Drop-on-demand bioprinting: A redesigned laser-induced side transfer approach with continuous capillary perfusion
We present a drop-on-demand (DOD) bioprinting method based on a novel implementation of laser-induced side transfer (LIST). Our approach involves continuous bioink perfusion through a glass capillary featuring a laser-machined hole in the capillary wall, serving as a nozzle. Focused low-energy nanosecond laser pulses are employed for precise droplet ejection. This innovative design separates the control of the bioink flow rate inside the capillary from the printing rate (drop ejection), leading to an enhanced printing workflow. We assessed the impact of key printing parameters, such as laser energy and flow conditions, on printing quality. Furthermore, we utilized the redesigned LIST to bioprint human umbilical vein endothelial cells (HUVECs). Our findings indicate that the printed HUVECs exhibit no viability loss and demonstrate the ability to recruit perivascular cells, including pericytes and fibroblasts. The redesigned LIST can be utilized in tissue engineering applications requiring DOD cell printing.
- Ozbolat I. 3D Bioprinting: Fundamentals, Principles and Applications. Academic Press; 2016. doi: 10.1016/C2014-0-02349-0
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
- Negro A, Cherbuin T, Lutolf MP. 3D inkjet printing of complex, cell-laden hydrogel structures. Sci Rep. 2018;8(1):1-9. doi: 10.1038/s41598-018-35504-2
- Antoshin AA, Churbanov SN, Minaev NV, et al. LIFT-bioprinting, is it worth it? Bioprinting. 2019;15(May):e00052. doi: 10.1016/j.bprint.2019.e00052
- Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting of complex living‐tissue constructs within seconds. Adv Mater. 2019;31(42). doi: 10.1002/adma.201904209
- Panwar A, Tan LP. Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules. 2016;21(6). doi: 10.3390/molecules21060685
- Tomasina C, Bodet T, Mota C, Moroni L, Camarero-Espinosa S. Bioprinting vasculature: materials, cells and emergent techniques. Mater (Basel, Switzerland). 2019;12(17). doi: 10.3390/ma12172701
- Rouwkema J, Khademhosseini A. Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol. 2016;34(9):733-745. doi: 10.1016/j.tibtech.2016.03.002
- Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol. 2005;23(7):821-823. doi: 10.1038/nbt0705-821
- Lee JW, Choi YJ, Yong WJ, et al. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication. 2016;8(1): 15007. doi: 10.1088/1758-5090/8/1/015007
- Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A. 2016;113(12):3179-3184. doi: 10.1073/pnas.1521342113
- Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9). doi: 10.1126/sciadv.1500758
- Maiullari F, Costantini M, Milan M, et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep. 2018;8(1):1-15. doi: 10.1038/s41598-018-31848-x
- Xu L, Varkey M, Jorgensen A, et al. Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step. Biofabrication. 2020;12(4). doi: 10.1088/1758-5090/aba2b6
- Skylar-Scott MA, Uzel SGM, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv. 2019;5(9). doi: 10.1126/sciadv.aaw2459
- Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials. 2016;106:58-68. doi: 10.1016/j.biomaterials.2016.07.038
- Takagi D, Lin W, Matsumoto T, et al. High-precision three-dimensional inkjet technology for live cell bioprinting. Int J Bioprint. 2019;5(2):27-38. doi: 10.18063/ijb.v5i2.208
- Yanez M, Rincon J, Dones A, De Maria C, Gonzales R, Boland T. In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng - Part A. 2015;21(1-2):224-233. doi: 10.1089/ten.tea.2013.0561
- Kérourédan O, Hakobyan D, Rémy M, et al. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration. Biofabrication. 2019;11(4): 45002. doi: 10.1088/1758-5090/ab2620
- Bourget JM, Kérourédan O, Medina M, et al. Patterning of endothelial cells and mesenchymal stem cells by laser-assisted bioprinting to study cell migration. Biomed Res Int. 2016;2016. doi: 10.1155/2016/3569843
- Kérourédan O, Bourget JM, Rémy M, et al. Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting. J Mater Sci Mater Med. 2019;30(2). doi: 10.1007/s10856-019-6230-1
- Koch L, Deiwick A, Chichkov B. Capillary-like formations of endothelial cells in defined patterns generated by laser bioprinting. Micromachines. 2021;12(12):1-14. doi: 10.3390/mi12121538
- Orimi HE, Hooker E, Narayanswamy S, Larrivée B, Boutopoulos C. Spatially guided endothelial tubulogenesis by laser-induced side transfer (LIST) bioprinting of HUVECs. Bioprinting. 2022;28(August): e00240. doi: 10.1016/j.bprint.2022.e00240
- Roversi K, Orimi HE, Falchetti M, Lummertz da Rocha E, Talbot S, Boutopoulos C. Bioprinting of adult dorsal root ganglion (DRG) neurons using laser-induced side transfer (LIST). Micromachines. 2021;12(8):865. doi: 10.3390/mi12080865
- Orimi HE, Kolkooh HSS, Hooker E, Narayanswamy S, Larrivée B, Boutopoulos C. Drop-on-demand cell bioprinting via laser induced side transfer (LIST). Sci Rep. 2020;10(1):9730.doi: 10.1038/s41598-020-66565-x
- Roversi K, Orimi HE, Erfanian M, Talbot S, Boutopoulos C. LIST: a newly developed laser-assisted cell bioprinting technology. Bio Protoc. 2022;12(19):1-12. doi: 10.21769/BioProtoc.4527
- Tagawa Y, Oudalov N, Visser CW, et al. Highly focused supersonic microjets. Phys Rev X. 2012;2(3):1-10. doi: 10.1103/PhysRevX.2.031002
- Solis LH, Ayala Y, Portillo S, Varela-Ramirez A, Aguilera R, Boland T. Thermal inkjet bioprinting triggers the activation of the VEGF pathway in human microvascular endothelial cells in vitro. Biofabrication. 2019;11(4):045005. doi: 10.1088/1758-5090/ab25f9
- Mohajan S, Delagnes J-C, Allisy B, Iazzolino A, Viellerobe B, Petit S. Plasma-free bubble cavitation in water by a 2.9 μ m laser for bioprinting applications. Appl Phys Lett. 2022;121(24). doi: 10.1063/5.0126355