AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4633
RESEARCH ARTICLE

Toward robust and reproducible pluripotent stem cell expansion in bioprinted GelMA constructs

Elizabeth R Komosa1,2 Wei-Han Lin1,2 Brenda M Ogle1,2,3,4,5,6 *
Show Less
1 Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
2 Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
3 Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
4 Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
5 Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
6 Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
Submitted: 22 August 2024 | Accepted: 9 December 2024 | Published: 10 December 2024
(This article belongs to the Special Issue Bioprinting for Tissue Engineering and Modeling)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Combining the technologies of 3D bioprinting and human induced pluripotent stem cells (hiPSCs) has allowed for the creation of tissues with organ-level function in the lab, a promising technique for disease modeling and regenerative medicine. Expanding the stem cells in bioprinted tissues prior to differentiation allows for high cell density, which is important for the formation of cell-cell junctions necessary for macroscale function upon differentiation. Yet, stem cell expansion, critical to successful in situ differentiation, depends heavily on the composition of the bioprinted scaffold. Here, we demonstrate how a common bioink component, gelatin methacryloyl (GelMA), varies depending on the vendor and degree of functionalization. We found that the vendor/GelMA production technique played a greater role in dictating the mechanical properties of the bioprinted constructs than the degree of functionalization, emphasizing the importance of reporting detailed characterization of GelMA scaffolds. Furthermore, the ability of singularized hiPSCs to survive and expand in GelMA scaffolds greatly varied across batches from different vendors and degrees of functionalization, where expansion correlated with the mechanical properties of the scaffold. Yet, we found that using a commercial cloning supplement could restore the ability of single hiPSCs to survive and expand across GelMA types, thus compensating for the varied mechanical properties of the scaffolds. T hese fi ndings provide a pr actical guide fo r the ex pansion of hiPSCs in GelMA constructs with various mechanical properties as required for successful in situ differentiation.

 

Graphical abstract
Keywords
Bioprinting
Scaffold characterization
GelMA
Human induced pluripotent stem cells
In situ expansion
Funding
This work was supported by the EK, Grant 905669. National Institutes of Health, National Heart, Lung, and Blood Institute to BMO, R01 HL160779.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020. doi: 10.1088/1758-5090/8/3/035020
  2. Faulkner-Jones A, Fyfe C, Cornelissen DJ, et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 2015;7(4):044102. doi: 10.1088/1758-5090/7/4/044102
  3. Ouyang L, Yao R, Mao S, Chen X, Na J, Sun W. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication. 2015;7(4):044101. doi: 10.1088/1758-5090/7/4/044101
  4. Reid JA, Mollica PA, Johnson GD, Ogle RC, Bruno RD, Sachs PC. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation. Biofabrication. 2016;8(2):025017. doi: 10.1088/1758-5090/8/2/025017
  5. Li Y, Jiang X, Li L, et al. 3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation. Biofabrication. 2018;10(4):044101. doi: 10.1088/1758-5090/AACFC3
  6. Komosa ER, Lin WH, Mahadik B, et al. A novel perfusion bioreactor promotes the expansion of pluripotent stem cells in a 3D-bioprinted tissue chamber. Biofabrication. 2024;16:014101. doi: 10.1088/1758-5090/ad084a
  7. Gu Q, Tomaskovic-Crook E, Wallace GG, Crook JM. 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv Healthc Mater. 2017;6(17): 1700175. doi: 10.1002/adhm.201700175
  8. Nguyen D, Hagg DA, Forsman A, et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep. 2017;7:658. doi: 10.1038/s41598-017-00690-y
  9. Koch L, Deiwick A, Franke A, et al. Laser bioprinting of human induced pluripotent stem cells—the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. Biofabrication. 2018;10(3):035005. doi: 10.1088/1758-5090/aab981
  10. Kupfer ME, Lin WH, Ravikumar V, et al. In situ expansion, differentiation and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circ Res. 2020;127:207-224. doi: 10.1161/circresaha.119.316155
  11. Hamid OA, Eltaher HM, Sottile V, Yang J. 3D bioprinting of a stem cell-laden, multi-material tubular composite: an approach for spinal cord repair. Mater Sci Eng C. 2021;120:111707. doi: 10.1016/J.MSEC.2020.111707
  12. Lin WH, Zhu Z, Ravikumar V, et al. A bionic testbed for cardiac ablation tools. Int J Mol Sci. 2022;23(22):14444. doi: 10.3390/ijms232214444
  13. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA. 2007;104(27):11298-11303. doi: 10.1073/pnas.0703723104
  14. Kang H, Shih YRV, Hwang Y, et al. Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells. Acta Biomater. 2014;10(12):4961-4970. doi: 10.1016/j.actbio.2014.08.010
  15. Kerscher P, Turnbull IC, Hodge AJ, et al. Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues. Biomaterials. 2016;83:383-395. doi: 10.1016/J.BIOMATERIALS.2015.12.011
  16. Kerscher P, Kaczmarek JA, Head SE, et al. Direct production of human cardiac tissues by pluripotent stem cell encapsulation in gelatin methacryloyl. ACS Biomater Sci Eng. 2017;3(8):1499-1509. doi: 10.1021/acsbiomaterials.6b00226
  17. Gilmozzi V, Gentile G, Riekschnitz DA, et al. Generation of hiPSC-derived functional dopaminergic neurons in alginate-based 3D culture. Front Cell Dev Biol. 2021;9:708389. doi: 10.3389/FCELL.2021.708389
  18. Rajabi N, Rezaei A, Kharaziha M, et al. Recent advances on bioprinted gelatin methacrylate-based hydrogels for tissue repair. Tissue Eng Part A. 2021;27(11-12):679-702. doi: 10.1089/ten.TEA.2020.0350
  19. Peyret C, Elkhoury K, Bouguet-Bonnet S, et al. Gelatin methacryloyl (GelMA) hydrogel scaffolds: Predicting physical properties using an experimental design approach. Int J Mol Sci. 2023;24(17):13359. doi: 10.3390/ijms241713359
  20. Ohgushi M, Matsumura M, Eiraku M, et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell. 2010;7(2):225-239. doi: 10.1016/j.stem.2010.06.018
  21. Chen G, Hou Z, Gulbranson DR, Thomson JA. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell. 2010;7(2):240-248. doi: 10.1016/j.stem.2010.06.017
  22. Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25(6):681-686. doi: 10.1038/nbt1310
  23. Higuchi A, Ling Q-D, Kumar SS, et al. Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells. J Mater Chem B. 2015;3: 8032-8058. doi: 10.1039/C5TB01276G
  24. Kaitsuka T, Hakim F. Response of pluripotent stem cells to environmental stress and its application for directed differentiation. Biology (Basel). 2021;10(2):84. doi: 10.3390/biology10020084
  25. Labouesse C, Tan BX, Agley CC, et al. StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells. Nat Commun. 2021;12:6132. doi: 10.1038/s41467-021-26236-5
  26. Smith Q, Chan XY, Carmo AM, Trempel M, Saunders M, Gerecht S. Compliant substratum guides endothelial commitment from human pluripotent stem cells. Sci Adv. 2017;3(5):e1602883. doi: 10.1126/sciadv.1602883
  27. Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365:482-487. doi: 10.1126/science.aav9051
  28. Zhu W, Zhao M, Mattapally S, Chen S, Zhang J. CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: Remuscularization of injured ventricle. Circ Res. 2018; 122(1):88-96. doi: 10.1161/CIRCRESAHA.117.311504
  29. Lian X, Hsiao C, Wilson G, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci USA. 2012;109(27):E1848-E1857. doi: 10.1073/pnas.1200250109
  30. Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods. 2016;13(5):405-414. doi: 10.1038/nmeth.3839
  31. Nichol JW, Koshy S, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31(21):5536-5544. doi: 10.1016/j.biomaterials.2010.03.064
  32. Xin Z, Lang Q, Yildirimer L, et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthc Mater. 2016;5(1):108-118. doi: 10.1002/adhm.201500005
  33. Yin H, Zhu M, Wang Y, Luo L, Ye Q, Lee BH. Physical properties and cellular responses of gelatin methacryloyl bulk hydrogels and highly ordered porous hydrogels. Front Soft Matter. 2022;2:1101680. doi: 10.3389/frsfm.2022.1101680
  34. Shie MY, Lee JJ, Ho CC, Yen SY, Ng HY, Chen YW. Effects of gelatin methacrylate bio-ink concentration on mechano-physical properties and human dermal fibroblast behavior. Polymers (Basel). 2020;12(9):1930. doi: 10.3390/polym12091930
  35. Vigata M, Meinert C, Bock N, Dargaville BL, Hutmacher DW. Deciphering the molecular mechanism of water interaction with gelatin methacryloyl hydrogels: role of ionic strength, pH, drug loading, and hydrogel network characteristics. Biomedicines. 2021;9(5):574. doi: 10.3390/biomedicines9050574
  36. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
  37. Kesti M, Fisch P, Pensalfini M, Mazza E, Zenobi-Wang M. Guidelines for standardization of bioprinting: a systematic study of process parameters and their effect on bioprinted structures. BioNanoMaterials. 2016;17(3-4):193-204. doi: 10.1515/bnm-2016-0004
  38. Strauß S, Schroth B, Hubbuch J. Evaluation of the reproducibility and robustness of extrusion-based bioprinting processes applying a flow sensor. Front Bioeng Biotechnol. 2022;10:831350. doi: 10.3389/fbioe.2022.831350
  39. Grijalva Garces D, Strauß S, Gretzinger S, et al. On the reproducibility of extrusion-based bioprinting: round robin study on standardization in the field. Biofabrication. 2024;16: 015002. doi: 10.1088/1758-5090/acfe3b
  40. Young AT, White OC, Daniele MA. Rheological properties of coordinated physical gelation and chemical crosslinking in gelatin methacryloyl (GelMA) hydrogels. Macromol Biosci. 2020;20(12):e2000183. doi: 10.1002/mabi.202000183
  41. Sewald L, Claaben C, Gotz T, et al. Beyond the modification degree: impact of raw material on physicochemical properties of gelatin type A and type B methacryloyls. Macromol Biosci. 2018;18(12):e1800168. doi: 10.1002/mabi.201800168
  42. Lee BH, Lum N, Seow LY, Lim PQ, Tan LP. Synthesis and characterization of types A and B gelatin methacryloyl for bioink applications. Materials (Basel). 2016;9(10):797. doi: 10.3390/ma9100797
  43. Zambuto SG, Kolluru SS, Ferchichi E, et al. Evaluation of gelatin bloom strength on gelatin methacryloyl hydrogel properties. J Mech Behav Biomed Mater. 2024;154:106509. doi: 10.1101/2023.11.13.566924
  44. Lei Y, Schaffer DV. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. PNAS. 2013;110(52):E5039-E5048. doi: 10.1073/pnas.1309408110
  45. Ren X, Asami Takagi M, Shen Y. Efficient bi-allelic tagging in human induced pluripotent stem cells using CRISPR. STAR Protoc. 2023;4(1):102084. doi: 10.1016/j.xpro.2023.102084
  46. Ludwik KA, Telugu N, Schommer S, Stachelscheid H, Diecke S. ASSURED-optimized CRISPR protocol for knockout/ SNP knockin in hiPSCs. STAR Protoc. 2023;4(3):102406. doi: 10.1016/j.xpro.2023.102406
  47. Mojica-Perez SP, Stokes K, Jaklic DC, et al. Protocol for selecting single human pluripotent stem cells using a modified micropipetter. STAR Protoc. 2023;4(4):102629. doi: 10.1016/j.xpro.2023.102629
  48. Bauwens CL, Peerani R, Niebruegge S, et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells. 2009;26(9):2300-2310. doi: 10.1634/stemcells.2008-0183
  49. Mohr JC, Zhang J, Azarin SM, et al. The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials. 2010;31(7):1885-1893. doi: 10.1016/j.biomaterials.2009.11.033
  50. Rosowski KA, Mertz AF, Norcross S, Dufresne ER, Horsley V. Edges of human embryonic stem cell colonies display distinct mechanical properties and differentiation potential. Sci Rep. 2015;5:14218. doi: 10.1038/srep14218
  51. He J, Sun Y, Gao Q, et al. Gelatin methacryloyl hydrogel, from standardization, performance, to biomedical application. Adv Healthc Mater. 2023;12(23):e2300395. doi: 10.1002/adhm.202300395
  52. Tarassoli SP, Jessop ZM, Jovic T, Hawkins K, Whitaker IS. Candidate bioinks for extrusion 3D bioprinting – a systematic review of the literature. Front Bioeng Biotechnol. 2021;9:616753. doi: 10.3389/fbioe.2021.616753
  53. Marzi J, Fuhrmann E, Brauchle E, et al. Non-invasive three-dimensional cell analysis in bioinks by Raman imaging. ACS Appl Mater Interfaces. 2022;14(27): 30455-30465. doi: 10.1021/acsami.1c24463
  54. Babakhanova G, Agrawal A, Arora D, et al. Three-dimensional, label-free cell viability measurements in tissue engineering scaffolds using optical coherence tomography. J Biomed Mater Res Part A. 2023;111(8):1279-1291. doi: 10.1002/jbm.a.37528
  55. Musah S, Morin SA, Wrighton PJ, Zwick DB, Jin S, Kiessling LL. Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano. 2012;6(11):10168-10177. doi: 10.1021/nn3039148
  56. Wang B, Tu X, Wei J, Wang L, Chen Y. Substrate elasticity dependent colony formation and cardiac differentiation of human induced pluripotent stem cells. Biofabrication. 2018;11(1):015005. doi: 10.1088/1758-5090/aae0a5
  57. Liang Z, Liu C, Li L, et al. Double-network hydrogel with tunable mechanical performance and biocompatibility for the fabrication of stem cells-encapsulated fibers and 3D assemble. Sci Rep. 2016;6:33462. doi: 10.1038/srep33462
  58. Chen YM, Ogawa R, Kakugo A, Osada Y, Gong JP. Dynamic cell behavior on synthetic hydrogels with different charge densities. Soft Matter. 2009;5:1804-1811. doi: 10.1039/B818586G
  59. Keung AJ, Asuri P, Kumar S, Schaffer DV. Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integr Biol. 2012;4(9):1049-1058. doi: 10.1039/c2ib20083j
  60. Arkenberg MR, Koehler K, Lin CC. Heparinized gelatin-based hydrogels for differentiation of induced pluripotent stem cells. Biomacromolecules. 2022;23(10):4141-4152. doi: 10.1021/acs.biomac.2c00585
  61. Przybyla LM, Voldman J. Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. PNAS. 2012;109(3):835-840. doi: 10.1073/pnas.1103100109
  62. Przybyla LM, Theunissen TW, Jaenisch R, Voldman J. Matrix remodeling maintains embryonic stem cell self-renewal by activating Stat3. Stem Cells. 2013;31(6):1097-1106. doi: 10.1002/stem.1360
  63. Zhu M, Wang Y, Ferracci G, Zheng J, Cho NJ, Lee BH. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci Rep. 2019;9(1):6863. doi: 10.1038/s41598-019-42186-x
  64. Richbourg NR, Wancura M, Gilchrist AE, et al. Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships. Sci Adv. 2021;7(7):eabe3245. doi: 10.1126/sciadv.abe3245
  65. Zatorski JM, Montalbine AN, Ortiz-Cardenas JE, Pompano RR. Quantification of fractional and absolute functionalization of gelatin hydrogels by optimized ninhydrin assay and 1H NMR. Anal Bioanal Chem. 2020;412:6211-6220. doi: 10.1007/s00216-020-02792-5
  66. Yue K, Li X, Schrobback K, et al. Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials. 2017;139:163-171. doi: 10.1016/j.biomaterials.2017.04.050
  67. Shirahama H, Lee BH, Tan LP, Cho NJ. Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Sci Rep. 2016;6:31036. doi: 10.1038/srep31036
  68. Wenger L, Strauß S, Hubbuch J. Automated and dynamic extrusion pressure adjustment based on real-time flow rate measurements for precise ink dispensing in 3D bioprinting. Bioprinting. 2022;28:e00229 doi: 10.1016/j.bprint.2022.e00229
  69. Lipsitz YY, Tonge PD, Zandstra PW. Chemically controlled aggregation of pluripotent stem cells. Biotechnol Bioeng. 2018;115(8):2061-2066. doi: 10.1002/bit.26719
  70. Nogueira DES, Rodrigues CAV, Carvalho MS, et al. Strategies for the expansion of human induced pluripotent stem cells as aggregates in single-use Vertical-WheelTM bioreactors. J Biol Eng. 2019;13(1):74. doi: 10.1186/s13036-019-0204-1
  71. Zandrini T, Florczak S, Levato R, Ovsianikov A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol. 2023;41(5):604-614. doi: 10.1016/j.tibtech.2022.10.009
  72. Elkhoury K, Zuazola J, Vijayavenkataraman S. Bioprinting the future using light: a review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS Technol. 2023;28(3):142-151. doi: 10.1016/j.slast.2023.02.003

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing