry level 3-D printer. In: AFRICON, 2013. IEEE; 2013:1-5. doi: 10.1109/AFRCON.2013.6757836
- Tashman JW, Shiwarski DJ, Feinberg AW. Development of a high-performance open-source 3D bioprinter. Sci Rep. 2022;12(1):22652. doi: 10.1038/s41598-022-26809-4
- Correia Carreira S, Begum R, Perriman AW. 3D bioprinting: the emergence of programmable biodesign. Adv Healthc Mater. 2020;9(15):e1900554. doi: 10.1002/adhm.201900554
- Gillispie G, Prim P, Copus J, et al. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020;12(2):22003. doi: 10.1088/1758-5090/ab6f0d
- Lamberger Z, Schubert DW, Buechner M, et al. Advanced optical assessment and modeling of extrusion bioprinting. Sci Rep. 2024;14(1):13972. doi: 10.1038/s41598-024-64039-y
- Fortunato GM, Nicoletta M, Batoni E, Vozzi G, Maria C de. A fully automatic non-planar slicing algorithm for the additive manufacturing of complex geometries. Addit Manuf. 2023;69:103541. doi: 10.1016/j.addma.2023.103541
- Devlin BL, Allenby MC, Ren J, et al. Materials design innovations in optimizing cellular behavior on melt electrowritten (MEW) scaffolds. Adv Funct Mater. 2024;34(18):2313092. doi: 10.1002/adfm.202313092
- Lin Y-J, Lee TS. An adaptive tool path generation algorithm for precision surface machining. Computer-Aided Design. 1999;31(4):237-247. doi: 10.1016/S0010-4485(99)00024-X
- Gleadall A. FullControl GCode Designer: Open-source software for unconstrained design in additive manufacturing. Addit Manuf. 2021;46:102109. doi: 10.1016/j.addma.2021.102109
- Chansoria P, Rütsche D, Wang A, et al. Synergizing algorithmic design, photoclick chemistry and multi-material volumetric printing for accelerating complex shape engineering. Adv Sci (Weinh). 2023;10(26):e2300912. doi: 10.1002/advs.202300912
- Devlin BL, Kuba S, Hall PC, et al. A melt Electrowriting Toolbox for automated g‐code generation and toolpath correction of flat and tubular constructs. Adv Mater Technol. 2024;9(22):2400419. doi: 10.1002/admt.202400419
- Vernon MJ, Lu J, Padman B, et al. Engineering heart valve interfaces using melt electrowriting: biomimetic design strategies from multi-modal imaging. Adv Healthc Mater. 2022;11(24):e2201028. doi: 10.1002/adhm.202201028
- Bhandari S. A graph-based algorithm for slicing unstructured mesh files. Addit Manuf Lett. 2022;3:100056. doi: 10.1016/j.addlet.2022.100056
- Pakhomova C, Popov D, Maltsev E, Akhatov I, Pasko A. Software for bioprinting. IJB. 2020;6(3):279. doi: 10.18063/ijb.v6i3.279
- Dávila JL, Manzini BM, Da Lopes Fonsêca JH, et al. A parameterized g-code compiler for scaffolds 3D bioprinting. Bioprinting. 2022;27:e00222. doi: 10.1016/j.bprint.2022.e00222
- Ueng S-K, Huang H-K, Huang H-C. A G-code generator for volumetric models. Appl Sci. 2019;9(18):3868. doi: 10.3390/app9183868
- Castilho M, Ruijter M de, Beirne S, et al. Multitechnology biofabrication: a new approach for the manufacturing of functional tissue structures? Trends Biotechnol. 2020;38(12):1316-1328. doi: 10.1016/j.tibtech.2020.04.014
- Ruijter M de, Ribeiro A, Dokter I, Castilho M, Malda J. Simultaneous micropatterning of fibrous meshes and bioinks for the fabrication of living tissue constructs. Adv Healthc Mater. 2019;8(7):e1800418. doi: 10.1002/adhm.201800418
- Koch F, Thaden O, Tröndle K, Zengerle R, Zimmermann S, Koltay P. Open-source hybrid 3D-bioprinter for simultaneous printing of thermoplastics and hydrogels. HardwareX. 2021;10:e00230. doi: 10.1016/j.ohx.2021.e00230
- Lamberger Z, Mussoni C, Murenu N, et al. Streamlining the highly reproducible fabrication of fibrous biomedical specimens towards standardization and high throughput. Adv Healthc Mater. 2024;Early View:e2402527. doi: 2024. 10.1002/adhm.202402527
- Bloksma MM, Weber C, Perevyazko IY, et al. Poly(2- cyclopropyl-2-oxazoline): from rate acceleration by cyclopropyl to thermoresponsive properties. Macromolecules. 2011;44(11):4057-4064. doi: 10.1021/ma200514n
- Murenu N, Kasteleiner M, Lamberger Z, et al. Impact of polymorphic microfibers for establishment of neuronal model. Nano Select. 2024;Early View:e202400122. doi: 10.1002/nano.202400122
- Lamberger Z, Priebe V, Matthias R, Lang G. A versatile method to produce monomodal nano- to micro-fiber fragments as fillers for biofabrication. Small Methods. 2024;Early View:2401060. doi: 10.1002/smtd.202401060
- Türker E, Andrade Mier MS, Faber J, et al. Breast tumor cell survival and morphology in a brain-like extracellular matrix depends on matrix composition and mechanical properties. Adv Biol (Weinh). 2024;8(9):e2400184. doi: 10.1002/adbi.202400184
- Mair V, Paulus I, Groll J, Ryma M. Freeform printing of thermoresponsive poly(2-cyclopropyl-oxazoline) as cytocompatible and on-demand dissolving template of hollow channel networks in cell-laden hydrogels. Biofabrication. 2022;14(2):2207270. doi: 10.1088/1758-5090/ac57a7
- Herzberger J, Sirrine JM, Williams CB, Long TE. Polymer design for 3D printing elastomers: recent advances in structure, properties, and printing. Prog Polymer Sci. 2019;97:101144. doi: 10.1016/j.progpolymsci.2019.101144
- Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication. 2021;13(3):032001. doi: 10.1088/1758-5090/abec2c
- Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From shape to function: the next step in bioprinting. Adv Mater. 2020;32(12):e1906423. doi: 10.1002/adma.201906423
- Bettendorf E, Schmid R, E. Horch R, et al. Bioprinted keratinocyte and stem cell laden constructs for skin tissue engineering. IJB. 2024;10(6):3925. doi: 10.36922/ijb.3925
- Schaefer N, Andrade Mier MS, Sonnleitner D, et al. Rheological and biological impact of printable PCL-fibers as reinforcing fillers in cell-laden spider-silk bio-inks. Small Methods. 2023;7(10): e2201717. doi: 10.1002/smtd.202201717
- Choi S, Lee KY, Kim SL, et al. Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles. Nat Mater. 2023;22(8):1039-1046. doi: 10.1038/s41563-023-01611-3
- Kim H, Jang J, Park J, et al. Shear-induced alignment of collagen fibrils using 3D cell printing for corneal stroma tissue engineering. Biofabrication. 2019;11(3):35017. doi: 10.1088/1758-5090/ab1a8b
- Eghbali M, Weber KT. Collagen and the myocardium: fibrillar structure, biosynthesis and degradation in relation to hypertrophy and its regression. Mol Cell Biochem. 1990;96(1):1-14. doi: 10.1007/BF00228448
- Reizabal A, Kangur T, Saiz PG, et al. MEWron: an open-source melt electrowriting platform. Addit Manuf. 2023;71:103604. doi: 10.1016/j.addma.2023.103604
- Zhang YS, Haghiashtiani G, Hübscher T, et al. 3D extrusion bioprinting. Nat Rev Methods Primers. 2021;1(1):75. doi: 10.1038/s43586-021-00073-8