Innovations of 3D printing technology in the clinical practice: Strategies against microbial and COVID-19 infection
Three-dimensional (3D) printing technology is making remarkable strides in the fields of biology and medicine due to its highly customizable manufacturing capabilities. Implant infections—severe complications occurring after the implantation of medical devices—result in patient discomfort and inflammation, and under most circumstances, removing the implants may pose latent life-threatening risks. In this context, 3D printing technology emerges as a powerful tool for the customized preparation of anti-infection materials. Precisely integrating antimicrobial agents, bioactive metal ions, antibacterial coatings, and other anti-infection materials into 3D-printed objects lays a foundation for developing direct and targeted intervention for infections, paving the way for innovative approaches to prevent and treat implant infections. This tailored method not only significantly improves treatment outcomes and mitigates patient side effects but also holds unprecedented potential for enhancing the biocompatibility of implants and reducing the risk of microbial infections, signifying profound implications for the future of medical advancements. Moreover, during the COVID-19 pandemic, 3D printing technology plays a pivotal role in preventing virus infection and addressing the increasing clinical demand, being employed to produce essential personal protective equipment. This technology not only enhances the adaptability of medical devices (such as respirator masks, face shields, and test kits) but also offers an innovative and prompt solution in response to the spread of COVID-19. This comprehensive review extensively explores cutting-edge research on 3D printing technology in the medical field, with a particular focus on in-depth analyses of infection preventive strategies in the clinical practice, including antimicrobial materials and medical devices against COVID-19. Finally, the review anticipates the ongoing development of medical biomaterials and devices produced by 3D printing technology, underscoring the expectations for the research and application of novel materials. This in-depth and comprehensive review provides profound insights for current research in the field and offers clear guidance for future scientific and clinical practices.
- Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115. doi: 10.1186/s12938-016-0236-4
- Ghimire A, Song J. Anti-periprosthetic infection strategies: from implant surface topographical engineering to smart drug-releasing coatings. ACS Appl Mater Interfaces. 2021;13(18):20921-20937. doi: 10.1021/acsami.1c01389
- Cao H, Qiao S, Qin H, Jandt KD. Antibacterial designs for implantable medical devices: evolutions and challenges. J Funct Biomater. 2022;13(3). doi: 10.3390/jfb13030086
- Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397-409. doi: 10.1038/s41579-018-0019-y
- Dar D, Dar N, Cai L, Newman DK. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science. 2021;373(6556). doi: 10.1126/science.abi4882
- Irie Y, Borlee BR, O’Connor JR, et al. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2012;109(50):20632-20636. doi: 10.1073/pnas.1217993109
- Vazquez-Rodriguez JA, Shaqour B, Guarch-Pérez C, et al. A Niclosamide-releasing hot-melt extruded catheter prevents Staphylococcus aureus experimental biomaterial-associated infection. Sci Rep. 2022;12(1):12329. doi: 10.1038/s41598-022-16107-4
- Rosman CWK, van Dijl JM, Sjollema J. Interactions between the foreign body reaction and Staphylococcus aureus biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces. Crit Rev Microbiol. 2022;48(5):624-640. doi: 10.1080/1040841x.2021.2011132
- Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther. 2015;13(12):1499-1516. doi: 10.1586/14787210.2015.1100533
- Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention--a journey to break the wall: a review. Arch Microbiol. 2016;198(1):1-15. doi: 10.1007/s00203-015-1148-6
- Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol. 2010;59(3):227-238. doi: 10.1111/j.1574-695X.2010.00665.x
- Wi YM, Patel R. Understanding biofilms and novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect Dis Clin North Am. 2018;32(4):915-929. doi: 10.1016/j.idc.2018.06.009
- Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15(8):453-464. doi: 10.1038/nrmicro.2017.42
- Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder DP. Therapeutic strategies against biofilm infections. Life (Basel). 2023;13(1). doi: 10.3390/life13010172
- Wu H, Moser C, Wang HZ, Høiby N, Song ZJ. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015;7(1):1-7. doi: 10.1038/ijos.2014.65
- Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 2012;8(5):1670-1684. doi: 10.1016/j.actbio.2012.01.011
- Elbourne A, Crawford RJ, Ivanova EP. Nano-structured antimicrobial surfaces: from nature to synthetic analogues. J Colloid Interface Sci. 2017;508:603-616. doi: 10.1016/j.jcis.2017.07.021
- Bazaka K, Jacob MV, Crawford RJ, Ivanova EP. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol. 2012;95(2):299-311. doi: 10.1007/s00253-012-4144-7
- Akdoğan E, Şirin HT. Plasma surface modification strategies for the preparation of antibacterial biomaterials: a review of the recent literature. Mater Sci Eng C Mater Biol Appl. 2021;131:112474. doi: 10.1016/j.msec.2021.112474
- Er Raouan S, Abed SE, Zouine N, Lachkar M, Koraichi SI. Anti-adhesive activity of some secondary metabolites against Staphylococcus aureus on 3D printing medical materials. Arch Microbiol. 2023;205(6):243. doi: 10.1007/s00203-023-03562-4
- He Y, Luckett J, Begines B, et al. Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials. 2022;281:121350. doi: 10.1016/j.biomaterials.2021.121350
- Martínez-Pérez D, Guarch-Pérez C, Purbayanto MAK, et al. 3D-printed dual drug delivery nanoparticle-loaded hydrogels to combat antibiotic-resistant bacteria. Int J Bioprint. 2023;9(3):683. doi: 10.18063/ijb.683
- Hall DC, Jr., Palmer P, Ji HF, Ehrlich GD, Król JE. Bacterial biofilm growth on 3D-printed materials. Front Microbiol. 2021;12:646303. doi: 10.3389/fmicb.2021.646303
- Wu GH, Hsu SH. Review: polymeric-based 3D printing for tissue engineering. J Med Biol Eng. 2015;35(3):285-292. doi: 10.1007/s40846-015-0038-3
- Zhang Y, Zhai D, Xu M, et al. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication. 2017;9(2):025037. doi: 10.1088/1758-5090/aa6ed6
- Kumar KPA, Pumera M. 3D-printing to mitigate COVID-19 pandemic. Adv Funct Mater. 2021;31(22):2100450. doi: 10.1002/adfm.202100450
- Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017;9(2):024102. doi: 10.1088/1758-5090/aa7279
- Doganay MT, Chelliah CJ, Tozluyurt A, et al. 3D printed materials for combating antimicrobial resistance. Mater Today (Kidlington). 2023;67:371-398. doi: 10.1016/j.mattod.2023.05.030
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
- Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication. 2016;8(1):014103. doi: 10.1088/1758-5090/8/1/014103
- Gómez-Blanco JC, Galván-Chacón V, Patrocinio D, et al. Improving cell viability and velocity in μ-extrusion bioprinting with a novel pre-incubator bioprinter and a standard FDM 3D printing nozzle. Materials (Basel). 2021;14(11). doi: 10.3390/ma14113100
- Ning L, Betancourt N, Schreyer DJ, Chen X. Characterization of cell damage and proliferative ability during and after bioprinting. ACS Biomater Sci Eng. 2018;4(11):3906-3918. doi: 10.1021/acsbiomaterials.8b00714
- Ioannidis K, Danalatos RI, Champeris Tsaniras S, et al. A custom ultra-low-cost 3D bioprinter supports cell growth and differentiation. Front Bioeng Biotechnol. 2020;8:580889. doi: 10.3389/fbioe.2020.580889
- Goyanes A, Scarpa M, Kamlow M, Gaisford S, Basit AW, Orlu M. Patient acceptability of 3D printed medicines. Int J Pharm. 2017;530(1-2):71-78. doi: 10.1016/j.ijpharm.2017.07.064
- Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23(8):1547-1555. doi: 10.1016/j.drudis.2018.05.025
- Singh R, Garg HK. Fused deposition modeling – a state of art review and future applications. Encycl Smart Mater. 2016:270-288. doi: 10.1016/b978-0-12-803581-8.04037-6
- Rajan K, Samykano M, Kadirgama K, Harun WSW, Rahman MM. Fused deposition modeling: process, materials, parameters, properties, and applications. Int J Adv Manuf Technol. 2022;120(3-4):1531-1570. doi: 10.1007/s00170-022-08860-7
- Xenikakis I, Tzimtzimis M, Tsongas K, et al. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur J Pharm Sci. 2019;137:104976. doi: 10.1016/j.ejps.2019.104976
- Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital light processing based three-dimensional printing for medical applications. Int J Bioprint. 2020;6(1):242. doi: 10.18063/ijb.v6i1.242
- Ge Q, Li Z, Wang Z, et al. Projection micro stereolithography based 3D printing and its applications. Int J Extreme Manuf. 2020;2(2). doi: 10.1088/2631-7990/ab8d9a
- Stanco D, Urbán P, Tirendi S, Ciardelli G, Barrero J. 3D bioprinting for orthopaedic applications: current advances, challenges and regulatory considerations. Bioprinting. 2020;20. doi: 10.1016/j.bprint.2020.e00103
- Angelopoulos I, Allenby MC, Lim M, Zamorano M. Engineering inkjet bioprinting processes toward translational therapies. Biotechnol Bioeng. 2020;117(1): 272-284. doi: 10.1002/bit.27176
- Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduct Target Ther. 2021;6(1):177. doi: 10.1038/s41392-021-00566-8
- Tian S, Zhao H, Lewinski N. Key parameters and applications of extrusion-based bioprinting. Bioprinting. 2021;23. doi: 10.1016/j.bprint.2021.e00156
- Koch L, Gruene M, Unger C, Chichkov B. Laser assisted cell printing. Curr Pharm Biotechnol. 2013;14(1):91-97.
- Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1-2):285-293. doi: 10.1016/j.ijpharm.2017.06.082
- Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020;586:119594. doi: 10.1016/j.ijpharm.2020.119594
- Sauer K, Stoodley P, Goeres DM, et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022;20(10):608-620. doi: 10.1038/s41579-022-00767-0
- Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. 2013;2(2):288-356. doi: 10.3390/pathogens2020288
- Flemming HC, van Hullebusch ED, Neu TR, et al. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol. 2023;21(2):70-86. doi: 10.1038/s41579-022-00791-0
- Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067. doi: 10.1016/j.heliyon.2018.e01067
- Nyström T. Aging in bacteria. Curr Opin Microbiol. 2002;5(6):596-601. doi: 10.1016/s1369-5274(02)00367-3
- Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 2005;28(11):1062-1068. doi: 10.1177/039139880502801103
- Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK. Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng H. 2014;228(10):1083- 1099. doi: 10.1177/0954411914556137
- Lorite GS, Rodrigues CM, de Souza AA, Kranz C, Mizaikoff B, Cotta MA. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J Colloid Interface Sci. 2011;359(1): 289-295. doi: 10.1016/j.jcis.2011.03.066
- Li P, Zong W, Zhang Z, et al. Effects and molecular mechanism of flagellar gene flgK on the motility, adhesion/invasion, and desiccation resistance of Cronobacter sakazakii. Food Res Int. 2023;164:112418. doi: 10.1016/j.foodres.2022.112418
- Nedeljković M, Sastre DE, Sundberg EJ. Bacterial flagellar filament: a supramolecular multifunctional nanostructure. Int J Mol Sci. 2021;22(14). doi: 10.3390/ijms22147521
- Nedeljković M, Postel S, Pierce BG, Sundberg EJ. Molecular determinants of filament capping proteins required for the formation of functional flagella in gram-negative bacteria. Biomolecules. 2021;11(10). doi: 10.3390/biom11101397
- Muszanska AK, Nejadnik MR, Chen Y, et al. Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics. Antimicrob Agents Chemother. 2012;56(9):4961-4964. doi: 10.1128/aac.00431-12
- Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms. 2023;11(6). doi: 10.3390/microorganisms11061614
- Al-Ahmad A, Wiedmann-Al-Ahmad M, Faust J, et al. Biofilm formation and composition on different implant materials in vivo. J Biomed Mater Res B Appl Biomater. 2010;95(1):101-109. doi: 10.1002/jbm.b.31688
- Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318-1322. doi: 10.1126/science.284.5418.1318
- Gu H, Hou S, Yongyat C, De Tore S, Ren D. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir. 2013;29(35):11145-11153. doi: 10.1021/la402608z
- Öztürk FY, Darcan C, Kariptaş E. The determination, monitoring, molecular mechanisms and formation of biofilm in E. coli. Braz J Microbiol. 2023;54(1):259-277. doi: 10.1007/s42770-022-00895-y
- Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020;84(3). doi: 10.1128/mmbr.00026-19
- Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 2013;3(4):a010306. doi: 10.1101/cshperspect.a010306
- Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I. Small molecules are natural triggers for the disassembly of biofilms. Trends Microbiol. 2013;21(11):594-601. doi: 10.1016/j.tim.2013.08.005
- Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014;18:96-104. doi: 10.1016/j.mib.2014.02.008
- Landini P, Antoniani D, Burgess JG, Nijland R. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol. 2010;86(3):813-823. doi: 10.1007/s00253-010-2468-8
- Choi YC, Morgenroth E. Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Water Sci Technol. 2003;47(5):69-76.
- Horn H, Reiff H, Morgenroth E. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng. 2003;81(5):607-617. doi: 10.1002/bit.10503
- Tsagkari E, Connelly S, Liu Z, McBride A, Sloan WT. The role of shear dynamics in biofilm formation. NPJ Biofilms Microbiomes. 2022;8(1):33. doi: 10.1038/s41522-022-00300-4
- Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73(2):310-347. doi: 10.1128/mmbr.00041-08
- Xie K, Zhou Z, Guo Y, et al. Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity. Adv Healthc Mater. 2019;8(5):e1801465. doi: 10.1002/adhm.201801465
- Oun AA, Shankar S, Rhim JW. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit Rev Food Sci Nutr. 2020;60(3):435-460. doi: 10.1080/10408398.2018.1536966
- Zheng K, Yu Xc, Xu M, et al. Using 3D printing technology to manufacture personalized bone cement placeholder mold for bone defect repair and reconstruction with infection: a case report. Orthop Surg. 2023;15(10):2724-2729. doi: 10.1111/os.13779
- Tetsworth K, Block S, Glatt V. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects. SICOT J. 2017;3. doi: 10.1051/sicotj/2016043
- Tsai CH, Hsu HC, Chen HY, et al. A preliminary study of the novel antibiotic-loaded cement computer-aided design-articulating spacer for the treatment of periprosthetic knee infection. J Orthop Surg Res. 2019;14(1):136. doi: 10.1186/s13018-019-1175-0
- Youssef RF, Spradling K, Yoon R, et al. Applications of three-dimensional printing technology in urological practice. BJU Int. 2015;116(5):697-702. doi: 10.1111/bju.13183
- He X, Yang S, Liu C, Xu T, Zhang X. Integrated wound recognition in bandages for intelligent treatment. Adv Healthc Mater. 2020;9(22):e2000941. doi: 10.1002/adhm.202000941
- Alizadehgiashi M, Nemr CR, Chekini M, et al. Multifunctional 3D-printed wound dressings. ACS Nano. 2021;15(7):12375-12387. doi: 10.1021/acsnano.1c04499
- Kim H, Lee D, Young Lee S, et al. Denture flask fabrication using fused deposition modeling three-dimensional printing. J Prosthodont Res. 2020;64(2):231-234. doi: 10.1016/j.jpor.2019.07.001
- Li Y, Liu H, Wang C, et al. 3D printing titanium grid scaffold facilitates osteogenesis in mandibular segmental defects. NPJ Regen Med. 2023;8(1):38. doi: 10.1038/s41536-023-00308-0
- Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging. 2017;10(2):171-184. doi: 10.1016/j.jcmg.2016.12.001
- Shin CS, Cabrera FJ, Lee R, et al. 3D-bioprinted inflammation modulating polymer scaffolds for soft tissue repair. Adv Mater. 2021;33(4):e2003778. doi: 10.1002/adma.202003778
- Olmos-Juste R, Olza S, Gabilondo N, Eceiza A. Tailor-made 3D printed meshes of alginate-waterborne polyurethane as suitable implants for hernia repair. Macromol Biosci. 2022;22(9):e2200124. doi: 10.1002/mabi.202200124
- Nisyrios T, Karygianni L, Fretwurst T, et al. High potential of bacterial adhesion on block bone graft materials. Materials (Basel). 2020;13(9). doi: 10.3390/ma13092102
- Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol. 2019;309(1):1-12. doi: 10.1016/j.ijmm.2018.11.002
- Oliveira WF, Silva PMS, Silva RCS, et al. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect. 2018;98(2):111-117. doi: 10.1016/j.jhin.2017.11.008
- Hogan S, Stevens NT, Humphreys H, O’Gara JP, O’Neill E. Current and future approaches to the prevention and treatment of staphylococcal medical device-related infections. Curr Pharm Des. 2015;21(1):100-113. doi: 10.2174/1381612820666140905123900
- Arciola CR, Campoccia D, Ehrlich GD, Montanaro L. Biofilm-based implant infections in orthopaedics. Adv Exp Med Biol. 2015;830:29-46. doi: 10.1007/978-3-319-11038-7_2
- Montanaro L, Speziale P, Campoccia D, et al. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol. 2011;6(11):1329-1349. doi: 10.2217/fmb.11.117
- Ronin D, Boyer J, Alban N, Natoli RM, Johnson A, Kjellerup BV. Current and novel diagnostics for orthopedic implant biofilm infections: a review. APMIS. 2022;130(2):59-81. doi: 10.1111/apm.13197
- Ghasemi F, Jahani A, Moradi A, Ebrahimzadeh MH, Jirofti N. Different modification methods of poly methyl methacrylate (PMMA) bone cement for orthopedic surgery applications. Arch Bone Jt Surg. 2023;11(8):485-492. doi: 10.22038/abjs.2023.71289.3330
- Kim TWB, Lopez OJ, Sharkey JP, Marden KR, Murshed MR, Ranganathan SI. 3D printed liner for treatment of periprosthetic joint infections. Med Hypotheses. 2017;102: 65-68. doi: 10.1016/j.mehy.2017.03.014
- Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent advances in the evaluation of antimicrobial materials for resolution of orthopedic implant-associated infections in vivo. ACS Infect Dis. 2021;7(12):3125-3160. doi: 10.1021/acsinfecdis.1c00465
- Inzana JA, Schwarz EM, Kates SL, Awad HA. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials. 2016;81:58-71. doi: 10.1016/j.biomaterials.2015.12.012
- Dubey A, Vahabi H, Kumaravel V. Antimicrobial and biodegradable 3D printed scaffolds for orthopedic infections. ACS Biomater Sci Eng. 2023;9(7):4020-4044. doi: 10.1021/acsbiomaterials.3c00115
- Yuste I, Luciano FC, Anaya BJ, et al. Engineering 3D-printed advanced healthcare materials for periprosthetic joint infections. Antibiotics (Basel). 2023;12(8). doi: 10.3390/antibiotics12081229
- Freeman FE, Burdis R, Kelly DJ. Printing new bones: from print-and-implant devices to bioprinted bone organ precursors. Trends Mol Med. 2021;27(7):700-711. doi: 10.1016/j.molmed.2021.05.001
- van der Heide D, Cidonio G, Stoddart MJ, D’Este M. 3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication. 2022;14(4). doi: 10.1088/1758-5090/ac8cb2
- Li J, Li L, Zhou J, et al. 3D printed dual-functional biomaterial with self-assembly micro-nano surface and enriched nano argentum for antibacterial and bone regeneration. Appl Mater Today. 2019;17:206-215. doi: 10.1016/j.apmt.2019.06.012
- Feng X, Ma L, Liang H, et al. Osteointegration of 3D-printed fully porous polyetheretherketone scaffolds with different pore sizes. ACS Omega. 2020;5(41):26655-26666. doi: 10.1021/acsomega.0c03489
- Li Z, He D, Guo B, et al. Self-promoted electroactive biomimetic mineralized scaffolds for bacteria-infected bone regeneration. Nat Commun. 2023;14(1):6963. doi: 10.1038/s41467-023-42598-4
- Hadrup N, Sharma AK, Jacobsen NR, Loeschner K. Distribution, metabolism, excretion, and toxicity of implanted silver: a review. Drug Chem Toxicol. 2022;45(5):2388-2397. doi: 10.1080/01480545.2021.1950167
- Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol. 2018;98:257-267. doi: 10.1016/j.yrtph.2018.08.007
- Shimazaki T, Miyamoto H, Ando Y, et al. In vivo antibacterial and silver-releasing properties of novel thermal sprayed silver-containing hydroxyapatite coating. J Biomed Mater Res B Appl Biomater. 2010;92(2):386-389. doi: 10.1002/jbm.b.31526
- Akiyama T, Miyamoto H, Yonekura Y, et al. Silver oxide-containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia. J Orthop Res. 2013;31(8):1195-1200. doi: 10.1002/jor.22357
- Yang Y, Chu L, Yang S, et al. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater. 2018;79:265-275. doi: 10.1016/j.actbio.2018.08.015
- Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16-33. doi: 10.1016/j.actbio.2018.11.039
- Correia TR, Figueira DR, de Sá KD, et al. 3D printed scaffolds with bactericidal activity aimed for bone tissue regeneration. Int J Biol Macromol. 2016;93(Pt B):1432-1445. doi: 10.1016/j.ijbiomac.2016.06.004
- Deng L, Deng Y, Xie K. AgNPs-decorated 3D printed PEEK implant for infection control and bone repair. Colloids Surf B Biointerfaces. 2017;160:483-492. doi: 10.1016/j.colsurfb.2017.09.061
- Turner TM, Urban RM, Gitelis S, Kuo KN, Andersson GB. Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution’s experience. J Bone Joint Surg Am. 2001;83-A Suppl 2(Pt 1):8-18. doi: 10.2106/00004623-200100021-00003
- Logoluso N, Drago L, Gallazzi E, George DA, Morelli I, Romanò CL. Calcium-based, antibiotic-loaded bone substitute as an implant coating: a pilot clinical study. J Bone Jt Infect. 2016;1:59-64. doi: 10.7150/jbji.17586
- Jain A, Bansal KK, Tiwari A, Rosling A, Rosenholm JM. Role of polymers in 3D printing technology for drug delivery - an overview. Curr Pharm Des. 2018;24(42):4979-4990. doi: 10.2174/1381612825666181226160040
- Warsi MH, Yusuf M, Al Robaian M, Khan M, Muheem A, Khan S. 3D printing methods for pharmaceutical manufacturing: opportunity and challenges. Curr Pharm Des. 2018;24(42):4949-4956. doi: 10.2174/1381612825666181206121701
- Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad HA. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cell Mater. 2015;30:232-247. doi: 10.22203/ecm.v030a16
- Zhou Z, Yao Q, Li L, et al. Antimicrobial activity of 3D-printed poly(ε-caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid (PLGA) microspheres. Med Sci Monit. 2018;24:6934-6945. doi: 10.12659/msm.911770
- Sun F, Sun X, Wang H, et al. Application of 3D-printed, PLGA-based scaffolds in bone tissue engineering. Int J Mol Sci. 2022;23(10). doi: 10.3390/ijms23105831
- Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: a brief overview. J Inorg Biochem. 2019;195:120-129. doi: 10.1016/j.jinorgbio.2019.03.013
- Tapiero H, Townsend DM, Tew KD. Trace elements in human physiology and pathology. Copper. Biomed Pharmacother. 2003;57(9):386-398. doi: 10.1016/s0753-3322(03)00012-x
- Tripathi A, Saravanan S, Pattnaik S, Moorthi A, Partridge NC, Selvamurugan N. Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Int J Biol Macromol. 2012;50(1):294-299. doi: 10.1016/j.ijbiomac.2011.11.013
- Liu Y, Li T, Ma H, et al. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Acta Biomater. 2018;73:531-546. doi: 10.1016/j.actbio.2018.04.014
- Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small joint organoids 3D bioprinting: construction strategy and application. Small. 2023:e2302506. doi: 10.1002/smll.202302506
- Messaoudi O, Henrionnet C, Bourge K, Loeuille D, Gillet P, Pinzano A. Stem cells and extrusion 3D printing for hyaline cartilage engineering. Cells. 2020;10(1). doi: 10.3390/cells10010002
- Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application and development of 3D bioprinting in cartilage tissue engineering. Biomater Sci. 2022;10(19):5430-5458. doi: 10.1039/d2bm00709f
- Li G, Lai Z, Shan A. Advances of antimicrobial peptide-based biomaterials for the treatment of bacterial infections. Adv Sci (Weinh). 2023;10(11):e2206602. doi: 10.1002/advs.202206602
- Rai A, Ferrão R, Palma P, et al. Antimicrobial peptide-based materials: opportunities and challenges. J Mater Chem B. 2022;10(14):2384-2429. doi: 10.1039/d1tb02617h
- Cometta S, Bock N, Suresh S, Dargaville TR, Hutmacher DW. Antibacterial albumin-tannic acid coatings for scaffold-guided breast reconstruction. Front Bioeng Biotechnol. 2021;9:638577. doi: 10.3389/fbioe.2021.638577
- Cometta S, Jones RT, Juárez-Saldivar A, et al. Melimine-modified 3D-printed polycaprolactone scaffolds for the prevention of biofilm-related biomaterial infections. ACS Nano. 2022;16(10):16497-16512. doi: 10.1021/acsnano.2c05812
- Fischer NG, Chen X, Astleford-Hopper K, et al. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices. Mater Sci Eng C Mater Biol Appl. 2021;125:112108. doi: 10.1016/j.msec.2021.112108
- Zhang S, Zhou X, Liu T, Huang Y, Li J. The effects of peptide Mel4-coated titanium plates on infection rabbits after internal fixation of open fractures. Arch Orthop Trauma Surg. 2022;142(5):729-734. doi: 10.1007/s00402-020-03694-y
- Feneley RC, Hopley IB, Wells PN. Urinary catheters: history, current status, adverse events and research agenda. J Med Eng Technol. 2015;39(8):459-470. doi: 10.3109/03091902.2015.1085600
- Flores-Mireles A, Hreha TN, Hunstad DA. Pathophysiology, treatment, and prevention of catheter-associated urinary tract infection. Top Spinal Cord Inj Rehabil. 2019;25(3): 228-240. doi: 10.1310/sci2503-228
- Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167-193. doi: 10.1128/cmr.15.2.167-193.2002
- Broomfield RJ, Morgan SD, Khan A, Stickler DJ. Crystalline bacterial biofilm formation on urinary catheters by urease-producing urinary tract pathogens: a simple method of control. J Med Microbiol. 2009;58(Pt 10):1367-1375. doi: 10.1099/jmm.0.012419-0
- Pelling H, Nzakizwanayo J, Milo S, et al. Bacterial biofilm formation on indwelling urethral catheters. Lett Appl Microbiol. 2019;68(4):277-293. doi: 10.1111/lam.13144
- Stickler DJ. Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pract Urol. 2008;5(11):598-608. doi: 10.1038/ncpuro1231
- Tenke P, Köves B, Johansen TE. An update on prevention and treatment of catheter-associated urinary tract infections. Curr Opin Infect Dis. 2014;27(1):102-107. doi: 10.1097/qco.0000000000000031
- Johnson JR, Kuskowski MA, Wilt TJ. Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann Intern Med. 2006;144(2):116-126. doi: 10.7326/0003-4819-144-2-200601170-00009
- Menon A, Durairajan R, Durai R, Paramasivam N, Narayanan VB. Exploration of 3D printing of anti-infective urinary catheters: materials and approaches to combat catheter-associated urinary tract infections (CAUTIs) - a review. Crit Rev Ther Drug Carrier Syst. 2022;39(5):51-82. doi: 10.1615/CritRevTherDrugCarrierSyst.2022040452
- Wang L, Zhang S, Keatch R, et al. In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. J Hosp Infect. 2019;103(1):55-63. doi: 10.1016/j.jhin.2019.02.012
- Wang R, Neoh KG, Kang ET, Tambyah PA, Chiong E. Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters. J Biomed Mater Res B Appl Biomater. 2015;103(3):519-528. doi: 10.1002/jbm.b.33230
- Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008;61(4):869-876. doi: 10.1093/jac/dkn034
- Stenzelius K, Persson S, Olsson UB, Stjärneblad M. Noble metal alloy-coated latex versus silicone Foley catheter in short-term catheterization: a randomized controlled study. Scand J Urol Nephrol. 2011;45(4):258-264. doi: 10.3109/00365599.2011.560007
- Davenport K, Keeley FX. Evidence for the use of silver-alloy-coated urethral catheters. J Hosp Infect. 2005;60(4):298-303. doi: 10.1016/j.jhin.2005.01.026
- Thibon P, Le Coutour X, Leroyer R, Fabry J. Randomized multi-centre trial of the effects of a catheter coated with hydrogel and silver salts on the incidence of hospital-acquired urinary tract infections. J Hosp Infect. 2000;45(2):117-124. doi: 10.1053/jhin.1999.0715
- Thomas R, Soumya KR, Mathew J, Radhakrishnan EK. Inhibitory effect of silver nanoparticle fabricated urinary catheter on colonization efficiency of coagulase negative Staphylococci. J Photochem Photobiol B. 2015;149:68-77. doi: 10.1016/j.jphotobiol.2015.04.034
- Mala R, Annie Aglin A, Ruby Celsia AS, et al. Foley catheters functionalised with a synergistic combination of antibiotics and silver nanoparticles resist biofilm formation. IET Nanobiotechnol. 2017;11(5):612-620. doi: 10.1049/iet-nbt.2016.0148
- Dayyoub E, Frant M, Pinnapireddy SR, Liefeith K, Bakowsky U. Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter. Int J Pharm. 2017;531(1):205-214. doi: 10.1016/j.ijpharm.2017.08.072
- Frant M, Dayyoub E, Bakowsky U, Liefeith K. Evaluation of a ureteral catheter coating by means of a BioEncrustation in vitro model. Int J Pharm. 2018;546(1-2):86-96. doi: 10.1016/j.ijpharm.2018.04.023
- Stickler DJ. Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J Intern Med. 2014;276(2):120-129. doi: 10.1111/joim.12220
- Lee SJ, Kim SW, Cho YH, et al. A comparative multicentre study on the incidence of catheter-associated urinary tract infection between nitrofurazone-coated and silicone catheters. Int J Antimicrob Agents. 2004;24(Suppl 1): S65-S69. doi: 10.1016/j.ijantimicag.2004.02.013
- Johnson JR, Delavari P, Azar M. Activities of a nitrofurazone-containing urinary catheter and a silver hydrogel catheter against multidrug-resistant bacteria characteristic of catheter-associated urinary tract infection. Antimicrob Agents Chemother. 1999;43(12):2990-2995. doi: 10.1128/aac.43.12.2990
- Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harb Perspect Med. 2016;6(6). doi: 10.1101/cshperspect.a027029
- Rafienia M, Zarinmehr B, Poursamar SA, Bonakdar S, Ghavami M, Janmaleki M. Coated urinary catheter by PEG/PVA/gentamicin with drug delivery capability against hospital infection. Iran Polym J. 2013;22(2):75-83. doi: 10.1007/s13726-012-0105-3
- Kowalczuk D, Ginalska G, Piersiak T, Miazga-Karska M. Prevention of biofilm formation on urinary catheters: comparison of the sparfloxacin-treated long-term antimicrobial catheters with silver-coated ones. J Biomed Mater Res B Appl Biomater. 2012;100(7):1874-1882. doi: 10.1002/jbm.b.32755
- Mathew E, Domínguez-Robles J, Stewart SA, et al. Fused deposition modeling as an effective tool for anti-infective dialysis catheter fabrication. ACS Biomater Sci Eng. 2019;5(11):6300-6310. doi: 10.1021/acsbiomaterials.9b01185
- Archana M, Rubini D, Dharshini KP, et al. Development of an anti-infective urinary catheter composed of polyvinyl alcohol/sodium alginate/methylcellulose/polyethylene glycol by using a pressure-assisted 3D-printing technique. Int J Biol Macromol. 2023;249:126029. doi: 10.1016/j.ijbiomac.2023.126029
- Borkow G, Gabbay J. Putting copper into action: copper-impregnated products with potent biocidal activities. FASEB J. 2004;18(14):1728-1730. doi: 10.1096/fj.04-2029fje
- Sriubas M, Bockute K, Palevicius P, et al. Antibacterial activity of silver and gold particles formed on titania thin films. Nanomaterials (Basel). 2022;12(7). doi: 10.3390/nano12071190
- Kyser AJ, Mahmoud MY, Johnson NT, et al. Development and characterization of lactobacillus rhamnosus-containing bioprints for application to catheter-associated urinary tract infections. ACS Biomater Sci Eng. 2023;9(7):4277-4287. doi: 10.1021/acsbiomaterials.3c00210
- Carlsson S, Weitzberg E, Wiklund P, Lundberg JO. Intravesical nitric oxide delivery for prevention of catheter-associated urinary tract infections. Antimicrob Agents Chemother. 2005;49(6):2352-2355. doi: 10.1128/aac.49.6.2352-2355.2005
- Levering V, Wang Q, Shivapooja P, Zhao X, López GP. Soft robotic concepts in catheter design: an on-demand fouling-release urinary catheter. Adv Healthc Mater. 2014;3(10): 1588-1596. doi: 10.1002/adhm.201400035
- Li M, Xia W, Khoong YM, et al. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res. 2023;27(1):87. doi: 10.1186/s40824-023-00426-2
- Albanna M, Binder KW, Murphy SV, et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Rep. 2019;9(1):1856. doi: 10.1038/s41598-018-38366-w
- Fang W, Yang M, Wang L, et al. Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: current progress and challenges. Int J Bioprint. 2023;9(5):759. doi: 10.18063/ijb.759
- Wu Z, Hong Y. Combination of the silver-ethylene interaction and 3D printing to develop antibacterial superporous hydrogels for wound management. ACS Appl Mater Interfaces. 2019;11(37):33734-33747. doi: 10.1021/acsami.9b14090
- Huang D, Cheng Y, Chen G, Zhao Y. 3D-printed janus piezoelectric patches for sonodynamic bacteria elimination and wound healing. Research (Wash D C). 2023;6:0022. doi: 10.34133/research.0022
- Zhao Y, Li Z, Song S, et al. Skin‐inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv Funct Mater. 2019;29(31). doi: 10.1002/adfm.201901474
- Chen B, Huang L, Ma R, Luo Y. 3D printed hollow channeled hydrogel scaffolds with antibacterial and wound healing activities. Biomed Mater. 2023;18(4). doi: 10.1088/1748-605X/acd977
- Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33-64. doi: 10.1016/j.addr.2017.08.001
- Fang W, Yang M, Liu M, et al. Review on additives in hydrogels for 3D bioprinting of regenerative medicine: from mechanism to methodology. Pharmaceutics. 2023;15(6). doi: 10.3390/pharmaceutics15061700
- Teoh JH, Mozhi A, Sunil V, Tay SM, Fuh J, Wang CH. 3D printing personalized, photocrosslinkable hydrogel wound dressings for the treatment of thermal burns. Adv Funct Mater. 2021;31(48). doi: 10.1002/adfm.202105932
- Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30(8):1587-1595. doi: 10.1016/j.biomaterials.2008.12.009
- Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016;9(1):015006. doi: 10.1088/1758-5090/9/1/015006
- Moynihan P, Petersen PE. Diet, nutrition and the prevention of dental diseases. Public Health Nutr. 2004;7(1a):201-226. doi: 10.1079/phn2003589
- Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol Bioeng. 2019;116(2):452-468. doi: 10.1002/bit.26882
- Mai HN, Hyun DC, Park JH, Kim DY, Lee SM, Lee DH. Antibacterial drug-release polydimethylsiloxane coating for 3D-printing dental polymer: surface alterations and antimicrobial effects. Pharmaceuticals (Basel). 2020;13(10). doi: 10.3390/ph13100304
- Yang Y, Li H, Xu Y, Dong Y, Shan W, Shen J. Fabrication and evaluation of dental fillers using customized molds via 3D printing technology. Int J Pharm. 2019;562:66-75. doi: 10.1016/j.ijpharm.2019.03.024
- Sa L, Kaiwu L, Shenggui C, et al. 3D printing dental composite resins with sustaining antibacterial ability. J Mater Sci. 2018;54(4):3309-3318. doi: 10.1007/s10853-018-2801-7
- Deng K, Chen H, Wei W, Wang X, Sun Y. Accuracy of tooth positioning in 3D-printing aided manufactured complete dentures: an in vitro study. J Dent. 2023;131:104459. doi: 10.1016/j.jdent.2023.104459
- Sonaye SY, Bokam VK, Saini A, et al. Patient-specific 3D printed Poly-ether-ether-ketone (PEEK) dental implant system. J Mech Behav Biomed Mater. 2022;136: 105510. doi: 10.1016/j.jmbbm.2022.105510
- Aati S, Chauhan A, Shrestha B, Rajan SM, Aati H, Fawzy A. Development of 3D printed dental resin nanocomposite with graphene nanoplatelets enhanced mechanical properties and induced drug-free antimicrobial activity. Dent Mater. 2022;38(12):1921-1933. doi: 10.1016/j.dental.2022.10.001
- Nappi F, Iervolino A, Singh SSA. The new challenge for heart endocarditis: from conventional prosthesis to new devices and platforms for the treatment of structural heart disease. Biomed Res Int. 2021;2021:7302165. doi: 10.1155/2021/7302165
- Shen Y, Yu X, Cui J, et al. Development of biodegradable polymeric stents for the treatment of cardiovascular diseases. Biomolecules. 2022;12(9). doi: 10.3390/biom12091245
- Wang HJ, Hao MF, Wang G, et al. Zein nanospheres assisting inorganic and organic drug combination to overcome stent implantation-induced thrombosis and infection. Sci Total Environ. 2023;873:162438. doi: 10.1016/j.scitotenv.2023.162438
- Kabirian F, Mozafari M, Mela P, Heying R. Incorporation of controlled release systems improves the functionality of biodegradable 3D printed cardiovascular implants. ACS Biomater Sci Eng. 2023;9(11):5953-5967. doi: 10.1021/acsbiomaterials.3c00559
- Kabirian F, Ditkowski B, Zamanian A, Hoylaerts MF, Mozafari M, Heying R. Controlled NO-release from 3D-printed small-diameter vascular grafts prevents platelet activation and bacterial infectivity. ACS Biomater Sci Eng. 2019;5(5):2284-2296. doi: 10.1021/acsbiomaterials.9b00220
- Pérez-Köhler B, Benito-Martínez S, Gómez-Gil V, Rodríguez M, Pascual G, Bellón JM. New insights into the application of 3D-printing technology in hernia repair. Materials (Basel). 2021;14(22). doi: 10.3390/ma14227092
- Calero Castro FJ, Yuste Y, Pereira S, et al. Proof of concept, design, and manufacture via 3-D printing of a mesh with bactericidal capacity: behaviour in vitro and in vivo. J Tissue Eng Regen Med. 2019;13(11):1955-1964. doi: 10.1002/term.2944
- Choong YYC, Tan HW, Patel DC, et al. The global rise of 3D printing during the COVID-19 pandemic. Nat Rev Mater. 2020;5(9):637-639. doi: 10.1038/s41578-020-00234-3
- Bachtiar EO, Erol O, Millrod M, et al. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. J Mech Behav Biomed Mater. 2020;104:103649. doi: 10.1016/j.jmbbm.2020.103649
- Zimmerling A, Chen X. Innovation and possible long-term impact driven by COVID-19: manufacturing, personal protective equipment and digital technologies. Technol Soc. 2021;65:101541. doi: 10.1016/j.techsoc.2021.101541
- Boškoski I, Gallo C, Wallace MB, Costamagna G. COVID-19 pandemic and personal protective equipment shortage: protective efficacy comparing masks and scientific methods for respirator reuse. Gastrointest Endosc. 2020;92(3):519-523. doi: 10.1016/j.gie.2020.04.048
- Swennen GRJ, Pottel L, Haers PE. Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks. Int J Oral Maxillofac Surg. 2020;49(5):673-677. doi: 10.1016/j.ijom.2020.03.015
- McAvoy M, Bui AN, Hansen C, et al. 3D Printed frames to enable reuse and improve the fit of N95 and KN95 respirators. BMC Biomed Eng. 2021;3(1):10. doi: 10.1186/s42490-021-00055-7
- Ballard DH, Jammalamadaka U, Meacham KW, et al. Quantitative fit tested N95 respirator-alternatives generated with CT imaging and 3D printing: a response to potential shortages during the COVID-19 pandemic. Acad Radiol. 2021;28(2):158-165. doi: 10.1016/j.acra.2020.11.005
- Oland G, Garner O, de St Maurice A. Prospective clinical validation of 3D printed nasopharyngeal swabs for diagnosis of COVID-19. Diagn Microbiol Infect Dis. 2021;99(3):115257. doi: 10.1016/j.diagmicrobio.2020.115257
- Williams E, Bond K, Isles N, et al. Pandemic printing: a novel 3D-printed swab for detecting SARS-CoV-2. Med J Aust. 2020;213(6):276-279. doi: 10.5694/mja2.50726
- Alghounaim M, Almazeedi S, Al Youha S, et al. Low-cost polyester-tipped three-dimensionally printed nasopharyngeal swab for the detection of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). J Clin Microbiol. 2020;58(11). doi: 10.1128/jcm.01668-20
- Soto J, Linsley C, Song Y, et al. Engineering materials and devices for the prevention, diagnosis, and treatment of COVID-19 and infectious diseases. Nanomaterials (Basel). 2023;13(17). doi: 10.3390/nano13172455
- Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830): 567-571. doi: 10.1038/s41586-020-2622-0
- Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 2019;92:19-36. doi: 10.1016/j.actbio.2019.05.005