AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2056
REVIEW

3D-bioprinted bone for regenerative medicine: Current concepts and future perspectives

Borbála Lovászi1,2,3 Diána Szűcs1,2,3 Tamás Monostori1,3 Lajos Kemény1,3,4,5 Zoltán Veréb1,3,4*
Show Less
1 Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
2 Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
3 Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, Szeged, Hungary
4 Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
5 Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), University of Szeged, Szeged, Hungary
IJB 2024, 10(3), 2056 https://doi.org/10.36922/ijb.2056
Submitted: 17 October 2023 | Accepted: 21 February 2024 | Published: 12 June 2024
© 2024 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The shortages in human tissue and organ donors have made clinical therapy relatively challenging. Therefore, research has been initiated over the last decades to develop artificial tissues and organs, particularly from cell and tissue cultures. Three-dimensional (3D) bioprinting is a recent technology capable of building structures for implantation, and these constructs closely resemble native tissues, such as skin, liver, connective tissues, and supportive tissues (bone and cartilage). In this review, we briefly introduce the structure, function, and development of bone tissues, followed by a detailed discussion on 3D bioprinting techniques, materials, and their recent advancements for clinical applications.

Keywords
Bone
3D bioprinting
Transplantation
Therapy
Clinical use
Regenerative medicine
Funding
This work was supported by GINOP_ PLUSZ-2.1.1-21-2022-00043 (co-financed by the European Union and the European Regional Development Fund) and the National Research, Development, and Innovation Office (NKFIH PD 132570 to ZV). ZV is a recipient of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (BO/00190/20/5) and the NPP-22- 5 Bolyai+ Fellowship (NKP-22-5-SZTE-319), financed by the New National Excellence Program of the Hungarian Ministry of Innovation and Technology from the National Research Development and Innovation Fund. The projects (TKP2021-EGA-28 and TKP2021-EGA-32) were funded by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme.
References
  1. Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18. doi: 10.1186/1749-799X-9-18
  2. Maresca JA, DeMel DC, Wagner GA, Haase C, Geibel JP. Three-dimensional bioprinting applications for bone tissue engineering. Cells. 2023;12(9). doi: 10.3390/cells12091230
  3. Masaeli R, Zandsalimi K, Rasoulianboroujeni M, Tayebi L. Challenges in three-dimensional printing of bone substitutes. Tissue Eng Part B Rev. 2019;25(5):387-397. doi: 10.1089/ten.TEB.2018.0381
  4. Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized 3D printed bone scaffolds: a review. Acta Biomater. 2023;156:110-124. doi: 10.1016/j.actbio.2022.04.014
  5. Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater. 2015;4(12):1742-1762. doi: 10.1002/adhm.201500168
  6. Jariwala SH, Lewis GS, Bushman ZJ, Adair JH, Donahue HJ. 3D printing of personalized artificial bone scaffolds. 3D Print Addit Manuf. 2015;2(2):56-64. doi: 10.1089/3dp.2015.0001
  7. Stanco D, Urban P, Tirendi S, Ciardelli G, Barrero J. 3D bioprinting for orthopaedic applications: current advances, challenges and regulatory considerations. Bioprinting. 2020;20:None. doi: 10.1016/j.bprint.2020.e00103
  8. Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop. 2013;37(12):2491-2498. doi: 10.1007/s00264-013-2059-2
  9. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746. doi: 10.1155/2015/421746
  10. Sander PM, Klein N, Stein K, Wings O. Sauropod bone histology and its implications for sauropod biology. In: Klein N, Remes K, Sander M, Gee C, eds. Biology of the Sauropod Dinosaurs: Understanding the Life of Giants. Indiana University Press; 2011:276-302.
  11. Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials (Basel). 2010;3(7):3867-3910. doi: 10.3390/ma3073867
  12. Datta HK, Ng WF, Walker JA, Tuck SP, Varanasi SS. The cell biology of bone metabolism. J Clin Pathol. 2008;61(5):577-587. doi: 10.1136/jcp.2007.048868
  13. Lin X, Patil S, Gao YG, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol. 2020; 11:757. doi: 10.3389/fphar.2020.00757
  14. Kirby DJ, Young MF. Isolation, production, and analysis of small leucine-rich proteoglycans in bone. Methods Cell Biol. 2018;143:281-296. doi: 10.1016/bs.mcb.2017.08.016
  15. Nikitovic D, Aggelidakis J, Young MF, Iozzo RV, Karamanos NK, Tzanakakis GN. The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem. 2012;287(41):33926-33933. doi: 10.1074/jbc.R112.379602
  16. Burnier JP, Borowski M, Furie BC, Furie B. Gamma-carboxyglutamic acid. Mol Cell Biochem. 1981;39:191-207. doi: 10.1007/BF00232574
  17. Wen L, Chen J, Duan L, Li S. Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review). Mol Med Rep. 2018;18(1):3-15. doi: 10.3892/mmr.2018.8940
  18. Berendsen AD, Olsen BR. Bone development. Bone. 2015;80:14-18. doi: 10.1016/j.bone.2015.04.035
  19. Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696-711. doi: 10.1038/s41580-020-00279-w
  20. Walmsley GG, Ransom RC, Zielins ER, et al. Stem cells in bone regeneration. Stem Cell Rev Rep. 2016;12(5):524-529. doi: 10.1007/s12015-016-9665-5
  21. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85(1):3-10. doi: 10.1159/000345615
  22. Vereb Z, Mazlo A, Szabo A, et al. Vessel wall-derived mesenchymal stromal cells share similar differentiation potential and immunomodulatory properties with bone marrow-derived stromal cells. Stem Cells Int. 2020;2020:8847038. doi: 10.1155/2020/8847038
  23. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8). doi: 10.3390/cells8080886
  24. Vereb Z, Poliska S, Albert R, et al. Role of human corneal stroma-derived mesenchymal-like stem cells in corneal immunity and wound healing. Sci Rep. 2016;6:26227. doi: 10.1038/srep26227
  25. Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn. 2021;250(3):414-449. doi: 10.1002/dvdy.278
  26. Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development. 2015;142(5):817-831. doi: 10.1242/dev.105536
  27. Park IK, Cho CS. Stem cell-assisted approaches for cartilage tissue engineering. Int J Stem Cells. 2010;3(2):96-102. doi: 10.15283/ijsc.2010.3.2.96
  28. Guasto A, Cormier-Daire V. Signaling pathways in bone development and their related skeletal dysplasia. Int J Mol Sci. 2021;22(9). doi: 10.3390/ijms22094321
  29. Martin V, Bettencourt A. Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties. Mater Sci Eng C Mater Biol Appl. 2018;82:363-371. doi: 10.1016/j.msec.2017.04.038
  30. Yan L, Cinar A, Ma S, Abel R, Hansen U, Marrow TJ. A method for fracture toughness measurement in trabecular bone using computed tomography, image correlation and finite element methods. J Mech Behav Biomed Mater. 2020;109:103838. doi: 10.1016/j.jmbbm.2020.103838
  31. Haleem A, Javaid M, Khan RH, Suman R. 3D printing applications in bone tissue engineering. J Clin Orthop Trauma. 2020;11(Suppl 1):S118-S124. doi: 10.1016/j.jcot.2019.12.002
  32. Yi S, Ding F, Gong L, Gu X. Extracellular matrix scaffolds for tissue engineering and regenerative medicine. Curr Stem Cell Res Ther. 2017;12(3):233-246. doi: 10.2174/1574888X11666160905092513
  33. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-112. doi: 10.1016/j.copbio.2016.03.014
  34. Szűcs D, Fekete Z, Guba, et al. Toward better drug development: three-dimensional bioprinting in toxicological research. Int J Bioprint. 2023;9(2):663. doi: 10.18063/ijb.v9i2.663
  35. Xu J, Zheng S, Hu X, et al. Advances in the research of bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting. Polymers (Basel). 2020;12(6). doi: 10.3390/polym12061237
  36. Lee VK, Dai G. Three-dimensional bioprinting and tissue fabrication: prospects for drug discovery and regenerative medicine. Adv Healthcare Technol. 2015;1:23-35. doi: 10.2147/AHCT.S69191
  37. Sundaramurthi D, Rauf S, Hauser CAE. 3D bioprinting technology for regenerative medicine applications. Int J Bioprint. 2016;2(2):9-26. doi: 10.18063/IJB.2016.02.010
  38. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296-332. doi: 10.1016/j.addr.2018.07.004
  39. Zhou D, Chen J, Liu B, Zhang X, Li X, Xu T. Bioinks for jet-based bioprinting. Bioprinting. 2019;16:e00060. doi: 10.1016/j.bprint.2019.e00060
  40. He Y, Gu Z, Xie M, Fu J, Lin H. Why choose 3D bioprinting? Part II: methods and bioprinters. Bio-Des Manuf. 2020;3:1-4. doi: 10.1007/s42242-020-00064-w
  41. Fontes A, Marcomini RF. 3D bioprinting: a review of materials, processes and bioink properties. J Eng Exact Sci. 2020;6(5):0617-0639. doi: 10.18540/jcecvl6iss5pp0617-0639
  42. Chowdhury SR, Lokanathan Y, Xian LJ, et al. 3D printed bioscaffolds for developing tissue-engineered constructs. In: Yasa E, Mhadhbi M, Santecchia E, eds. Design and Manufacturing. 2020. doi: 10.5772/intechopen.92418
  43. Gao D, Zhou JG. Designs and applications of electrohydrodynamic 3D printing. Int J Bioprint. 2019;5(1):172. doi: 10.18063/ijb.v5i1.172
  44. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20-42. doi: 10.1016/j.biomaterials.2016.06.012
  45. Ventura RD. An overview of laser-assisted bioprinting (LAB) in tissue engineering applications. Med Lasers. 2021;10(2):76-81. doi: 10.25289/ML.2021.10.2.76
  46. Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med. 2017;6(10):1940-1948. doi: 10.1002/sctm.17-0148
  47. Lee JM, Sing SL, Zhou M, Yeong WY. 3D bioprinting processes: a perspective on classification and terminology. Int J Bioprint. 2018;4(2):151. doi: 10.18063/IJB.v4i2.151
  48. Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication. 2020;12(2):022001. doi: 10.1088/1758-5090/ab6034
  49. Faraji Rad Z, Prewett PD, Davies GJ. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays. Microsyst Nanoeng. 2021;7:71. doi: 10.1038/s41378-021-00298-3
  50. Liu F, Chen Q, Liu C, et al. Natural polymers for organ 3D bioprinting. Polymers (Basel). 2018;10(11):1278. doi: 10.3390/polym10111278
  51. Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5(1):82-91. doi: 10.1016/j.bioactmat.2020.01.004
  52. Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 2010;6(7):2467-2476. doi: 10.1016/j.actbio.2010.02.002
  53. Lu L, Zhang Q, Wootton DM, et al. Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method. J Appl Biomater Funct Mater. 2014;12(3):145-154. doi: 10.5301/JABFM.5000163
  54. Koch F, Thaden O, Conrad S, et al. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel. J Mech Behav Biomed Mater. 2022;130:105219. doi: 10.1016/j.jmbbm.2022.105219
  55. Jakus AE, Rutz AL, Jordan SW, et al. Hyperelastic “bone”: a highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl Med. 2016;8(358):358ra127. doi: 10.1126/scitranslmed.aaf7704
  56. Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3): 3640-3659. doi: 10.3390/ijms15033640
  57. Petros S, Tesfaye T, Ayele M. A review on gelatin based hydrogels for medical textile applications. J Eng. 2020;2020:8866582. doi: 10.1155/2020/8866582
  58. Sanchez-Fernandez JA, Presbitero-Espinosa G, Pena- Paras L, et al. Characterization of sodium alginate hydrogels reinforced with nanoparticles of hydroxyapatite for biomedical applications. Polymers (Basel). 2021; 13(17). doi: 10.3390/polym13172927
  59. Tan JJY, Lee CP, Hashimoto M. Preheating of gelatin improves its printability with transglutaminase in direct ink writing 3D printing. Int J Bioprint. 2020;6(4):296. doi: 10.18063/ijb.v6i4.296
  60. Mancha Sanchez E, Gomez-Blanco JC, Lopez Nieto E, et al. Hydrogels for bioprinting: a systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Front Bioeng Biotechnol. 2020;8:776. doi: 10.3389/fbioe.2020.00776
  61. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
  62. Piao Y, You H, Xu T, et al. Biomedical applications of gelatin methacryloyl hydrogels. Eng Regener. 2021;2:47-56. doi: 10.1016/j.engreg.2021.03.002
  63. Lazaridou M, Bikiaris DN, Lamprou DA. 3D bioprinted chitosan-based hydrogel scaffolds in tissue engineering and localised drug delivery. Pharmaceutics. 2022;14(9):1978. doi: 10.3390/pharmaceutics14091978
  64. Khunmanee S, Jeong Y, Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng. 2017;8:2041731417726464. doi: 10.1177/2041731417726464
  65. Zheng H, Zuo B. Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B. 2021;9(5):1238-1258. doi: 10.1039/d0tb02099k
  66. Amirazad H, Dadashpour M, Zarghami N. Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng. 2022;16(1):1. doi: 10.1186/s13036-021-00282-5
  67. Boso D, Maghin E, Carraro E, Giagante M, Pavan P, Piccoli M. Extracellular matrix-derived hydrogels as biomaterial for different skeletal muscle tissue replacements. Materials (Basel). 2020;13(11):2483. doi: 10.3390/ma13112483
  68. Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med. 2019;4(1):83-95. doi: 10.1002/btm2.10110
  69. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. doi: 10.1038/ncomms4935
  70. Hickey RJ, Pelling AE. Cellulose biomaterials for tissue engineering. Front Bioeng Biotechnol. 2019;7:45. doi: 10.3389/fbioe.2019.00045
  71. Choi JR, Yong KW, Choi JY, Cowie AC. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques. 2019;66(1):40-53. doi: 10.2144/btn-2018-0083
  72. Kumar A, Kargozar, Baino F, Han SS. Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: a review. Front Mater. 2019;6:313. doi: 10.3389/fmats.2019.00313
  73. Habibah TU, Amlani DV, Brizuela M. Hydroxyapatite Dental Material. Treasure Island (FL): StatPearls; 2022.
  74. Zhang M, Lin R, Wang X, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv. 2020;6(12):eaaz6725. doi: 10.1126/sciadv.aaz6725
  75. Brazete D, Torres PMC, Abrantes JCC, Ferreira JMF. Influence of the Ca/P ratio and cooling rate on the allotropic α↔β-tricalcium phosphate phase transformations. Ceram Int. 2018;44(7):8249-8256. doi: 10.1016/j.ceramint.2018.02.005
  76. Kim WJ, Yun HS, Kim GH. An innovative cell-laden alpha- TCP/collagen scaffold fabricated using a two-step printing process for potential application in regenerating hard tissues. Sci Rep. 2017;7(1):3181. doi: 10.1038/s41598-017-03455-9
  77. Bouler JM, Pilet P, Gauthier O, Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response. Acta Biomater. 2017;53:1-12. doi: 10.1016/j.actbio.2017.01.076
  78. Dukle A, Murugan D, Nathanael AJ, Rangasamy L, Oh TH. Can 3D-printed bioactive glasses be the future of bone tissue engineering? Polymers (Basel). 2022;14(8). doi: 10.3390/polym14081627
  79. Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: a review. Acta Biomater. 2020;113:1-22. doi: 10.1016/j.actbio.2020.06.040
  80. Alawi SA, Matschke J, Muallah D, Gelinksy M, Dragu A. 3D bioprinting in plastic and reconstructive surgery: current concepts, progress, and clinical application. Eur J Plast Surg. 2023;46:833-843. doi: 10.1007/s00238-023-02108-7
  81. Yazdanpanah Z, Johnston JD, Cooper DML, Chen XB. 3D bioprinted scaffolds for bone tissue engineering: state-of-the-art and emerging technologies. Front Bioeng Biotech. 2022;10:824156. doi: 10.3389/fbioe.2022.824156
  82. Lim W, Kim B, Moon YL. Three-dimensional bioprinting for bone and cartilage transplantation. Ann Joint. 2019;4(1). doi: 10.21037/aoj.2018.12.06
  83. Genova T, Roato I, Carossa M, Motta C, Cavagnetto D, Mussano F. Advances on bone substitutes through 3D bioprinting. Int J Mol Sci. 2020;21(19). doi: 10.3390/ijms21197012
  84. Abu Owida H. Developments and clinical applications of biomimetic tissue regeneration using 3D bioprinting technique. Appl Bionics Biomech. 2022;2022: 2260216. doi: 10.1155/2022/2260216
  85. Su X, Wang T, Guo S. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regen Ther. 2021;16:63-72. doi: 10.1016/j.reth.2021.01.007
  86. Hao Y, Cao B, Deng L, et al. The first 3D-bioprinted personalized active bone to repair bone defects: a case report. Int J Bioprint. 2023;9(2):654. doi: 10.18063/ijb.v9i2.654
  87. Liu C, Wang L, Lu W, et al. Computer vision-aided bioprinting for bone research. Bone Res. 2022;10(1):21. doi: 10.1038/s41413-022-00192-2
  88. Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: current developments and applications in bone tissue engineering. Acta Biomater. 2020;101:26-42. doi: 10.1016/j.actbio.2019.10.038
  89. Kotturi H, Abuabed A, Zafar H, et al. Evaluation of polyethylene glycol diacrylate-polycaprolactone scaffolds for tissue engineering applications. J Funct Biomater. 2017;8(3). doi: 10.3390/jfb8030039
  90. Khalaf AT, Wei Y, Wan J, et al. Bone tissue engineering through 3D bioprinting of bioceramic scaffolds: a review and update. Life (Basel). 2022;12(6). doi: 10.3390/life12060903
  91. Liu W, Jing X, Xu Z, Teng C. PEGDA/HA mineralized hydrogel loaded with Exendin4 promotes bone regeneration in rat models with bone defects by inducing osteogenesis. J Biomater Appl. 2021;35(10):1337-1346. doi: 10.1177/088532822098704
  92. Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials. 2005;26(30): 5991-5998. doi: 10.1016/j.biomaterials.2005.03.018
  93. Sousa AC, Biscaia S, Alvites R, et al. Assessment of 3D-printed polycaprolactone, hydroxyapatite nanoparticles and diacrylate poly(ethylene glycol) scaffolds for bone regeneration. Pharmaceutics. 2022;14(12):2643. doi: 10.3390/pharmaceutics14122643
  94. Stillman ZS, Jarai BM, Raman N, Patel P, Fromen CA. Degradation profiles of poly(ethylene glycol) diacrylate (PEGDA)-based hydrogel nanoparticles. Polym Chem. 2020;11(2):568-580. doi: 10.1039/c9py01206k
  95. Thrivikraman G, Athirasala A, Twohig C, Boda SK, Bertassoni LE. Biomaterials for craniofacial bone regeneration. Dent Clin North Am. 2017;61(4):835-856. doi: 10.1016/j.cden.2017.06.003
  96. Ahmed AG, Awartani FA Niazy AA, Jansen JA, Alghamdi HS. A combination of biphasic calcium phosphate (Maxresorb®) and hyaluronic acid gel (Hyadent®) for repairing osseous defects in a rat model. Appl Sci. 2020;10(5):1651. doi: 10.3390/app10051651
  97. Genova T, Roato I, Carossa M, Motta C, Cavagnetto D, Mussano F. Advances on bone substitutes through 3D bioprinting. Int J Mol Sci. 2020;21(19):7012. doi: 10.3390/ijms21197012
  98. Beheshtizadeh N, Azami M, Abbasi H, Farzin A. Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. J Adv Res. 2022;40:69-94. doi: 10.1016/j.jare.2021.12.012
  99. Fedorovich NE, Schuurman W, Wijnberg HM, et al. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods. 2012;18(1):33-44. doi: 10.1089/ten.TEC.2011.0060
  100. Jiao X, Sun X, Li W, et al. 3D-printed beta-tricalcium phosphate scaffolds promote osteogenic differentiation of bone marrow-deprived mesenchymal stem cells in an N6-methyladenosine-dependent manner. Int J Bioprint. 2022;8(2):544. doi: 10.18063/ijb.v8i2.544
  101. Cunniffe GM, Gonzalez-Fernandez T, Daly A, et al. (*) Three-dimensional bioprinting of polycaprolactone reinforced gene activated bioinks for bone tissue engineering. Tissue Eng Part A. 2017;23(17-18):891-900. doi: 10.1089/ten.tea.2016.0498
  102. Cidonio G, Glinka M, Kim YH, et al. Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo. Biofabrication. 2020;12(3):035010. doi: 10.1088/1758-5090/ab8753
  103. Sun X, Ma Z, Zhao X, et al. Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus. Bioact Mater. 2021;6(3):757-769. doi: 10.1016/j.bioactmat.2020.08.030
  104. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312-319. doi: 10.1038/nbt.3413
  105. Rukavina P, Koch F, Wehrle M, et al. In vivo evaluation of bioprinted prevascularized bone tissue. Biotechnol Bioeng. 2020;117(12):3902-3911. doi: 10.1002/bit.27527
  106. Loozen LD, Wegman F, Oner FC, Dhert WJA, Alblas J. Porous bioprinted constructs in BMP-2 non-viral gene therapy for bone tissue engineering. J Mater Chem B. 2013;1(48):6619-6626. doi: 10.1039/c3tb21093f
  107. Dubey N, Ferreira JA, Malda J, Bhaduri SB, Bottino MC. Extracellular matrix/amorphous magnesium phosphate bioink for 3D bioprinting of craniomaxillofacial bone tissue. ACS Appl Mater Interfaces. 2020;12(21):23752-23763. doi: 10.1021/acsami.0c05311
  108. Zhai X, Ruan C, Ma Y, et al. 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Adv Sci (Weinh). 2018;5(3):1700550. doi: 10.1002/advs.201700550
  109. Keriquel V, Oliveira H, Remy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep. 2017;7(1):1778. doi: 10.1038/s41598-017-01914-x
  110. Park JY, Shim JH, Choi SA, et al. 3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration. J Mater Chem B. 2015;3(27):5415-5425. doi: 10.1039/c5tb00637f
  111. Keller L, Regiel-Futyra A, Gimeno M, et al. Chitosan-based nanocomposites for the repair of bone defects. Nanomedicine. 2017;13(7):2231-2240. doi: 10.1016/j.nano.2017.06.007
  112. Korn P, Ahlfeld T, Lahmeyer F, et al. 3D printing of bone grafts for cleft alveolar osteoplasty - in vivo evaluation in a preclinical model. Front Bioeng Biotechnol. 2020; 8:217. doi: 10.3389/fbioe.2020.00217
  113. Liu X, Miao Y, Liang H, et al. 3D-printed bioactive ceramic scaffolds with biomimetic micro/nano-HAp surfaces mediated cell fate and promoted bone augmentation of the bone-implant interface in vivo. Bioact Mater. 2022;12:120-132. doi: 10.1016/j.bioactmat.2021.10.016
  114. Nulty J, Freeman FE, Browe DC, et al. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater. 2021;126:154-169. doi: 10.1016/j.actbio.2021.03.003
  115. Piard C, Baker H, Kamalitdinov T, Fisher J. Bioprinted osteon-like scaffolds enhance in vivo neovascularization. Biofabrication. 2019;11(2):025013. doi: 10.1088/1758-5090/ab078a
  116. Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials. 2018;162:34-46. doi: 10.1016/j.biomaterials.2018.01.057

 




Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing