AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3035
RESEARCH ARTICLE

4D printing and simulation of body temperature-responsive shape-memory polymers for advanced biomedical applications

Dahong Kim1,2 Kyung-Hyun Kim3 Yong-Suk Yang3 Keon-Soo Jang4 Sohee Jeon1 Jun-Ho Jeong1 Su A Park1*
Show Less
1 Nano Convergence & Manufacturing Systems, Korea Institute of Machinery and Materials (KIMM), Daejeon, South Korea
2 Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
3 Intelligent Components & Sensors Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea
4 Department of Polymer Engineering, School of Chemical and Materials Engineering, University of Suwon, Suwon, South Korea
IJB 2024, 10(3), 3035 https://doi.org/10.36922/ijb.3035
Submitted: 27 February 2024 | Accepted: 22 April 2024 | Published: 13 June 2024
(This article belongs to the Special Issue 3D Printing of Bioinspired Materials)
© 2024 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Four-dimensional (4D) bioprinting holds significant promise in precision medicine, enabling the emulation of dynamic changes in the human body and tissues to provide personalized treatments. Smart materials for 4D printing (i.e., responsive to specific stimuli) should exhibit properties, such as biodegradability, biocompatibility, and ease of processing, while also enabling the prediction of time-dependent behavior in programmed geometry. This study focused on the development of a body temperature-responsive shape-memory polymer (SMP). The thermal properties of the SMP were analyzed, and its biodegradability and biocompatibility were assessed through structures fabricated by three-dimensional printing techniques. The simulation calculated with this finite element (FE) solution was in good agreement with those measured in experiments. The findings contribute to our understanding of the behavior of SMP under various conditions, validating the effectiveness of the developed material for potential applications in precision medicine and 4D bioprinting. It has the potential for use in medical devices, such as catheters, stents, and artificial scaffolds, prepared by 4D bioprinting.  

Keywords
4D printing
4D printing simulation
3D bioprinting
Biodegradable shape-memory polymer
Biocompatible shape-memory polymer
Funding
This research was supported by the Development Program of Machinery and Equipment Industrial Technology (20018235, Development of inline nanoimprinter for nanophotonic device) funded by the Ministry of Trade, Industry & Energy (MI, Korea), the STEAM project (RS- 2023-00302145) of the Ministry of Science and ICT, and Basic Research Program of KIMM (Korea Institute of Machinery and Materials, NK248B).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Tibbits S. 4D printing: multi-material shape change. Archit Des. 2014;84(1):116-121. doi: 10.1002/ad.1710
  2. Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F. 4D bioprinting for biomedical applications. Trends Biotechnol. 2016;34(9): 746-756. doi: 10.1016/j.tibtech.2016.03.004
  3. Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 2019;92:19-36. doi: 10.1016/j.actbio.2019.05.005
  4. Ghosh S, Chaudhuri S, Roy P, Lahiri D. 4D printing in biomedical engineering: a state-of-the-art review of technologies, biomaterials, and application. Regen Eng Transl Med. 2023;9(3):339-365. doi: 10.1007/s40883-022-00288-5
  5. Martinez-De-Anda AA, Rodriguez-Salvador M, Castillo- Valdez PF. The attractiveness of 4D printing in the medical field: revealing scientific and technological advances in design factors and applications. Int J Bioprint. 2023;9(6): 187-199. doi: 10.36922/IJB.1112
  6. Han S, Wu J. Three-dimensional (3D) scaffolds as powerful weapons for tumor immunotherapy. Bioact Mater. 2022;17:300-319. doi: 10.1016/j.bioactmat.2022.01.020
  7. Chen X, Han S, Wu W, et al. Harnessing 4D printing bioscaffolds for advanced orthopedics. Small. 2022;18:2106824. doi: 10.1002/smll.202106824
  8. Chen A, Wang W, Mao Z, et al. Multimaterial 3D and 4D bioprinting of heterogenous constructs for tissue engineering. Adv Mater. 2023;2307686. doi: 10.1002/adma.202307686
  9. Yang Q, Gao B, Xu F. Recent advances in 4D bioprinting. Biotechnol J. 2020;15(1):1-10. doi: 10.1002/biot.201900086
  10. Zhang C, Cai D, Liao P, et al. 4D printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater. 2021;122:101-110. doi: 10.1016/j.actbio.2020.12.042
  11. Xu J, Song J. Polylactic acid (PLA)-based shape-memory materials for biomedical applications. Shape Mem Polym Biomed Appl. 2015:197-217. doi: 10.1016/B978-0-85709-698-2.00010-6
  12. Qu G, Huang J, Gu G, Li Z, Wu X, Ren J. Smart implants: 4D-printed shape-morphing scaffolds for medical implantation. Int J Bioprint. 2023;9(5). doi: 10.18063/ijb.764
  13. Guo Y, Huang J, Fang Y, Huang H, Wu J. 1D, 2D, and 3D scaffolds promoting angiogenesis for enhanced wound healing. Chem Eng J. 2022;437:134690. doi: 10.1016/j.cej.2022.134690
  14. Saska S, Pilatti L, Blay A, Shibli JA. Bioresorbable polymers: advanced materials and 4D printing for tissue engineering. Polymers (Basel). 2021;13(4):1-24. doi: 10.3390/polym13040563
  15. Khalid MY, Arif ZU, Noroozi R, Zolfagharian A, Bodaghi M. 4D printing of shape memory polymer composites: a review on fabrication techniques, applications, and future perspectives. J Manuf Process. 2022;81:759-797. doi: 10.1016/j.jmapro.2022.07.035
  16. Sydney Gladman A, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater. 2016;15(4):413-418. doi: 10.1038/nmat4544
  17. Patil AN, Sarje SH. Additive manufacturing with shape changing/memory materials: a review on 4D printing technology. Mater Today Proc. 2021;44:1744-1749. doi: 10.1016/j.matpr.2020.11.907
  18. Costa PDC, Costa DCS, Correia TR, Gaspar VM, Mano JF. Natural origin biomaterials for 4D bioprinting tissue-like constructs. Adv Mater Technol. 2021;6(10):1-21. doi: 10.1002/admt.202100168
  19. Miao S, Castro N, Nowicki M, et al. 4D printing of polymeric materials for tissue and organ regeneration. Mater Today. 2017;20(10):577-591. doi: 10.1016/j.mattod.2017.06.005
  20. Zhao W, Liu L, Zhang F, Leng J, Liu Y. Shape memory polymers and their composites in biomedical applications. Mater Sci Eng C. 2019;97:864-883. doi: 10.1016/j.msec.2018.12.054
  21. Jin Z, Hu G, Zhang Z, Yu SY, Gu GX. Modeling and analysis of post-processing conditions on 4D-bioprinting of deformable hydrogel-based biomaterial inks. Bioprinting. 2023;33:e00286. doi: 10.1016/j.bprint.2023.e00286
  22. Feng YC, Bodaghi M, Liao WH. Numerical/experimental assessment of 3D-printed shape-memory polymeric beams. J Appl Polym Sci. 2019;136(16):1-12. doi: 10.1002/app.47422
  23. Yu K, Xie T, Leng J, Ding Y, Qi HJ. Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers. Soft Matter. 2012;8(20):5687-5695. doi: 10.1039/c2sm25292a
  24. Dogan SK, Boyacioglu S, Kodal M, Gokce O, Ozkoc G. Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: “effects of compatibilization.” J Mech Behav Biomed Mater. 2017;71:349-361. doi: 10.1016/j.jmbbm.2017.04.001
  25. Yang B, Huang WM, Li C, Chor JH. Effects of moisture on the glass transition temperature of polyurethane shape memory polymer filled with nano-carbon powder. Eur Polym J. 2005;41(5):1123-1128. doi: 10.1016/j.eurpolymj.2004.11.029
  26. Zhang H, Wang H, Zhong W, Du Q. A novel type of shape memory polymer blend and the shape memory mechanism. Polymer (Guildf). 2009;50(6):1596-1601. doi: 10.1016/j.polymer.2009.01.011
  27. Huskić M, Kusić D, Pulko I, Nardin B. Determination of residual stresses in amorphous thermoplastic polymers by DMA. J Appl Polym Sci. 2022;139(48):1-8. doi: 10.1002/app.53210
  28. Ziegler W, Guttmann P, Kopeinig S, et al. Influence of different polyol segments on the crystallisation behavior of polyurethane elastomers measured with DSC and DMA experiments. Polym Test. 2018;71:18-26. doi: 10.1016/j.polymertesting.2018.08.021
  29. De Nardo L, Farè S. Dynamico-mechanical characterization of polymer biomaterials. Charact Polym Biomater. 2017: 203-232. doi: 10.1016/B978-0-08-100737-2.00009-1
  30. Göpferich A. Mechanisms of polymer degradation and erosion1. Biomater Silver Jubil Compend. 1996;17(2): 117-128. doi: 10.1016/B978-008045154-1.50016-2
  31. Vasanthan N, Ly O. Effect of microstructure on hydrolytic degradation studies of poly (l-lactic acid) by FTIR spectroscopy and differential scanning calorimetry. Polym Degrad Stab. 2009;94(9):1364-1372. doi: 10.1016/j.polymdegradstab.2009.05.015
  32. Araque-Monrós MC, Vidaurre A, Gil-Santos L, Gironés Bernabé S, Monleón-Pradas M, Más-Estellés J. Study of the degradation of a new PLA braided biomaterial in buffer phosphate saline, basic and acid media, intended for the regeneration of tendons and ligaments. Polym Degrad Stab. 2013;98(9):1563-1570. doi: 10.1016/j.polymdegradstab.2013.06.031
  33. Kim D, Lee J, Min Seok J, et al. Three-dimensional bioprinting of bioactive scaffolds with thermally embedded abalone shell particles for bone tissue engineering. Mater Des. 2021;212. doi: 10.1016/j.matdes.2021.110228
  34. Kohn DH, Sarmadi M, Helman JI, Krebsbach PH. Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone. J Biomed Mater Res. 2002;60(2):292-299. doi: 10.1002/jbm.10050
  35. Mao H, Yang L, Zhu H, et al. Recent advances and challenges in materials for 3D bioprinting. Prog Nat Sci Mater Int. 2020;30(5):618-634. doi: 10.1016/j.pnsc.2020.09.015
  36. Kim D, Lee SJ, Lee D, et al. Biomimetic mineralization of 3D-printed polyhydroxyalkanoate-based microbial scaffolds for bone tissue engineering. Int J Bioprint. 2024;10(2):1806. doi: 10.36922/ijb.1806
  37. Yin GB, Zhang YZ, Wang SD, Shi DB, Dong ZH, Fu WG. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. J Biomed Mater Res - Part A. 2010;93(1):158-163. doi: 10.1002/jbm.a.32496
  38. Wang S, Wang Y, Chen B, et al. Preparation and performance study of multichannel PLA artificial nerve conduits. Biomed Mater. 2023;18(6). doi: 10.1088/1748-605X/acf0ae
  39. Li Y, Liu Z. A novel constitutive model of shape memory polymers combining phase transition and viscoelasticity. Polymer (Guildf). 2018;143:298-308. doi: 10.1016/j.polymer.2018.04.026
  40. Noroozi R, Bodaghi M, Jafari H, Zolfagharian A, Fotouhi M. Shape-adaptive metastructures with variable bandgap regions by 4D printing. Polymers (Basel). 2020;12(3). doi: 10.3390/polym12030519

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing