AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2832
RESEARCH ARTICLE

Drop-on-demand bioprinting: A redesigned laser-induced side transfer approach with continuous capillary perfusion

Mahyar Erfanian1,2 Ahad Mohammadi1,2 Hamid Ebrahimi Orimi1,3 Jennyfer Zapata-Farfan4 Joe Saade1,5 Michel Meunier4 Bruno Larrivée1,6,7 Christos Boutopoulos1,2,6*
Show Less
1 Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
2 Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
3 Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Quebec, Canada
4 Engineering Physics Department, Polytechnique Montreal, Montreal, Quebec, Canada
5 Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
6 Department of Ophthalmology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
7 Department of Molecular Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
IJB 2024, 10(3), 2832 https://doi.org/10.36922/ijb.2832
Submitted: 26 January 2024 | Accepted: 26 April 2024 | Published: 5 June 2024
© 2024 by the 2024 Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

We present a drop-on-demand (DOD) bioprinting method based on a novel implementation of laser-induced side transfer (LIST). Our approach involves continuous bioink perfusion through a glass capillary featuring a laser-machined hole in the capillary wall, serving as a nozzle. Focused low-energy nanosecond laser pulses are employed for precise droplet ejection. This innovative design separates the control of the bioink flow rate inside the capillary from the printing rate (drop ejection), leading to an enhanced printing workflow. We assessed the impact of key printing parameters, such as laser energy and flow conditions, on printing quality. Furthermore, we utilized the redesigned LIST to bioprint human umbilical vein endothelial cells (HUVECs). Our findings indicate that the printed HUVECs exhibit no viability loss and demonstrate the ability to recruit perivascular cells, including pericytes and fibroblasts. The redesigned LIST can be utilized in tissue engineering applications requiring DOD cell printing.

Keywords
Laser-assisted bioprinting
Laser-induced forward transfer
Ink-jet
Microvasculature
Biofabrication
Funding
Christos Boutopoulos acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-06767) and the Fonds de la Recherche en Santé du Quebec (#312263). Hamid Ebrahimi Orimi acknowledges the financial support from the Fonds de Recherche du Quebec Nature et Technologies (#263066).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Ozbolat I. 3D Bioprinting: Fundamentals, Principles and Applications. Academic Press; 2016. doi: 10.1016/C2014-0-02349-0
  2. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  3. Negro A, Cherbuin T, Lutolf MP. 3D inkjet printing of complex, cell-laden hydrogel structures. Sci Rep. 2018;8(1):1-9. doi: 10.1038/s41598-018-35504-2
  4. Antoshin AA, Churbanov SN, Minaev NV, et al. LIFT-bioprinting, is it worth it? Bioprinting. 2019;15(May):e00052. doi: 10.1016/j.bprint.2019.e00052
  5. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting of complex living‐tissue constructs within seconds. Adv Mater. 2019;31(42). doi: 10.1002/adma.201904209
  6. Panwar A, Tan LP. Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules. 2016;21(6). doi: 10.3390/molecules21060685
  7. Tomasina C, Bodet T, Mota C, Moroni L, Camarero-Espinosa S. Bioprinting vasculature: materials, cells and emergent techniques. Mater (Basel, Switzerland). 2019;12(17). doi: 10.3390/ma12172701
  8. Rouwkema J, Khademhosseini A. Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol. 2016;34(9):733-745. doi: 10.1016/j.tibtech.2016.03.002
  9. Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol. 2005;23(7):821-823. doi: 10.1038/nbt0705-821
  10. Lee JW, Choi YJ, Yong WJ, et al. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication. 2016;8(1): 15007. doi: 10.1088/1758-5090/8/1/015007
  11. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A. 2016;113(12):3179-3184. doi: 10.1073/pnas.1521342113
  12. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9). doi: 10.1126/sciadv.1500758
  13. Maiullari F, Costantini M, Milan M, et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep. 2018;8(1):1-15. doi: 10.1038/s41598-018-31848-x
  14. Xu L, Varkey M, Jorgensen A, et al. Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step. Biofabrication. 2020;12(4). doi: 10.1088/1758-5090/aba2b6
  15. Skylar-Scott MA, Uzel SGM, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv. 2019;5(9). doi: 10.1126/sciadv.aaw2459
  16. Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials. 2016;106:58-68. doi: 10.1016/j.biomaterials.2016.07.038
  17. Takagi D, Lin W, Matsumoto T, et al. High-precision three-dimensional inkjet technology for live cell bioprinting. Int J Bioprint. 2019;5(2):27-38. doi: 10.18063/ijb.v5i2.208 
  18. Yanez M, Rincon J, Dones A, De Maria C, Gonzales R, Boland T. In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng - Part A. 2015;21(1-2):224-233. doi: 10.1089/ten.tea.2013.0561
  19. Kérourédan O, Hakobyan D, Rémy M, et al. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration. Biofabrication. 2019;11(4): 45002. doi: 10.1088/1758-5090/ab2620
  20. Bourget JM, Kérourédan O, Medina M, et al. Patterning of endothelial cells and mesenchymal stem cells by laser-assisted bioprinting to study cell migration. Biomed Res Int. 2016;2016. doi: 10.1155/2016/3569843
  21. Kérourédan O, Bourget JM, Rémy M, et al. Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting. J Mater Sci Mater Med. 2019;30(2). doi: 10.1007/s10856-019-6230-1
  22. Koch L, Deiwick A, Chichkov B. Capillary-like formations of endothelial cells in defined patterns generated by laser bioprinting. Micromachines. 2021;12(12):1-14. doi: 10.3390/mi12121538
  23. Orimi HE, Hooker E, Narayanswamy S, Larrivée B, Boutopoulos C. Spatially guided endothelial tubulogenesis by laser-induced side transfer (LIST) bioprinting of HUVECs. Bioprinting. 2022;28(August): e00240. doi: 10.1016/j.bprint.2022.e00240
  24. Roversi K, Orimi HE, Falchetti M, Lummertz da Rocha E, Talbot S, Boutopoulos C. Bioprinting of adult dorsal root ganglion (DRG) neurons using laser-induced side transfer (LIST). Micromachines. 2021;12(8):865. doi: 10.3390/mi12080865
  25. Orimi HE, Kolkooh HSS, Hooker E, Narayanswamy S, Larrivée B, Boutopoulos C. Drop-on-demand cell bioprinting via laser induced side transfer (LIST). Sci Rep. 2020;10(1):9730.doi: 10.1038/s41598-020-66565-x
  26. Roversi K, Orimi HE, Erfanian M, Talbot S, Boutopoulos C. LIST: a newly developed laser-assisted cell bioprinting technology. Bio Protoc. 2022;12(19):1-12. doi: 10.21769/BioProtoc.4527
  27. Tagawa Y, Oudalov N, Visser CW, et al. Highly focused supersonic microjets. Phys Rev X. 2012;2(3):1-10. doi: 10.1103/PhysRevX.2.031002
  28. Solis LH, Ayala Y, Portillo S, Varela-Ramirez A, Aguilera R, Boland T. Thermal inkjet bioprinting triggers the activation of the VEGF pathway in human microvascular endothelial cells in vitro. Biofabrication. 2019;11(4):045005. doi: 10.1088/1758-5090/ab25f9
  29. Mohajan S, Delagnes J-C, Allisy B, Iazzolino A, Viellerobe B, Petit S. Plasma-free bubble cavitation in water by a 2.9 μ m laser for bioprinting applications. Appl Phys Lett. 2022;121(24). doi: 10.1063/5.0126355
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing