AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2516
RESEARCH ARTICLE

Personalized light-curable polyurethane palatal prosthesis designed and fabricated based on computer fluid dynamics and 3D printing to repair palatal fistula

Qiwei Chen1 Haihuan Gong2 Yilin Wang1 Yanyan Zhao3 Hong Zhao4 Zhiwei Lin5 Jingya Yang6,7 Manoj Kumar Vashisth1 Lixiang Zhao8 Yunlu Dai9* Wenhua Huang1,4,6*
Show Less
1 Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
2 Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
3 Department of Science and Education, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
4 Department of Nursing and Health, Huizhou Economics and Polytechnic College, Huizhou, Guangdong, China
5 School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong, China
6 Department of Otolaryngology - Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
7 School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
8 Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
9 Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
IJB 2024, 10(4), 2516 https://doi.org/10.36922/ijb.2516
Submitted: 23 December 2023 | Accepted: 15 February 2024 | Published: 19 March 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cleft palate surgery most commonly results in palatal fistula, but this complication can also be observed in congenital malformations, palatal tumors, and autoimmune diseases. Palatal fistula repair is crucial in restoring everyday speech and swallowing function, improving patients’ psychological and social well-being. However, treating palatal fistula remains challenging for oral and maxillofacial surgeons. In addition, fabricating a palatal fistula prosthesis with a precise fit to the fistula using traditional techniques is hardly achievable in the design and production process. In recent years, digital technology has been increasingly applied in palatal fistula prosthesis fabrication. Based on computer fluid dynamics (CFD)-assisted design and three-dimensional printing technology, we developed a personalized palatal prosthesis made of light-cured polyurethane to repair palatal fistula and restore normal airflow during speech. Material property tests show that this light-cured polyurethane material has excellent hydrophilicity, mechanical properties, water resistance, and good rheological performance. The excellent biocompatibility of the polyurethane palatal prosthesis was confirmed in in vivo and in vitro experiments. The study results also indicate that CFD pre-analysis provides accurate guidance for palatal fistula design and future evaluation of outcomes. Therefore, CFD pre-analysis and additive manufacturing synergy provide a new treatment method. In combination with the excellent biocompatibility and mechanical properties of polyurethane, this study proposes a new strategy for treating refractory palatal fistula and extensive palatal defects, aiming to reduce the difficulty of prosthesis fabrication and maximize the restoration effect and quality of life for patients.

 

Keywords
Prosthesis
3D printing
Computer fluid dynamics
Polyurethane
Photocuring
Funding
This work was financially supported by the National Key R&D Program of China (Grant no. 2022YFB4600600), the National Natural Science Foundation of China (Grant no. 31972915 and no. 32271181), the Guangdong Basic and Applied Basic Research Foundation (Grant no. 2020B1515120001), and the Guangzhou Science and Technology Plan—Municipal School Joint Funding Basic and Applied Research Project (No. 202201020156).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Ohno T, Hojo K, Fujishima I. Soft obturator prosthesis for postoperative soft palate carcinoma: a clinical report. J Prosthet Dent. 2018;119(5):845-847. doi: 10.1016/j.prosdent.2017.06.024
  2. Urken ML, Roche AM, Kiplagat KJ, et al. Comprehensive approach to functional palatomaxillary reconstruction using regional and free tissue transfer: report of reconstructive and prosthodontic outcomes of 140 patients. Head Neck. 2018;40(8):1639-1666. doi: 10.1002/hed.25134
  3. Mangia LRL, Tramontina B, Tonocchi R, Polanski JF. Correlation between type of clefting and the incidence of otitis media among children with lip and/or palate clefts. ORL J Otorhinolaryngol Relat Spec. 2019;81(5-6):338-347. doi: 10.1159/000503237
  4. Instrum R, Dzioba A, Dworschak-Stokan A, Husein M. Surgical interventions in velopharyngeal dysfunction: comparative perceptual speech and nasometric outcomes for three techniques. J Otolaryngol Head Neck Surg. 2022;51(1)3. doi: 10.1186/s40463-021-00548-4
  5. Bhuskute A, Skirko JR, Roth C, Bayoumi A, Durbin-Johnson B, Tollefson TT. Association of velopharyngeal insufficiency with quality of life and patient-reported outcomes after speech surgery. JAMA Facial Plast Surg. 2017;19(5):406-412. doi: 10.1001/jamafacial.2017.0639
  6. Winters R, Carter J, Guarisco JL. A novel technique for superior-based pharyngeal flaps: 10-year results with formal speech outcomes assessment. Am J Otolaryngol. 2018;39(2):142-145. doi: 10.1016/j.amjoto.2017.12.007
  7. Massarelli O, Vaira LA, Gobbi R, Biglio A, Orabona GD, De Riu G. Soft palate functional reconstruction with buccinator myomucosal island flaps. Int J Oral Maxillofac Surg. 2018;47(3):316-323. doi: 10.1016/j.ijom.2017.11.012
  8. Brown JS, Shaw RJ. Reconstruction of the maxilla and midface: introducing a new classification. Lancet Oncol. 2010;11(10):1001-1008. doi: 10.1016/s1470-2045(10)70113-3
  9. Elbashti M, Hattori M, Sumita Y, Aswehlee A, Yoshi S, Taniguchi H. Creating a digitized database of maxillofacial prosthesis (obturators): a pilot study. J Adv Prosthodont. 2016;8(3):219-223. doi: 10.4047/jap.2016.8.3.219
  10. Salazar-Gamarra R, Seelaus R, da Silva JVL, da Silva AM, Dib LL. Monoscopic photogrammetry to obtain 3D models by a mobile device: a method for making facial prosthesis. J Otolaryngol Head Neck Surg. 2016;4533. doi: 10.1186/s40463-016-0145-3
  11. Mohammed MI, Cadd B, Peart G, Gibson I. Augmented patient-specific facial prosthesis production using medical imaging modelling and 3D printing technologies for improved patient outcomes. Virtual Phys Prototyp. 2018;13(3):164-176.
  12. Tordiglione L, De Franco M, Bosetti G. The prosthetic workflow in the digital era. Int J Dent. 2016;2016:9823025. doi: 10.1155/2016/9823025
  13. Ntovas P, Spanopoulou M, Martin W, Sykaras N. Superimposition of intraoral scans of an edentulous arch with implants and implant-supported provisional restoration, implementing a novel implant prosthetic scan body. J Prosthodont Res. 2023;67(3):475-480. doi: 10.2186/jpr.JPR_D_21_00328
  14. Runte C, Dirksen D, Deleré H, et al. Optical data acquisition for computer-assisted design of facial prosthesis. Int J Prosthodont. 2002;15(2):129-132.
  15. Chen X, Wang F, Sun FF, Zhang L, Wu GF. Digital fabrication of an adult speech aid prosthesis by using a 3-dimensionally printed polyetheretherketone framework. J Prosthet Dent. 2022;127(2):358-361. doi: 10.1016/j.prosdent.2020.08.037  
  16. Berger T, Kreibich M. Computational fluid dynamics: a promising diagnostic tool. Eur J Cardiothorac Surg. 2021;60(2):392-392. doi: 10.1093/ejcts/ezab247
  17. Senaratna CV, Perret JL, Lodge CJ, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70-81. doi: 10.1016/j.smrv.2016.07.002
  18. Reid L. An introduction to biomedical computational fluid dynamics. Adv Exp Med Biol. 2021;1334:205-222. doi: 10.1007/978-3-030-76951-2_10
  19. Tena AF, Clara PC. Use of computational fluid dynamics in respiratory medicine. Arch Bronconeumol. 2015;51(6):293-298. doi: 10.1016/j.arbres.2014.09.005
  20. Dong JT, Zou WK, Chen F, Zhao Q. A soft shape memory reversible dry adhesive. Chin J Polym Sci. 2018;36(8):953-959. doi: 10.1007/s10118-018-2119-6
  21. Cazacu M, Racles C, Vlad A, Antohe M, Forna N. Silicone-based composite for relining of removable dental prosthesis. J Compos Mater. 2009;43(19):2045-2055. doi: 10.1177/0021998309340447
  22. Neu TR, Vandermei HC, Busscher HJ, Dijk F, Verkerke GJ. Biodeterioration of medical-grade silicone-rubber used for voice prosthesis - a SEM study. Biomaterials. 1993;14(6): 459-464. doi: 10.1016/0142-9612(93)90149-v
  23. Salloum MG, Ganji KK, Aldajani AM, Sonune S. Colour stability of two commercially available maxillofacial prosthetic elastomers after outdoor weathering in Al Jouf province. Materials. 2023;16(12):4331. doi: 10.3390/ma16124331
  24. Aziz T, Waters M, Jagger R. Surface modification of an experimental silicone rubber maxillofacial material to improve wettability. J Dent. 2003;31(3):213-216. doi: 10.1016/s03005712(02)00131-8
  25. Singer L, Habib SI, Shalaby HE, Saniour SH, Bourauel C. Digital assessment of properties of the three different generations of dental elastomeric impression materials. Bmc Oral Health. 2022;22(1):379. doi: 10.1186/s12903-022-02419-4
  26. Haleem A, Javaid M. 3D scanning applications in medical field: a literature-based review. Clin Epidemiol Glob Health. 2019;7(2):199-210. doi: 10.1016/j.cegh.2018.05.006
  27. Pucci JU, Christophe BR, Sisti JA, Connolly ES. Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnol Adv. 2017;35(5):21-529. doi: 10.1016/j.biotechadv.2017.05.007
  28. Bonatto LD, Goiato MC, da Silva EVF, et al. Biocompatibility of primers and an adhesive used for implant-retained maxillofacial prosthesis: an in vitro analysis. J Prosthet Dent. 2017;117(6):799-805. doi: 10.1016/j.prosdent.2016.09.002
  29. Guiotti AM, Cunha BG, Paulini MB, et al. Antimicrobial activity of conventional and plant-extract disinfectant solutions on microbial biofilms on a maxillofacial polymer surface. J Prosthet Dent. 2016;116(1):136-143. doi: 10.1016/j.prosdent.2015.12.014
  30. Guiotti AM, Goiato MC, dos Santos DM, et al. Comparison of conventional and plant-extract disinfectant solutions on the hardness and color stability of a maxillofacial elastomer after artificial aging. J Prosthet Dent. 2016;115(4):501-508. doi: 10.1016/j.prosdent.2015.09.009
  31. Bankoglu Güngör M, Karakoca Nemli S, Inal CB, Bagkur M, Dilsiz N. Effect of plasma treatment on the peel bond strength between maxillofacial silicones and resins. Dent Mater J. 2020;39(2):242-250. doi: 10.4012/dmj.2018-259
  32. Gong H, Zhao Y, Chen Q, et al. 3D bio-printing of photocrosslinkable anatomically tooth shaped scaffolds for alveolar ridge preservation after tooth extraction. 10.1039/ D2TB01229D. J Mater Chem B. 2022;10(41):8502-8513. doi: 10.1039/D2TB01229D 
  33. Zhao YY, Zhong J, Wang YL, et al. Photocurable and elastic polyurethane based on polyether glycol with adjustable hardness for 3D printing customized flatfoot orthosis. Biomater Sci. 2023;11(5):1692-1703. doi: 10.1039/d2bm01538b
  34. Hingorani H, Zhang Y-F, Zhang B, Serjouei A, Ge Q. Modified commercial UV curable elastomers for passive 4D printing. Int J Smart Nano Mater. 2019;10(3):225-236. doi: 10.1080/19475411.2019.1591540
  35. Zhang Z, Xie J, Shan NL, et al. Discovery of the specific inhibitory effect of thiamphenicol on LPS-induced acute lung injury (ALI) in mice through virtual screening and biological evaluation. J Mol Struct. 2022;1257132638. doi: 10.1016/j.molstruc.2022.132638
  36. Jiang SK, Wang J, Zhu Z, et al. The synthesis of nano bio- MOF-1 with a systematic evaluation on the biosafety and biocompatibility. Microporous Mesoporous Mater. 2022;334111773. doi: 10.1016/j.micromeso.2022.111773
  37. Liu Y, Long ZW, Liu W. A semi-empirical mesh strategy for CFD simulation of indoor airflow. Indoor Built Environ. 2022;31(9):2240-2256. doi: 10.1177/1420326x221089825
  38. Lamata P, Roy I, Blazevic B, et al. Quality metrics for high order meshes: analysis of the mechanical simulation of the heart beat. IEEE Trans Med Imaging. 2013;32(1):130-138. doi: 10.1109/tmi.2012.2231094
  39. Wen XP, Gao S, Feng JT, Li S, Gao R, Zhang GJ. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping. J Cardiothorac Surg. 2018;134. doi: 10.1186/s13019-017-0692-3
  40. Evins AI, Dutton J, Imam SS, et al. On-demand intraoperative 3-dimensional printing of custom cranioplastic prosthesis. Oper Neurosurg (Hagerstown). 2018;15(3):341-348. doi: 10.1093/ons/opx280
  41. Zhao JZ, Li QZ, Jin FG, He NY. Digital light processing 3D printing Kevlar composites based on dual curing resin. Addit Manuf. 2021;41101962. doi: 10.1016/j.addma.2021.101962
  42. Zhang B, Li HG, Cheng JX, et al. Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printing. Adv Mater. 2021;33(27):2101298. doi: 10.1002/adma.202101298
  43. Guerra AJ, Lammel-Lindemann J, Katko A, et al. Optimization of photocrosslinkable resin components and 3D printing process parameters. Acta Biomater. 2019;97: 154-161. doi: 10.1016/j.actbio.2019.07.045
  44. Gao F, Cao JC, Wang QB, et al. Properties of UV-cured self-healing coatings prepared with PCDL-based polyurethane containing multiple H-bonds. Prog Org Coat. 2017;113: 160-167. doi: 10.1016/j.porgcoat.2017.09.011
  45. Wang WH, Peng RC, Gao YJ, Nie J, Sun F. Synthesis and property of an organosilicon polyurethane acrylate prepolymer containing disulfide bonds for photopolymerization. Macromol Chem Phys. 2023;224(9). doi: 10.1002/macp.202200458
  46. Yang XF, Liu J, Wu YF, et al. Fabrication of UV-curable solvent-free epoxy modified silicone resin coating with high transparency and low volume shrinkage. Prog Org Coat. 2019;129:96-100. doi: 10.1016/j.porgcoat.2019.01.005
  47. Li C, Potter K, Wisnom MR, Stringer G. In-situ measurement of chemical shrinkage of MY750 epoxy resin by a novel gravimetric method. Compos Sci Technol. 2004;64(1): 55-64. doi: 10.1016/s0266-3538(03)00199-4
  48. Zhang W, Li JX, Tang RC, Zhai AD. Hydrophilic and antibacterial surface functionalization of polyamide fabric by coating with polylysine biomolecule. Prog Org Coat. 2020;142105571. doi: 10.1016/j.porgcoat.2020.105571 
  49. Lou L, Qiu YP, Ji F, Zhu XH. The influence of surface hydrophilicity on the adhesion properties of wet fabrics or films to water. Text Res J. 2018;88(1):108-117. doi: 10.1177/0040517516685276
  50. Khalaf S, Ariffin Z, Husein A, Reza F. Surface coating of gypsum-based molds for maxillofacial prosthetic silicone elastomeric material: the surface topography. J Prosthodont. 2015;24(5):419-423. doi: 10.1111/jopr.12213
  51. Wu JJ, Rountree CM, Kare SS, Ramkumar PK, Finan JD, Troy JB. Progress on designing a chemical retinal prosthesis. Front Cell Neurosci. 2022;16898865. doi: 10.3389/fncel.2022.898865
  52. Zhang CG, Chen H, Fan HQ, et al. Radial head replacement using personalized 3D printed porous tantalum prosthesis. J Mater Res Technol. 2022;20:3705-3713. doi: 10.1016/j.jmrt.2022.08.027
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing