Toward robust and reproducible pluripotent stem cell expansion in bioprinted GelMA constructs
Combining the technologies of 3D bioprinting and human induced pluripotent stem cells (hiPSCs) has allowed for the creation of tissues with organ-level function in the lab, a promising technique for disease modeling and regenerative medicine. Expanding the stem cells in bioprinted tissues prior to differentiation allows for high cell density, which is important for the formation of cell-cell junctions necessary for macroscale function upon differentiation. Yet, stem cell expansion, critical to successful in situ differentiation, depends heavily on the composition of the bioprinted scaffold. Here, we demonstrate how a common bioink component, gelatin methacryloyl (GelMA), varies depending on the vendor and degree of functionalization. We found that the vendor/GelMA production technique played a greater role in dictating the mechanical properties of the bioprinted constructs than the degree of functionalization, emphasizing the importance of reporting detailed characterization of GelMA scaffolds. Furthermore, the ability of singularized hiPSCs to survive and expand in GelMA scaffolds greatly varied across batches from different vendors and degrees of functionalization, where expansion correlated with the mechanical properties of the scaffold. Yet, we found that using a commercial cloning supplement could restore the ability of single hiPSCs to survive and expand across GelMA types, thus compensating for the varied mechanical properties of the scaffolds. T hese fi ndings provide a pr actical guide fo r the ex pansion of hiPSCs in GelMA constructs with various mechanical properties as required for successful in situ differentiation.
- Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020. doi: 10.1088/1758-5090/8/3/035020
- Faulkner-Jones A, Fyfe C, Cornelissen DJ, et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 2015;7(4):044102. doi: 10.1088/1758-5090/7/4/044102
- Ouyang L, Yao R, Mao S, Chen X, Na J, Sun W. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication. 2015;7(4):044101. doi: 10.1088/1758-5090/7/4/044101
- Reid JA, Mollica PA, Johnson GD, Ogle RC, Bruno RD, Sachs PC. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation. Biofabrication. 2016;8(2):025017. doi: 10.1088/1758-5090/8/2/025017
- Li Y, Jiang X, Li L, et al. 3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation. Biofabrication. 2018;10(4):044101. doi: 10.1088/1758-5090/AACFC3
- Komosa ER, Lin WH, Mahadik B, et al. A novel perfusion bioreactor promotes the expansion of pluripotent stem cells in a 3D-bioprinted tissue chamber. Biofabrication. 2024;16:014101. doi: 10.1088/1758-5090/ad084a
- Gu Q, Tomaskovic-Crook E, Wallace GG, Crook JM. 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv Healthc Mater. 2017;6(17): 1700175. doi: 10.1002/adhm.201700175
- Nguyen D, Hagg DA, Forsman A, et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep. 2017;7:658. doi: 10.1038/s41598-017-00690-y
- Koch L, Deiwick A, Franke A, et al. Laser bioprinting of human induced pluripotent stem cells—the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. Biofabrication. 2018;10(3):035005. doi: 10.1088/1758-5090/aab981
- Kupfer ME, Lin WH, Ravikumar V, et al. In situ expansion, differentiation and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circ Res. 2020;127:207-224. doi: 10.1161/circresaha.119.316155
- Hamid OA, Eltaher HM, Sottile V, Yang J. 3D bioprinting of a stem cell-laden, multi-material tubular composite: an approach for spinal cord repair. Mater Sci Eng C. 2021;120:111707. doi: 10.1016/J.MSEC.2020.111707
- Lin WH, Zhu Z, Ravikumar V, et al. A bionic testbed for cardiac ablation tools. Int J Mol Sci. 2022;23(22):14444. doi: 10.3390/ijms232214444
- Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA. 2007;104(27):11298-11303. doi: 10.1073/pnas.0703723104
- Kang H, Shih YRV, Hwang Y, et al. Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells. Acta Biomater. 2014;10(12):4961-4970. doi: 10.1016/j.actbio.2014.08.010
- Kerscher P, Turnbull IC, Hodge AJ, et al. Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues. Biomaterials. 2016;83:383-395. doi: 10.1016/J.BIOMATERIALS.2015.12.011
- Kerscher P, Kaczmarek JA, Head SE, et al. Direct production of human cardiac tissues by pluripotent stem cell encapsulation in gelatin methacryloyl. ACS Biomater Sci Eng. 2017;3(8):1499-1509. doi: 10.1021/acsbiomaterials.6b00226
- Gilmozzi V, Gentile G, Riekschnitz DA, et al. Generation of hiPSC-derived functional dopaminergic neurons in alginate-based 3D culture. Front Cell Dev Biol. 2021;9:708389. doi: 10.3389/FCELL.2021.708389
- Rajabi N, Rezaei A, Kharaziha M, et al. Recent advances on bioprinted gelatin methacrylate-based hydrogels for tissue repair. Tissue Eng Part A. 2021;27(11-12):679-702. doi: 10.1089/ten.TEA.2020.0350
- Peyret C, Elkhoury K, Bouguet-Bonnet S, et al. Gelatin methacryloyl (GelMA) hydrogel scaffolds: Predicting physical properties using an experimental design approach. Int J Mol Sci. 2023;24(17):13359. doi: 10.3390/ijms241713359
- Ohgushi M, Matsumura M, Eiraku M, et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell. 2010;7(2):225-239. doi: 10.1016/j.stem.2010.06.018
- Chen G, Hou Z, Gulbranson DR, Thomson JA. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell. 2010;7(2):240-248. doi: 10.1016/j.stem.2010.06.017
- Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25(6):681-686. doi: 10.1038/nbt1310
- Higuchi A, Ling Q-D, Kumar SS, et al. Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells. J Mater Chem B. 2015;3: 8032-8058. doi: 10.1039/C5TB01276G
- Kaitsuka T, Hakim F. Response of pluripotent stem cells to environmental stress and its application for directed differentiation. Biology (Basel). 2021;10(2):84. doi: 10.3390/biology10020084
- Labouesse C, Tan BX, Agley CC, et al. StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells. Nat Commun. 2021;12:6132. doi: 10.1038/s41467-021-26236-5
- Smith Q, Chan XY, Carmo AM, Trempel M, Saunders M, Gerecht S. Compliant substratum guides endothelial commitment from human pluripotent stem cells. Sci Adv. 2017;3(5):e1602883. doi: 10.1126/sciadv.1602883
- Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365:482-487. doi: 10.1126/science.aav9051
- Zhu W, Zhao M, Mattapally S, Chen S, Zhang J. CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: Remuscularization of injured ventricle. Circ Res. 2018; 122(1):88-96. doi: 10.1161/CIRCRESAHA.117.311504
- Lian X, Hsiao C, Wilson G, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci USA. 2012;109(27):E1848-E1857. doi: 10.1073/pnas.1200250109
- Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods. 2016;13(5):405-414. doi: 10.1038/nmeth.3839
- Nichol JW, Koshy S, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31(21):5536-5544. doi: 10.1016/j.biomaterials.2010.03.064
- Xin Z, Lang Q, Yildirimer L, et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthc Mater. 2016;5(1):108-118. doi: 10.1002/adhm.201500005
- Yin H, Zhu M, Wang Y, Luo L, Ye Q, Lee BH. Physical properties and cellular responses of gelatin methacryloyl bulk hydrogels and highly ordered porous hydrogels. Front Soft Matter. 2022;2:1101680. doi: 10.3389/frsfm.2022.1101680
- Shie MY, Lee JJ, Ho CC, Yen SY, Ng HY, Chen YW. Effects of gelatin methacrylate bio-ink concentration on mechano-physical properties and human dermal fibroblast behavior. Polymers (Basel). 2020;12(9):1930. doi: 10.3390/polym12091930
- Vigata M, Meinert C, Bock N, Dargaville BL, Hutmacher DW. Deciphering the molecular mechanism of water interaction with gelatin methacryloyl hydrogels: role of ionic strength, pH, drug loading, and hydrogel network characteristics. Biomedicines. 2021;9(5):574. doi: 10.3390/biomedicines9050574
- Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
- Kesti M, Fisch P, Pensalfini M, Mazza E, Zenobi-Wang M. Guidelines for standardization of bioprinting: a systematic study of process parameters and their effect on bioprinted structures. BioNanoMaterials. 2016;17(3-4):193-204. doi: 10.1515/bnm-2016-0004
- Strauß S, Schroth B, Hubbuch J. Evaluation of the reproducibility and robustness of extrusion-based bioprinting processes applying a flow sensor. Front Bioeng Biotechnol. 2022;10:831350. doi: 10.3389/fbioe.2022.831350
- Grijalva Garces D, Strauß S, Gretzinger S, et al. On the reproducibility of extrusion-based bioprinting: round robin study on standardization in the field. Biofabrication. 2024;16: 015002. doi: 10.1088/1758-5090/acfe3b
- Young AT, White OC, Daniele MA. Rheological properties of coordinated physical gelation and chemical crosslinking in gelatin methacryloyl (GelMA) hydrogels. Macromol Biosci. 2020;20(12):e2000183. doi: 10.1002/mabi.202000183
- Sewald L, Claaben C, Gotz T, et al. Beyond the modification degree: impact of raw material on physicochemical properties of gelatin type A and type B methacryloyls. Macromol Biosci. 2018;18(12):e1800168. doi: 10.1002/mabi.201800168
- Lee BH, Lum N, Seow LY, Lim PQ, Tan LP. Synthesis and characterization of types A and B gelatin methacryloyl for bioink applications. Materials (Basel). 2016;9(10):797. doi: 10.3390/ma9100797
- Zambuto SG, Kolluru SS, Ferchichi E, et al. Evaluation of gelatin bloom strength on gelatin methacryloyl hydrogel properties. J Mech Behav Biomed Mater. 2024;154:106509. doi: 10.1101/2023.11.13.566924
- Lei Y, Schaffer DV. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. PNAS. 2013;110(52):E5039-E5048. doi: 10.1073/pnas.1309408110
- Ren X, Asami Takagi M, Shen Y. Efficient bi-allelic tagging in human induced pluripotent stem cells using CRISPR. STAR Protoc. 2023;4(1):102084. doi: 10.1016/j.xpro.2023.102084
- Ludwik KA, Telugu N, Schommer S, Stachelscheid H, Diecke S. ASSURED-optimized CRISPR protocol for knockout/ SNP knockin in hiPSCs. STAR Protoc. 2023;4(3):102406. doi: 10.1016/j.xpro.2023.102406
- Mojica-Perez SP, Stokes K, Jaklic DC, et al. Protocol for selecting single human pluripotent stem cells using a modified micropipetter. STAR Protoc. 2023;4(4):102629. doi: 10.1016/j.xpro.2023.102629
- Bauwens CL, Peerani R, Niebruegge S, et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells. 2009;26(9):2300-2310. doi: 10.1634/stemcells.2008-0183
- Mohr JC, Zhang J, Azarin SM, et al. The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials. 2010;31(7):1885-1893. doi: 10.1016/j.biomaterials.2009.11.033
- Rosowski KA, Mertz AF, Norcross S, Dufresne ER, Horsley V. Edges of human embryonic stem cell colonies display distinct mechanical properties and differentiation potential. Sci Rep. 2015;5:14218. doi: 10.1038/srep14218
- He J, Sun Y, Gao Q, et al. Gelatin methacryloyl hydrogel, from standardization, performance, to biomedical application. Adv Healthc Mater. 2023;12(23):e2300395. doi: 10.1002/adhm.202300395
- Tarassoli SP, Jessop ZM, Jovic T, Hawkins K, Whitaker IS. Candidate bioinks for extrusion 3D bioprinting – a systematic review of the literature. Front Bioeng Biotechnol. 2021;9:616753. doi: 10.3389/fbioe.2021.616753
- Marzi J, Fuhrmann E, Brauchle E, et al. Non-invasive three-dimensional cell analysis in bioinks by Raman imaging. ACS Appl Mater Interfaces. 2022;14(27): 30455-30465. doi: 10.1021/acsami.1c24463
- Babakhanova G, Agrawal A, Arora D, et al. Three-dimensional, label-free cell viability measurements in tissue engineering scaffolds using optical coherence tomography. J Biomed Mater Res Part A. 2023;111(8):1279-1291. doi: 10.1002/jbm.a.37528
- Musah S, Morin SA, Wrighton PJ, Zwick DB, Jin S, Kiessling LL. Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano. 2012;6(11):10168-10177. doi: 10.1021/nn3039148
- Wang B, Tu X, Wei J, Wang L, Chen Y. Substrate elasticity dependent colony formation and cardiac differentiation of human induced pluripotent stem cells. Biofabrication. 2018;11(1):015005. doi: 10.1088/1758-5090/aae0a5
- Liang Z, Liu C, Li L, et al. Double-network hydrogel with tunable mechanical performance and biocompatibility for the fabrication of stem cells-encapsulated fibers and 3D assemble. Sci Rep. 2016;6:33462. doi: 10.1038/srep33462
- Chen YM, Ogawa R, Kakugo A, Osada Y, Gong JP. Dynamic cell behavior on synthetic hydrogels with different charge densities. Soft Matter. 2009;5:1804-1811. doi: 10.1039/B818586G
- Keung AJ, Asuri P, Kumar S, Schaffer DV. Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integr Biol. 2012;4(9):1049-1058. doi: 10.1039/c2ib20083j
- Arkenberg MR, Koehler K, Lin CC. Heparinized gelatin-based hydrogels for differentiation of induced pluripotent stem cells. Biomacromolecules. 2022;23(10):4141-4152. doi: 10.1021/acs.biomac.2c00585
- Przybyla LM, Voldman J. Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. PNAS. 2012;109(3):835-840. doi: 10.1073/pnas.1103100109
- Przybyla LM, Theunissen TW, Jaenisch R, Voldman J. Matrix remodeling maintains embryonic stem cell self-renewal by activating Stat3. Stem Cells. 2013;31(6):1097-1106. doi: 10.1002/stem.1360
- Zhu M, Wang Y, Ferracci G, Zheng J, Cho NJ, Lee BH. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci Rep. 2019;9(1):6863. doi: 10.1038/s41598-019-42186-x
- Richbourg NR, Wancura M, Gilchrist AE, et al. Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships. Sci Adv. 2021;7(7):eabe3245. doi: 10.1126/sciadv.abe3245
- Zatorski JM, Montalbine AN, Ortiz-Cardenas JE, Pompano RR. Quantification of fractional and absolute functionalization of gelatin hydrogels by optimized ninhydrin assay and 1H NMR. Anal Bioanal Chem. 2020;412:6211-6220. doi: 10.1007/s00216-020-02792-5
- Yue K, Li X, Schrobback K, et al. Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials. 2017;139:163-171. doi: 10.1016/j.biomaterials.2017.04.050
- Shirahama H, Lee BH, Tan LP, Cho NJ. Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Sci Rep. 2016;6:31036. doi: 10.1038/srep31036
- Wenger L, Strauß S, Hubbuch J. Automated and dynamic extrusion pressure adjustment based on real-time flow rate measurements for precise ink dispensing in 3D bioprinting. Bioprinting. 2022;28:e00229 doi: 10.1016/j.bprint.2022.e00229
- Lipsitz YY, Tonge PD, Zandstra PW. Chemically controlled aggregation of pluripotent stem cells. Biotechnol Bioeng. 2018;115(8):2061-2066. doi: 10.1002/bit.26719
- Nogueira DES, Rodrigues CAV, Carvalho MS, et al. Strategies for the expansion of human induced pluripotent stem cells as aggregates in single-use Vertical-WheelTM bioreactors. J Biol Eng. 2019;13(1):74. doi: 10.1186/s13036-019-0204-1
- Zandrini T, Florczak S, Levato R, Ovsianikov A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol. 2023;41(5):604-614. doi: 10.1016/j.tibtech.2022.10.009
- Elkhoury K, Zuazola J, Vijayavenkataraman S. Bioprinting the future using light: a review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS Technol. 2023;28(3):142-151. doi: 10.1016/j.slast.2023.02.003