AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2338
Cite this article
30
Download
697
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Innovations of 3D printing technology in the clinical practice: Strategies against microbial and COVID-19 infection

Wang Li1† Youlong Hai1† Ranxing Yang1† Kun Zheng1 Wenzhuo Fang1 Jinlong Yu2 Hong Xie1* Yu Huang3* Kai Ni1*
Show Less
1 Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
2 Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
3 Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
Submitted: 29 November 2023 | Accepted: 24 February 2024 | Published: 20 March 2024
(This article belongs to the Special Issue Bioprinting strategies for infectious disease)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional (3D) printing technology is making remarkable strides in the fields of biology and medicine due to its highly customizable manufacturing capabilities. Implant infections—severe complications occurring after the implantation of medical devices—result in patient discomfort and inflammation, and under most circumstances, removing the implants may pose latent life-threatening risks. In this context, 3D printing technology emerges as a powerful tool for the customized preparation of anti-infection materials. Precisely integrating antimicrobial agents, bioactive metal ions, antibacterial coatings, and other anti-infection materials into 3D-printed objects lays a foundation for developing direct and targeted intervention for infections, paving the way for innovative approaches to prevent and treat implant infections. This tailored method not only significantly improves treatment outcomes and mitigates patient side effects but also holds unprecedented potential for enhancing the biocompatibility of implants and reducing the risk of microbial infections, signifying profound implications for the future of medical advancements. Moreover, during the COVID-19 pandemic, 3D printing technology plays a pivotal role in preventing virus infection and addressing the increasing clinical demand, being employed to produce essential personal protective equipment. This technology not only enhances the adaptability of medical devices (such as respirator masks, face shields, and test kits) but also offers an innovative and prompt solution in response to the spread of COVID-19. This comprehensive review extensively explores cutting-edge research on 3D printing technology in the medical field, with a particular focus on in-depth analyses of infection preventive strategies in the clinical practice, including antimicrobial materials and medical devices against COVID-19. Finally, the review anticipates the ongoing development of medical biomaterials and devices produced by 3D printing technology, underscoring the expectations for the research and application of novel materials. This in-depth and comprehensive review provides profound insights for current research in the field and offers clear guidance for future scientific and clinical practices.

Keywords
3D printing technology
Infection
Biofilm
Antimicrobial materials
COVID-19
Funding
This work was supported by the National Natural Science Foundation of China (grant numbers: 82103260 and 22205137); the Shanghai Rising-Star Program (grant number: 22QA1407100); the Excellent Youth Cultivation Program of Shanghai Sixth People’s Hospital (grant number: ynyq202204); the Innovative Research Team of High-Level Local Universities in Shanghai; the Shanghai Pujiang Program (grant number: 21PJ1411700); and the Fundamental Research Funds for the Shanghai Sixth People’s Hospital (grant numbers: X-2362, X-2490, and ynqn202111).
References
  1. Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115. doi: 10.1186/s12938-016-0236-4
  2. Ghimire A, Song J. Anti-periprosthetic infection strategies: from implant surface topographical engineering to smart drug-releasing coatings. ACS Appl Mater Interfaces. 2021;13(18):20921-20937. doi: 10.1021/acsami.1c01389
  3. Cao H, Qiao S, Qin H, Jandt KD. Antibacterial designs for implantable medical devices: evolutions and challenges. J Funct Biomater. 2022;13(3). doi: 10.3390/jfb13030086
  4. Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397-409. doi: 10.1038/s41579-018-0019-y
  5. Dar D, Dar N, Cai L, Newman DK. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science. 2021;373(6556). doi: 10.1126/science.abi4882
  6. Irie Y, Borlee BR, O’Connor JR, et al. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2012;109(50):20632-20636. doi: 10.1073/pnas.1217993109
  7. Vazquez-Rodriguez JA, Shaqour B, Guarch-Pérez C, et al. A Niclosamide-releasing hot-melt extruded catheter prevents Staphylococcus aureus experimental biomaterial-associated infection. Sci Rep. 2022;12(1):12329. doi: 10.1038/s41598-022-16107-4
  8. Rosman CWK, van Dijl JM, Sjollema J. Interactions between the foreign body reaction and Staphylococcus aureus biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces. Crit Rev Microbiol. 2022;48(5):624-640. doi: 10.1080/1040841x.2021.2011132
  9. Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther. 2015;13(12):1499-1516. doi: 10.1586/14787210.2015.1100533
  10. Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention--a journey to break the wall: a review. Arch Microbiol. 2016;198(1):1-15. doi: 10.1007/s00203-015-1148-6
  11. Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol. 2010;59(3):227-238. doi: 10.1111/j.1574-695X.2010.00665.x
  12. Wi YM, Patel R. Understanding biofilms and novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect Dis Clin North Am. 2018;32(4):915-929. doi: 10.1016/j.idc.2018.06.009
  13. Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15(8):453-464. doi: 10.1038/nrmicro.2017.42
  14. Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder DP. Therapeutic strategies against biofilm infections. Life (Basel). 2023;13(1). doi: 10.3390/life13010172
  15. Wu H, Moser C, Wang HZ, Høiby N, Song ZJ. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015;7(1):1-7. doi: 10.1038/ijos.2014.65
  16. Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 2012;8(5):1670-1684. doi: 10.1016/j.actbio.2012.01.011
  17. Elbourne A, Crawford RJ, Ivanova EP. Nano-structured antimicrobial surfaces: from nature to synthetic analogues. J Colloid Interface Sci. 2017;508:603-616. doi: 10.1016/j.jcis.2017.07.021 
  18. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol. 2012;95(2):299-311. doi: 10.1007/s00253-012-4144-7
  19. Akdoğan E, Şirin HT. Plasma surface modification strategies for the preparation of antibacterial biomaterials: a review of the recent literature. Mater Sci Eng C Mater Biol Appl. 2021;131:112474. doi: 10.1016/j.msec.2021.112474
  20. Er Raouan S, Abed SE, Zouine N, Lachkar M, Koraichi SI. Anti-adhesive activity of some secondary metabolites against Staphylococcus aureus on 3D printing medical materials. Arch Microbiol. 2023;205(6):243. doi: 10.1007/s00203-023-03562-4
  21. He Y, Luckett J, Begines B, et al. Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials. 2022;281:121350. doi: 10.1016/j.biomaterials.2021.121350
  22. Martínez-Pérez D, Guarch-Pérez C, Purbayanto MAK, et al. 3D-printed dual drug delivery nanoparticle-loaded hydrogels to combat antibiotic-resistant bacteria. Int J Bioprint. 2023;9(3):683. doi: 10.18063/ijb.683
  23. Hall DC, Jr., Palmer P, Ji HF, Ehrlich GD, Król JE. Bacterial biofilm growth on 3D-printed materials. Front Microbiol. 2021;12:646303. doi: 10.3389/fmicb.2021.646303
  24. Wu GH, Hsu SH. Review: polymeric-based 3D printing for tissue engineering. J Med Biol Eng. 2015;35(3):285-292. doi: 10.1007/s40846-015-0038-3
  25. Zhang Y, Zhai D, Xu M, et al. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication. 2017;9(2):025037. doi: 10.1088/1758-5090/aa6ed6
  26. Kumar KPA, Pumera M. 3D-printing to mitigate COVID-19 pandemic. Adv Funct Mater. 2021;31(22):2100450. doi: 10.1002/adfm.202100450
  27. Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017;9(2):024102. doi: 10.1088/1758-5090/aa7279
  28. Doganay MT, Chelliah CJ, Tozluyurt A, et al. 3D printed materials for combating antimicrobial resistance. Mater Today (Kidlington). 2023;67:371-398. doi: 10.1016/j.mattod.2023.05.030
  29. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  30. Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication. 2016;8(1):014103. doi: 10.1088/1758-5090/8/1/014103
  31. Gómez-Blanco JC, Galván-Chacón V, Patrocinio D, et al. Improving cell viability and velocity in μ-extrusion bioprinting with a novel pre-incubator bioprinter and a standard FDM 3D printing nozzle. Materials (Basel). 2021;14(11). doi: 10.3390/ma14113100
  32. Ning L, Betancourt N, Schreyer DJ, Chen X. Characterization of cell damage and proliferative ability during and after bioprinting. ACS Biomater Sci Eng. 2018;4(11):3906-3918. doi: 10.1021/acsbiomaterials.8b00714
  33. Ioannidis K, Danalatos RI, Champeris Tsaniras S, et al. A custom ultra-low-cost 3D bioprinter supports cell growth and differentiation. Front Bioeng Biotechnol. 2020;8:580889. doi: 10.3389/fbioe.2020.580889
  34. Goyanes A, Scarpa M, Kamlow M, Gaisford S, Basit AW, Orlu M. Patient acceptability of 3D printed medicines. Int J Pharm. 2017;530(1-2):71-78. doi: 10.1016/j.ijpharm.2017.07.064
  35. Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23(8):1547-1555. doi: 10.1016/j.drudis.2018.05.025 
  36. Singh R, Garg HK. Fused deposition modeling – a state of art review and future applications. Encycl Smart Mater. 2016:270-288. doi: 10.1016/b978-0-12-803581-8.04037-6
  37. Rajan K, Samykano M, Kadirgama K, Harun WSW, Rahman MM. Fused deposition modeling: process, materials, parameters, properties, and applications. Int J Adv Manuf Technol. 2022;120(3-4):1531-1570. doi: 10.1007/s00170-022-08860-7
  38. Xenikakis I, Tzimtzimis M, Tsongas K, et al. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur J Pharm Sci. 2019;137:104976. doi: 10.1016/j.ejps.2019.104976
  39. Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital light processing based three-dimensional printing for medical applications. Int J Bioprint. 2020;6(1):242. doi: 10.18063/ijb.v6i1.242
  40. Ge Q, Li Z, Wang Z, et al. Projection micro stereolithography based 3D printing and its applications. Int J Extreme Manuf. 2020;2(2). doi: 10.1088/2631-7990/ab8d9a
  41. Stanco D, Urbán P, Tirendi S, Ciardelli G, Barrero J. 3D bioprinting for orthopaedic applications: current advances, challenges and regulatory considerations. Bioprinting. 2020;20. doi: 10.1016/j.bprint.2020.e00103
  42. Angelopoulos I, Allenby MC, Lim M, Zamorano M. Engineering inkjet bioprinting processes toward translational therapies. Biotechnol Bioeng. 2020;117(1): 272-284. doi: 10.1002/bit.27176
  43. Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduct Target Ther. 2021;6(1):177. doi: 10.1038/s41392-021-00566-8
  44. Tian S, Zhao H, Lewinski N. Key parameters and applications of extrusion-based bioprinting. Bioprinting. 2021;23. doi: 10.1016/j.bprint.2021.e00156
  45. Koch L, Gruene M, Unger C, Chichkov B. Laser assisted cell printing. Curr Pharm Biotechnol. 2013;14(1):91-97.
  46. Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1-2):285-293. doi: 10.1016/j.ijpharm.2017.06.082
  47. Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020;586:119594. doi: 10.1016/j.ijpharm.2020.119594
  48. Sauer K, Stoodley P, Goeres DM, et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022;20(10):608-620. doi: 10.1038/s41579-022-00767-0
  49. Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. 2013;2(2):288-356. doi: 10.3390/pathogens2020288
  50. Flemming HC, van Hullebusch ED, Neu TR, et al. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol. 2023;21(2):70-86. doi: 10.1038/s41579-022-00791-0
  51. Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067. doi: 10.1016/j.heliyon.2018.e01067
  52. Nyström T. Aging in bacteria. Curr Opin Microbiol. 2002;5(6):596-601. doi: 10.1016/s1369-5274(02)00367-3
  53. Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 2005;28(11):1062-1068. doi: 10.1177/039139880502801103
  54. Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK. Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng H. 2014;228(10):1083- 1099. doi: 10.1177/0954411914556137 
  55. Lorite GS, Rodrigues CM, de Souza AA, Kranz C, Mizaikoff B, Cotta MA. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J Colloid Interface Sci. 2011;359(1): 289-295. doi: 10.1016/j.jcis.2011.03.066
  56. Li P, Zong W, Zhang Z, et al. Effects and molecular mechanism of flagellar gene flgK on the motility, adhesion/invasion, and desiccation resistance of Cronobacter sakazakii. Food Res Int. 2023;164:112418. doi: 10.1016/j.foodres.2022.112418
  57. Nedeljković M, Sastre DE, Sundberg EJ. Bacterial flagellar filament: a supramolecular multifunctional nanostructure. Int J Mol Sci. 2021;22(14). doi: 10.3390/ijms22147521
  58. Nedeljković M, Postel S, Pierce BG, Sundberg EJ. Molecular determinants of filament capping proteins required for the formation of functional flagella in gram-negative bacteria. Biomolecules. 2021;11(10). doi: 10.3390/biom11101397
  59. Muszanska AK, Nejadnik MR, Chen Y, et al. Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics. Antimicrob Agents Chemother. 2012;56(9):4961-4964. doi: 10.1128/aac.00431-12
  60. Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms. 2023;11(6). doi: 10.3390/microorganisms11061614
  61. Al-Ahmad A, Wiedmann-Al-Ahmad M, Faust J, et al. Biofilm formation and composition on different implant materials in vivo. J Biomed Mater Res B Appl Biomater. 2010;95(1):101-109. doi: 10.1002/jbm.b.31688
  62. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318-1322. doi: 10.1126/science.284.5418.1318
  63. Gu H, Hou S, Yongyat C, De Tore S, Ren D. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir. 2013;29(35):11145-11153. doi: 10.1021/la402608z
  64. Öztürk FY, Darcan C, Kariptaş E. The determination, monitoring, molecular mechanisms and formation of biofilm in E. coli. Braz J Microbiol. 2023;54(1):259-277. doi: 10.1007/s42770-022-00895-y
  65. Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020;84(3). doi: 10.1128/mmbr.00026-19
  66. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 2013;3(4):a010306. doi: 10.1101/cshperspect.a010306
  67. Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I. Small molecules are natural triggers for the disassembly of biofilms. Trends Microbiol. 2013;21(11):594-601. doi: 10.1016/j.tim.2013.08.005
  68. Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014;18:96-104. doi: 10.1016/j.mib.2014.02.008
  69. Landini P, Antoniani D, Burgess JG, Nijland R. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol. 2010;86(3):813-823. doi: 10.1007/s00253-010-2468-8
  70. Choi YC, Morgenroth E. Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Water Sci Technol. 2003;47(5):69-76.
  71. Horn H, Reiff H, Morgenroth E. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng. 2003;81(5):607-617. doi: 10.1002/bit.10503 
  72. Tsagkari E, Connelly S, Liu Z, McBride A, Sloan WT. The role of shear dynamics in biofilm formation. NPJ Biofilms Microbiomes. 2022;8(1):33. doi: 10.1038/s41522-022-00300-4
  73. Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73(2):310-347. doi: 10.1128/mmbr.00041-08
  74. Xie K, Zhou Z, Guo Y, et al. Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity. Adv Healthc Mater. 2019;8(5):e1801465. doi: 10.1002/adhm.201801465
  75. Oun AA, Shankar S, Rhim JW. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit Rev Food Sci Nutr. 2020;60(3):435-460. doi: 10.1080/10408398.2018.1536966
  76. Zheng K, Yu Xc, Xu M, et al. Using 3D printing technology to manufacture personalized bone cement placeholder mold for bone defect repair and reconstruction with infection: a case report. Orthop Surg. 2023;15(10):2724-2729. doi: 10.1111/os.13779
  77. Tetsworth K, Block S, Glatt V. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects. SICOT J. 2017;3. doi: 10.1051/sicotj/2016043
  78. Tsai CH, Hsu HC, Chen HY, et al. A preliminary study of the novel antibiotic-loaded cement computer-aided design-articulating spacer for the treatment of periprosthetic knee infection. J Orthop Surg Res. 2019;14(1):136. doi: 10.1186/s13018-019-1175-0
  79. Youssef RF, Spradling K, Yoon R, et al. Applications of three-dimensional printing technology in urological practice. BJU Int. 2015;116(5):697-702. doi: 10.1111/bju.13183
  80. He X, Yang S, Liu C, Xu T, Zhang X. Integrated wound recognition in bandages for intelligent treatment. Adv Healthc Mater. 2020;9(22):e2000941. doi: 10.1002/adhm.202000941
  81. Alizadehgiashi M, Nemr CR, Chekini M, et al. Multifunctional 3D-printed wound dressings. ACS Nano. 2021;15(7):12375-12387. doi: 10.1021/acsnano.1c04499
  82. Kim H, Lee D, Young Lee S, et al. Denture flask fabrication using fused deposition modeling three-dimensional printing. J Prosthodont Res. 2020;64(2):231-234. doi: 10.1016/j.jpor.2019.07.001
  83. Li Y, Liu H, Wang C, et al. 3D printing titanium grid scaffold facilitates osteogenesis in mandibular segmental defects. NPJ Regen Med. 2023;8(1):38. doi: 10.1038/s41536-023-00308-0
  84. Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging. 2017;10(2):171-184. doi: 10.1016/j.jcmg.2016.12.001
  85. Shin CS, Cabrera FJ, Lee R, et al. 3D-bioprinted inflammation modulating polymer scaffolds for soft tissue repair. Adv Mater. 2021;33(4):e2003778. doi: 10.1002/adma.202003778
  86. Olmos-Juste R, Olza S, Gabilondo N, Eceiza A. Tailor-made 3D printed meshes of alginate-waterborne polyurethane as suitable implants for hernia repair. Macromol Biosci. 2022;22(9):e2200124. doi: 10.1002/mabi.202200124
  87. Nisyrios T, Karygianni L, Fretwurst T, et al. High potential of bacterial adhesion on block bone graft materials. Materials (Basel). 2020;13(9). doi: 10.3390/ma13092102
  88. Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol. 2019;309(1):1-12. doi: 10.1016/j.ijmm.2018.11.002
  89. Oliveira WF, Silva PMS, Silva RCS, et al. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect. 2018;98(2):111-117. doi: 10.1016/j.jhin.2017.11.008 
  90. Hogan S, Stevens NT, Humphreys H, O’Gara JP, O’Neill E. Current and future approaches to the prevention and treatment of staphylococcal medical device-related infections. Curr Pharm Des. 2015;21(1):100-113. doi: 10.2174/1381612820666140905123900
  91. Arciola CR, Campoccia D, Ehrlich GD, Montanaro L. Biofilm-based implant infections in orthopaedics. Adv Exp Med Biol. 2015;830:29-46. doi: 10.1007/978-3-319-11038-7_2
  92. Montanaro L, Speziale P, Campoccia D, et al. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol. 2011;6(11):1329-1349. doi: 10.2217/fmb.11.117
  93. Ronin D, Boyer J, Alban N, Natoli RM, Johnson A, Kjellerup BV. Current and novel diagnostics for orthopedic implant biofilm infections: a review. APMIS. 2022;130(2):59-81. doi: 10.1111/apm.13197
  94. Ghasemi F, Jahani A, Moradi A, Ebrahimzadeh MH, Jirofti N. Different modification methods of poly methyl methacrylate (PMMA) bone cement for orthopedic surgery applications. Arch Bone Jt Surg. 2023;11(8):485-492. doi: 10.22038/abjs.2023.71289.3330
  95. Kim TWB, Lopez OJ, Sharkey JP, Marden KR, Murshed MR, Ranganathan SI. 3D printed liner for treatment of periprosthetic joint infections. Med Hypotheses. 2017;102: 65-68. doi: 10.1016/j.mehy.2017.03.014
  96. Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent advances in the evaluation of antimicrobial materials for resolution of orthopedic implant-associated infections in vivo. ACS Infect Dis. 2021;7(12):3125-3160. doi: 10.1021/acsinfecdis.1c00465
  97. Inzana JA, Schwarz EM, Kates SL, Awad HA. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials. 2016;81:58-71. doi: 10.1016/j.biomaterials.2015.12.012
  98. Dubey A, Vahabi H, Kumaravel V. Antimicrobial and biodegradable 3D printed scaffolds for orthopedic infections. ACS Biomater Sci Eng. 2023;9(7):4020-4044. doi: 10.1021/acsbiomaterials.3c00115
  99. Yuste I, Luciano FC, Anaya BJ, et al. Engineering 3D-printed advanced healthcare materials for periprosthetic joint infections. Antibiotics (Basel). 2023;12(8). doi: 10.3390/antibiotics12081229
  100. Freeman FE, Burdis R, Kelly DJ. Printing new bones: from print-and-implant devices to bioprinted bone organ precursors. Trends Mol Med. 2021;27(7):700-711. doi: 10.1016/j.molmed.2021.05.001
  101. van der Heide D, Cidonio G, Stoddart MJ, D’Este M. 3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication. 2022;14(4). doi: 10.1088/1758-5090/ac8cb2
  102. Li J, Li L, Zhou J, et al. 3D printed dual-functional biomaterial with self-assembly micro-nano surface and enriched nano argentum for antibacterial and bone regeneration. Appl Mater Today. 2019;17:206-215. doi: 10.1016/j.apmt.2019.06.012
  103. Feng X, Ma L, Liang H, et al. Osteointegration of 3D-printed fully porous polyetheretherketone scaffolds with different pore sizes. ACS Omega. 2020;5(41):26655-26666. doi: 10.1021/acsomega.0c03489
  104. Li Z, He D, Guo B, et al. Self-promoted electroactive biomimetic mineralized scaffolds for bacteria-infected bone regeneration. Nat Commun. 2023;14(1):6963. doi: 10.1038/s41467-023-42598-4
  105. Hadrup N, Sharma AK, Jacobsen NR, Loeschner K. Distribution, metabolism, excretion, and toxicity of implanted silver: a review. Drug Chem Toxicol. 2022;45(5):2388-2397. doi: 10.1080/01480545.2021.1950167
  106. Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol. 2018;98:257-267. doi: 10.1016/j.yrtph.2018.08.007 
  107. Shimazaki T, Miyamoto H, Ando Y, et al. In vivo antibacterial and silver-releasing properties of novel thermal sprayed silver-containing hydroxyapatite coating. J Biomed Mater Res B Appl Biomater. 2010;92(2):386-389. doi: 10.1002/jbm.b.31526
  108. Akiyama T, Miyamoto H, Yonekura Y, et al. Silver oxide-containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia. J Orthop Res. 2013;31(8):1195-1200. doi: 10.1002/jor.22357
  109. Yang Y, Chu L, Yang S, et al. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater. 2018;79:265-275. doi: 10.1016/j.actbio.2018.08.015
  110. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16-33. doi: 10.1016/j.actbio.2018.11.039
  111. Correia TR, Figueira DR, de Sá KD, et al. 3D printed scaffolds with bactericidal activity aimed for bone tissue regeneration. Int J Biol Macromol. 2016;93(Pt B):1432-1445. doi: 10.1016/j.ijbiomac.2016.06.004
  112. Deng L, Deng Y, Xie K. AgNPs-decorated 3D printed PEEK implant for infection control and bone repair. Colloids Surf B Biointerfaces. 2017;160:483-492. doi: 10.1016/j.colsurfb.2017.09.061
  113. Turner TM, Urban RM, Gitelis S, Kuo KN, Andersson GB. Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution’s experience. J Bone Joint Surg Am. 2001;83-A Suppl 2(Pt 1):8-18. doi: 10.2106/00004623-200100021-00003
  114. Logoluso N, Drago L, Gallazzi E, George DA, Morelli I, Romanò CL. Calcium-based, antibiotic-loaded bone substitute as an implant coating: a pilot clinical study. J Bone Jt Infect. 2016;1:59-64. doi: 10.7150/jbji.17586
  115. Jain A, Bansal KK, Tiwari A, Rosling A, Rosenholm JM. Role of polymers in 3D printing technology for drug delivery - an overview. Curr Pharm Des. 2018;24(42):4979-4990. doi: 10.2174/1381612825666181226160040
  116. Warsi MH, Yusuf M, Al Robaian M, Khan M, Muheem A, Khan S. 3D printing methods for pharmaceutical manufacturing: opportunity and challenges. Curr Pharm Des. 2018;24(42):4949-4956. doi: 10.2174/1381612825666181206121701
  117. Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad HA. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cell Mater. 2015;30:232-247. doi: 10.22203/ecm.v030a16
  118. Zhou Z, Yao Q, Li L, et al. Antimicrobial activity of 3D-printed poly(ε-caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid (PLGA) microspheres. Med Sci Monit. 2018;24:6934-6945. doi: 10.12659/msm.911770
  119. Sun F, Sun X, Wang H, et al. Application of 3D-printed, PLGA-based scaffolds in bone tissue engineering. Int J Mol Sci. 2022;23(10). doi: 10.3390/ijms23105831
  120. Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: a brief overview. J Inorg Biochem. 2019;195:120-129. doi: 10.1016/j.jinorgbio.2019.03.013
  121. Tapiero H, Townsend DM, Tew KD. Trace elements in human physiology and pathology. Copper. Biomed Pharmacother. 2003;57(9):386-398. doi: 10.1016/s0753-3322(03)00012-x
  122. Tripathi A, Saravanan S, Pattnaik S, Moorthi A, Partridge NC, Selvamurugan N. Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Int J Biol Macromol. 2012;50(1):294-299. doi: 10.1016/j.ijbiomac.2011.11.013 
  123. Liu Y, Li T, Ma H, et al. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Acta Biomater. 2018;73:531-546. doi: 10.1016/j.actbio.2018.04.014
  124. Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small joint organoids 3D bioprinting: construction strategy and application. Small. 2023:e2302506. doi: 10.1002/smll.202302506
  125. Messaoudi O, Henrionnet C, Bourge K, Loeuille D, Gillet P, Pinzano A. Stem cells and extrusion 3D printing for hyaline cartilage engineering. Cells. 2020;10(1). doi: 10.3390/cells10010002
  126. Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application and development of 3D bioprinting in cartilage tissue engineering. Biomater Sci. 2022;10(19):5430-5458. doi: 10.1039/d2bm00709f
  127. Li G, Lai Z, Shan A. Advances of antimicrobial peptide-based biomaterials for the treatment of bacterial infections. Adv Sci (Weinh). 2023;10(11):e2206602. doi: 10.1002/advs.202206602
  128. Rai A, Ferrão R, Palma P, et al. Antimicrobial peptide-based materials: opportunities and challenges. J Mater Chem B. 2022;10(14):2384-2429. doi: 10.1039/d1tb02617h
  129. Cometta S, Bock N, Suresh S, Dargaville TR, Hutmacher DW. Antibacterial albumin-tannic acid coatings for scaffold-guided breast reconstruction. Front Bioeng Biotechnol. 2021;9:638577. doi: 10.3389/fbioe.2021.638577
  130. Cometta S, Jones RT, Juárez-Saldivar A, et al. Melimine-modified 3D-printed polycaprolactone scaffolds for the prevention of biofilm-related biomaterial infections. ACS Nano. 2022;16(10):16497-16512. doi: 10.1021/acsnano.2c05812
  131. Fischer NG, Chen X, Astleford-Hopper K, et al. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices. Mater Sci Eng C Mater Biol Appl. 2021;125:112108. doi: 10.1016/j.msec.2021.112108
  132. Zhang S, Zhou X, Liu T, Huang Y, Li J. The effects of peptide Mel4-coated titanium plates on infection rabbits after internal fixation of open fractures. Arch Orthop Trauma Surg. 2022;142(5):729-734. doi: 10.1007/s00402-020-03694-y
  133. Feneley RC, Hopley IB, Wells PN. Urinary catheters: history, current status, adverse events and research agenda. J Med Eng Technol. 2015;39(8):459-470. doi: 10.3109/03091902.2015.1085600
  134. Flores-Mireles A, Hreha TN, Hunstad DA. Pathophysiology, treatment, and prevention of catheter-associated urinary tract infection. Top Spinal Cord Inj Rehabil. 2019;25(3): 228-240. doi: 10.1310/sci2503-228
  135. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167-193. doi: 10.1128/cmr.15.2.167-193.2002
  136. Broomfield RJ, Morgan SD, Khan A, Stickler DJ. Crystalline bacterial biofilm formation on urinary catheters by urease-producing urinary tract pathogens: a simple method of control. J Med Microbiol. 2009;58(Pt 10):1367-1375. doi: 10.1099/jmm.0.012419-0
  137. Pelling H, Nzakizwanayo J, Milo S, et al. Bacterial biofilm formation on indwelling urethral catheters. Lett Appl Microbiol. 2019;68(4):277-293. doi: 10.1111/lam.13144
  138. Stickler DJ. Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pract Urol. 2008;5(11):598-608. doi: 10.1038/ncpuro1231
  139. Tenke P, Köves B, Johansen TE. An update on prevention and treatment of catheter-associated urinary tract infections. Curr Opin Infect Dis. 2014;27(1):102-107. doi: 10.1097/qco.0000000000000031
  140. Johnson JR, Kuskowski MA, Wilt TJ. Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann Intern Med. 2006;144(2):116-126. doi: 10.7326/0003-4819-144-2-200601170-00009 
  141. Menon A, Durairajan R, Durai R, Paramasivam N, Narayanan VB. Exploration of 3D printing of anti-infective urinary catheters: materials and approaches to combat catheter-associated urinary tract infections (CAUTIs) - a review. Crit Rev Ther Drug Carrier Syst. 2022;39(5):51-82. doi: 10.1615/CritRevTherDrugCarrierSyst.2022040452
  142. Wang L, Zhang S, Keatch R, et al. In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. J Hosp Infect. 2019;103(1):55-63. doi: 10.1016/j.jhin.2019.02.012
  143. Wang R, Neoh KG, Kang ET, Tambyah PA, Chiong E. Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters. J Biomed Mater Res B Appl Biomater. 2015;103(3):519-528. doi: 10.1002/jbm.b.33230
  144. Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008;61(4):869-876. doi: 10.1093/jac/dkn034
  145. Stenzelius K, Persson S, Olsson UB, Stjärneblad M. Noble metal alloy-coated latex versus silicone Foley catheter in short-term catheterization: a randomized controlled study. Scand J Urol Nephrol. 2011;45(4):258-264. doi: 10.3109/00365599.2011.560007
  146. Davenport K, Keeley FX. Evidence for the use of silver-alloy-coated urethral catheters. J Hosp Infect. 2005;60(4):298-303. doi: 10.1016/j.jhin.2005.01.026
  147. Thibon P, Le Coutour X, Leroyer R, Fabry J. Randomized multi-centre trial of the effects of a catheter coated with hydrogel and silver salts on the incidence of hospital-acquired urinary tract infections. J Hosp Infect. 2000;45(2):117-124. doi: 10.1053/jhin.1999.0715
  148. Thomas R, Soumya KR, Mathew J, Radhakrishnan EK. Inhibitory effect of silver nanoparticle fabricated urinary catheter on colonization efficiency of coagulase negative Staphylococci. J Photochem Photobiol B. 2015;149:68-77. doi: 10.1016/j.jphotobiol.2015.04.034
  149. Mala R, Annie Aglin A, Ruby Celsia AS, et al. Foley catheters functionalised with a synergistic combination of antibiotics and silver nanoparticles resist biofilm formation. IET Nanobiotechnol. 2017;11(5):612-620. doi: 10.1049/iet-nbt.2016.0148
  150. Dayyoub E, Frant M, Pinnapireddy SR, Liefeith K, Bakowsky U. Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter. Int J Pharm. 2017;531(1):205-214. doi: 10.1016/j.ijpharm.2017.08.072
  151. Frant M, Dayyoub E, Bakowsky U, Liefeith K. Evaluation of a ureteral catheter coating by means of a BioEncrustation in vitro model. Int J Pharm. 2018;546(1-2):86-96. doi: 10.1016/j.ijpharm.2018.04.023
  152. Stickler DJ. Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J Intern Med. 2014;276(2):120-129. doi: 10.1111/joim.12220
  153. Lee SJ, Kim SW, Cho YH, et al. A comparative multicentre study on the incidence of catheter-associated urinary tract infection between nitrofurazone-coated and silicone catheters. Int J Antimicrob Agents. 2004;24(Suppl 1): S65-S69. doi: 10.1016/j.ijantimicag.2004.02.013
  154. Johnson JR, Delavari P, Azar M. Activities of a nitrofurazone-containing urinary catheter and a silver hydrogel catheter against multidrug-resistant bacteria characteristic of catheter-associated urinary tract infection. Antimicrob Agents Chemother. 1999;43(12):2990-2995. doi: 10.1128/aac.43.12.2990
  155. Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harb Perspect Med. 2016;6(6). doi: 10.1101/cshperspect.a027029 
  156. Rafienia M, Zarinmehr B, Poursamar SA, Bonakdar S, Ghavami M, Janmaleki M. Coated urinary catheter by PEG/PVA/gentamicin with drug delivery capability against hospital infection. Iran Polym J. 2013;22(2):75-83. doi: 10.1007/s13726-012-0105-3
  157. Kowalczuk D, Ginalska G, Piersiak T, Miazga-Karska M. Prevention of biofilm formation on urinary catheters: comparison of the sparfloxacin-treated long-term antimicrobial catheters with silver-coated ones. J Biomed Mater Res B Appl Biomater. 2012;100(7):1874-1882. doi: 10.1002/jbm.b.32755
  158. Mathew E, Domínguez-Robles J, Stewart SA, et al. Fused deposition modeling as an effective tool for anti-infective dialysis catheter fabrication. ACS Biomater Sci Eng. 2019;5(11):6300-6310. doi: 10.1021/acsbiomaterials.9b01185
  159. Archana M, Rubini D, Dharshini KP, et al. Development of an anti-infective urinary catheter composed of polyvinyl alcohol/sodium alginate/methylcellulose/polyethylene glycol by using a pressure-assisted 3D-printing technique. Int J Biol Macromol. 2023;249:126029. doi: 10.1016/j.ijbiomac.2023.126029
  160. Borkow G, Gabbay J. Putting copper into action: copper-impregnated products with potent biocidal activities. FASEB J. 2004;18(14):1728-1730. doi: 10.1096/fj.04-2029fje
  161. Sriubas M, Bockute K, Palevicius P, et al. Antibacterial activity of silver and gold particles formed on titania thin films. Nanomaterials (Basel). 2022;12(7). doi: 10.3390/nano12071190
  162. Kyser AJ, Mahmoud MY, Johnson NT, et al. Development and characterization of lactobacillus rhamnosus-containing bioprints for application to catheter-associated urinary tract infections. ACS Biomater Sci Eng. 2023;9(7):4277-4287. doi: 10.1021/acsbiomaterials.3c00210
  163. Carlsson S, Weitzberg E, Wiklund P, Lundberg JO. Intravesical nitric oxide delivery for prevention of catheter-associated urinary tract infections. Antimicrob Agents Chemother. 2005;49(6):2352-2355. doi: 10.1128/aac.49.6.2352-2355.2005
  164. Levering V, Wang Q, Shivapooja P, Zhao X, López GP. Soft robotic concepts in catheter design: an on-demand fouling-release urinary catheter. Adv Healthc Mater. 2014;3(10): 1588-1596. doi: 10.1002/adhm.201400035
  165. Li M, Xia W, Khoong YM, et al. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res. 2023;27(1):87. doi: 10.1186/s40824-023-00426-2
  166. Albanna M, Binder KW, Murphy SV, et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Rep. 2019;9(1):1856. doi: 10.1038/s41598-018-38366-w
  167. Fang W, Yang M, Wang L, et al. Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: current progress and challenges. Int J Bioprint. 2023;9(5):759. doi: 10.18063/ijb.759
  168. Wu Z, Hong Y. Combination of the silver-ethylene interaction and 3D printing to develop antibacterial superporous hydrogels for wound management. ACS Appl Mater Interfaces. 2019;11(37):33734-33747. doi: 10.1021/acsami.9b14090
  169. Huang D, Cheng Y, Chen G, Zhao Y. 3D-printed janus piezoelectric patches for sonodynamic bacteria elimination and wound healing. Research (Wash D C). 2023;6:0022. doi: 10.34133/research.0022
  170. Zhao Y, Li Z, Song S, et al. Skin‐inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv Funct Mater. 2019;29(31). doi: 10.1002/adfm.201901474
  171. Chen B, Huang L, Ma R, Luo Y. 3D printed hollow channeled hydrogel scaffolds with antibacterial and wound healing activities. Biomed Mater. 2023;18(4). doi: 10.1088/1748-605X/acd977 
  172. Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33-64. doi: 10.1016/j.addr.2017.08.001
  173. Fang W, Yang M, Liu M, et al. Review on additives in hydrogels for 3D bioprinting of regenerative medicine: from mechanism to methodology. Pharmaceutics. 2023;15(6). doi: 10.3390/pharmaceutics15061700
  174. Teoh JH, Mozhi A, Sunil V, Tay SM, Fuh J, Wang CH. 3D printing personalized, photocrosslinkable hydrogel wound dressings for the treatment of thermal burns. Adv Funct Mater. 2021;31(48). doi: 10.1002/adfm.202105932
  175. Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30(8):1587-1595. doi: 10.1016/j.biomaterials.2008.12.009
  176. Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016;9(1):015006. doi: 10.1088/1758-5090/9/1/015006
  177. Moynihan P, Petersen PE. Diet, nutrition and the prevention of dental diseases. Public Health Nutr. 2004;7(1a):201-226. doi: 10.1079/phn2003589
  178. Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol Bioeng. 2019;116(2):452-468. doi: 10.1002/bit.26882
  179. Mai HN, Hyun DC, Park JH, Kim DY, Lee SM, Lee DH. Antibacterial drug-release polydimethylsiloxane coating for 3D-printing dental polymer: surface alterations and antimicrobial effects. Pharmaceuticals (Basel). 2020;13(10). doi: 10.3390/ph13100304
  180. Yang Y, Li H, Xu Y, Dong Y, Shan W, Shen J. Fabrication and evaluation of dental fillers using customized molds via 3D printing technology. Int J Pharm. 2019;562:66-75. doi: 10.1016/j.ijpharm.2019.03.024
  181. Sa L, Kaiwu L, Shenggui C, et al. 3D printing dental composite resins with sustaining antibacterial ability. J Mater Sci. 2018;54(4):3309-3318. doi: 10.1007/s10853-018-2801-7
  182. Deng K, Chen H, Wei W, Wang X, Sun Y. Accuracy of tooth positioning in 3D-printing aided manufactured complete dentures: an in vitro study. J Dent. 2023;131:104459. doi: 10.1016/j.jdent.2023.104459
  183. Sonaye SY, Bokam VK, Saini A, et al. Patient-specific 3D printed Poly-ether-ether-ketone (PEEK) dental implant system. J Mech Behav Biomed Mater. 2022;136: 105510. doi: 10.1016/j.jmbbm.2022.105510
  184. Aati S, Chauhan A, Shrestha B, Rajan SM, Aati H, Fawzy A. Development of 3D printed dental resin nanocomposite with graphene nanoplatelets enhanced mechanical properties and induced drug-free antimicrobial activity. Dent Mater. 2022;38(12):1921-1933. doi: 10.1016/j.dental.2022.10.001
  185. Nappi F, Iervolino A, Singh SSA. The new challenge for heart endocarditis: from conventional prosthesis to new devices and platforms for the treatment of structural heart disease. Biomed Res Int. 2021;2021:7302165. doi: 10.1155/2021/7302165
  186. Shen Y, Yu X, Cui J, et al. Development of biodegradable polymeric stents for the treatment of cardiovascular diseases. Biomolecules. 2022;12(9). doi: 10.3390/biom12091245
  187. Wang HJ, Hao MF, Wang G, et al. Zein nanospheres assisting inorganic and organic drug combination to overcome stent implantation-induced thrombosis and infection. Sci Total Environ. 2023;873:162438. doi: 10.1016/j.scitotenv.2023.162438
  188. Kabirian F, Mozafari M, Mela P, Heying R. Incorporation of controlled release systems improves the functionality of biodegradable 3D printed cardiovascular implants. ACS Biomater Sci Eng. 2023;9(11):5953-5967. doi: 10.1021/acsbiomaterials.3c00559 
  189. Kabirian F, Ditkowski B, Zamanian A, Hoylaerts MF, Mozafari M, Heying R. Controlled NO-release from 3D-printed small-diameter vascular grafts prevents platelet activation and bacterial infectivity. ACS Biomater Sci Eng. 2019;5(5):2284-2296. doi: 10.1021/acsbiomaterials.9b00220
  190. Pérez-Köhler B, Benito-Martínez S, Gómez-Gil V, Rodríguez M, Pascual G, Bellón JM. New insights into the application of 3D-printing technology in hernia repair. Materials (Basel). 2021;14(22). doi: 10.3390/ma14227092
  191. Calero Castro FJ, Yuste Y, Pereira S, et al. Proof of concept, design, and manufacture via 3-D printing of a mesh with bactericidal capacity: behaviour in vitro and in vivo. J Tissue Eng Regen Med. 2019;13(11):1955-1964. doi: 10.1002/term.2944
  192. Choong YYC, Tan HW, Patel DC, et al. The global rise of 3D printing during the COVID-19 pandemic. Nat Rev Mater. 2020;5(9):637-639. doi: 10.1038/s41578-020-00234-3
  193. Bachtiar EO, Erol O, Millrod M, et al. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. J Mech Behav Biomed Mater. 2020;104:103649. doi: 10.1016/j.jmbbm.2020.103649
  194. Zimmerling A, Chen X. Innovation and possible long-term impact driven by COVID-19: manufacturing, personal protective equipment and digital technologies. Technol Soc. 2021;65:101541. doi: 10.1016/j.techsoc.2021.101541
  195. Boškoski I, Gallo C, Wallace MB, Costamagna G. COVID-19 pandemic and personal protective equipment shortage: protective efficacy comparing masks and scientific methods for respirator reuse. Gastrointest Endosc. 2020;92(3):519-523. doi: 10.1016/j.gie.2020.04.048
  196. Swennen GRJ, Pottel L, Haers PE. Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks. Int J Oral Maxillofac Surg. 2020;49(5):673-677. doi: 10.1016/j.ijom.2020.03.015
  197. McAvoy M, Bui AN, Hansen C, et al. 3D Printed frames to enable reuse and improve the fit of N95 and KN95 respirators. BMC Biomed Eng. 2021;3(1):10. doi: 10.1186/s42490-021-00055-7
  198. Ballard DH, Jammalamadaka U, Meacham KW, et al. Quantitative fit tested N95 respirator-alternatives generated with CT imaging and 3D printing: a response to potential shortages during the COVID-19 pandemic. Acad Radiol. 2021;28(2):158-165. doi: 10.1016/j.acra.2020.11.005
  199. Oland G, Garner O, de St Maurice A. Prospective clinical validation of 3D printed nasopharyngeal swabs for diagnosis of COVID-19. Diagn Microbiol Infect Dis. 2021;99(3):115257. doi: 10.1016/j.diagmicrobio.2020.115257
  200. Williams E, Bond K, Isles N, et al. Pandemic printing: a novel 3D-printed swab for detecting SARS-CoV-2. Med J Aust. 2020;213(6):276-279. doi: 10.5694/mja2.50726
  201. Alghounaim M, Almazeedi S, Al Youha S, et al. Low-cost polyester-tipped three-dimensionally printed nasopharyngeal swab for the detection of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). J Clin Microbiol. 2020;58(11). doi: 10.1128/jcm.01668-20
  202. Soto J, Linsley C, Song Y, et al. Engineering materials and devices for the prevention, diagnosis, and treatment of COVID-19 and infectious diseases. Nanomaterials (Basel). 2023;13(17). doi: 10.3390/nano13172455
  203. Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830): 567-571. doi: 10.1038/s41586-020-2622-0
  204. Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 2019;92:19-36. doi: 10.1016/j.actbio.2019.05.005
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing