AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2326
Cite this article
38
Download
380
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Horsetail-inspired lattice structures for bone scaffold applications

Seng Leong Adrian Tan1 Miao Zhao2* Zhendong Li3 Zhonggang Wang3 Xinwei Li4* Wei Zhai1
Show Less
1 Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore
2 School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
3 School of Traffic & Transportation Engineering, Central South University, Changsha, Hunan, China
4 Faculty of Science, Agriculture, & Engineering, Newcastle University, Singapore
Submitted: 28 November 2023 | Accepted: 6 February 2024 | Published: 13 March 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

A well-design bone scaffold is critical for facilitating post in vivo implantation recovery. Key factors, such as elastic moduli matching to alleviate stress shielding, anisotropic characteristics, and sufficient porosity for cell ingrowth, shape the design consideration for bone scaffolds. Herein, we propose a novel body-centered cubic (BCC) lattice with modified horsetail inspired cross-section strut members as the building block for synthetic bone scaffold application. We demonstrated that geometrical parameters can be varied to attain expected desirable mechanical properties. We also successfully matched the performance of the physical compression tests of Ti-6Al-4V-based samples manufactured using selective laser melting to that of the simulation environment to facilitate design. Through our work, we created Ti-6Al-4V-based lattices, which match the mechanical performance of native bone in terms of elastic moduli and yield strength. Biologically, the lattices provide in-strut pore dimensions that facilitate bone cell ingrowth as well as yield point that is beyond the strain required to promote secondary healing. The good energy absorption capability of our lattices also adds resilience to accidental damage when applied for use in bone scaffold design. We also discovered that the isotropy characteristic is decoupled from the outer radius of the designed lattice; this avoids convolution that would otherwise increase design difficulties. Through this novel design, the tuning of the mechanical properties to attain the key considerations with geometrical variations is made possible.

 

Keywords
Lattice tuning
Bone scaffold manufacturing
Selective laser melting
Nature-inspired structure
Horsetail
Funding
This research was supported by the MOE AcRF Tier 1 Grant (Project No. A-0009123-01-00).
References
  1. Corrado A, Cici D, Rotondo C, Maruotti N, Cantatore FP. Molecular basis of bone aging. Int J Mol Sci. 2020;21(10):3679. doi: 10.3390/ijms21103679
  2. Wu A-M, Bisignano C, James SL, et al. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021;2(9):e580-e592. doi: 10.1016/s2666-7568(21)00172-0
  3. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363-408. doi: 10.1615/critrevbiomedeng.v40.i5.10
  4. Dec P, Modrzejewski A, Pawlik A. Existing and novel biomaterials for bone tissue engineering. Int J Mol Sci. 2022;24(1):529. doi: 10.3390/ijms24010529
  5. Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127-141. doi: 10.1016/j.biomaterials.2016.01.012
  6. Lacroix D. Biomechanical aspects of bone repair. In: Josep AP, Serena MB, Damien L, Antonio M, eds. Bone Repair Biomaterials. Sawston, Cambridge: Woodhead Publishing; 2009:106-118. doi: 10.1533/9781845696610.1.106
  7. Jiawei F, Bo L, Zhiwei L, Jianzhong F. Isotropic octet-truss lattice structure design and anisotropy control strategies for implant application. Mater Des. 2021;203:109595. doi: 10.1016/j.matdes.2021.109595
  8. Jianfeng K, Enchun D, Dichen L, Shuangpeng D, Chen Z, Ling W. Anisotropy characteristics of microstructures for bone substitutes and porous implants with application of additive manufacturing in orthopaedic. Mater Des. 2020;191:108608. doi: 10.1016/j.matdes.2020.108608
  9. Marie-Michèle G, Sofiane B, Sofiane G, Rémi D, Pierre C, Pierre W. Additive manufacturing of biomaterials for bone tissue engineering – a critical review of the state of the art and new concepts. Prog Mater Sci. 2022;130:100963. doi: 10.1016/j.pmatsci.2022.100963
  10. Zhang X, Leary M, Tang H, Song T, Qian M. Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: current status and outstanding challenges. Curr Opin Solid State Mater Sci. 2018;22(3):75-99. doi: 10.1016/j.cossms.2018.05.002
  11. Bobbert F, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53:572-584. doi: 10.1016/j.actbio.2017.02.024
  12. Alabort E, Barba D, Reed RC. Design of metallic bone by additive manufacturing. Scr Mater. 2019;164:110-114. doi: 10.1016/j.scriptamat.2019.01.022
  13. Chernyshikhin SV, Mahato B, Shiverskii AV, et al. In-plane measurements and computational fluid dynamics prediction of permeability for biocompatible NiTi gyroid scaffolds fabricated via laser powder bed fusion. Int J Bioprint. 2024;10(1):0119. doi: 10.36922/ijb.0119
  14. Zhu H, Lin Z, Luan Q, et al. Angiogenesis-promoting composite TPMS bone tissue engineering scaffold for mandibular defect regeneration. Int J Bioprint. 2024;10(1):0153. doi: 10.36922/ijb.0153
  15. Noroozi R, Tatar F, Zolfagharian A, et al. Additively manufactured multi-morphology bone-like porous scaffolds: experiments and micro-computed tomography-based finite element modeling approaches. Int J Bioprint. 2022;8(3). doi: 10.18063/ijb.v8i3.556
  16. 16. Lijun X, Xiao X, Genzhu F, Shi L, Weidong S, Zhaoxiu J. Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures. Int J Mech Sci. 2022;219:107093. doi: 10.1016/j.ijmecsci.2022.107093  
  17. White BC, Garland A, Alberdi R, Boyce BL. Interpenetrating lattices with enhanced mechanical functionality. Addit Manuf. 2021;38. doi: 10.1016/j.addma.2020.101741
  18. Zhao M, Li X, Zhang DZ, Zhai W. TPMS-based interpenetrating lattice structures: design, mechanical properties and multiscale optimization. Int J Mech Sci. 2023;244. doi: 10.1016/j.ijmecsci.2022.108092
  19. Li X, Yu X, Chua JW, Lee HP, Ding J, Zhai W. Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption. Small. 2021;17(24):2100336. doi: 10.1002/smll.202100336
  20. Fratzl P. Biomimetic materials research: what can we really learn from nature’s structural materials? J R Soc Interface. 2007;4(15):637-642. doi: 10.1098/rsif.2007.0218
  21. Siddique SH, Hazell PJ, Wang H, Escobedo JP, Ameri AAH. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption – a review. Addit Manuf. 2022;58. doi: 10.1016/j.addma.2022.103051
  22. Li Z, Yang H, Li P, Liu J, Wang J, Xu Y. Fruit biomechanics based on anatomy: a review. Int Agrophys. 2013;27(1): 97-106. doi: 10.2478/v10247-012-0073-z
  23. Tancogne-Dejean T, Mohr D. Elastically-isotropic truss lattice materials of reduced plastic anisotropy. Int J Solids Struct. 2018;138:24-39. doi: 10.1016/j.ijsolstr.2017.12.025
  24. Li X, Tan YH, Wang P, Su X, Willy HJ, Herng TS, et al. Metallic microlattice and epoxy interpenetrating phase composites: experimental and simulation studies on superior mechanical properties and their mechanisms. Compos Part A Appl Sci Manuf. 2020;135:105934. doi: 10.1016/j.compositesa.2020.105934
  25. Yu T, Li X, Zhao M, et al. Truss and plate hybrid lattice structures: simulation and experimental investigations of isotropy, large-strain deformation, and mechanisms. Mater Today Commun. 2023:106344. doi: 10.1016/j.mtcomm.2023.106344
  26. Ferng Y-M, Lin K-Y. Investigating effects of BCC and FCC arrangements on flow and heat transfer characteristics in pebbles through CFD methodology. Nucl Eng Des. 2013;258:66-75. doi: 10.1016/j.nucengdes.2013.02.009
  27. Zhao M, Li X, Zhang DZ, Zhai W. Design, mechanical properties and optimization of lattice structures with hollow prismatic struts. Int J Mech Sci. 2023;238. doi: 10.1016/j.ijmecsci.2022.107842
  28. Zhou J, Xiong S, Liu M, et al. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol. 2023;11. doi: 10.3389/fbioe.2023.1127162
  29. Kolken HMA, Callens S, Leeflang M, Mirzaali MJ, Zadpoor A. Merging strut-based and minimal surface meta-biomaterials: decoupling surface area from mechanical properties. Addit Manuf. 2022;52:102684. doi: 10.1016/j.addma.2022.102684
  30. Li X, Zhao M, Yu X, et al. Multifunctional and customizable lattice structures for simultaneous sound insulation and structural applications. Mater Des. 2023:112354. doi: 10.1016/j.matdes.2023.112354
  31. Li J, Qin L, Yang K, et al. Materials evolution of bone plates for internal fixation of bone fractures: a review. J Mater Sci Technol. 2020;36:190-208. doi: 10.1016/j.jmst.2019.07.024
  32. Falkowska A, Seweryn A, Skrodzki M. Strength properties of a porous titanium alloy Ti6Al4V with diamond structure obtained by laser power bed fusion (LPBF). Materials. 2020;13(22):5138. doi: 10.3390/ma13225138
  33. Lempert GD, Tsour A. Reduction of static friction between surfaces of Ti-6Al-4V and between surfaces of Ti-6Al-4V and Al-7075. Surf Coat Technol. 1992;52(3):291-295. doi: 10.1016/0257-8972(92)90029-A
  34. Chai G, Manikandan P, Li X. A numerical study on high velocity impact behavior of titanium based fiber metal laminates. J Compos Sci. 2018;2(4):62. doi: 10.3390/jcs2040062 
  35. Goldstein SA. The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech. 1987;20(11-12):1055-1061. doi: 10.1016/0021-9290(87)90023-6
  36. Jae Young R, Richard BA, Charles HT. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993;26(2): 111-119. doi: 10.1016/0021-9290(93)90042-D
  37. Murphy CM, O’Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr. 2010;4(3):377-381. doi: 10.4161/cam.4.3.11747
  38. Ashby MF. The properties of foams and lattices. Phil Trans R Soc. 2006;364(1838):15-30. doi: 10.1098/rsta.2005.1678
  39. Deshpande VS, Ashby MF, Fleck NA. Foam topology: bending versus stretching dominated architectures. Acta Mater. 2001;49(6):1035-1040. doi: 10.1016/S1359-6454(00)00379-7
  40. Perez RA, Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C. 2016;61:922-939. doi: 10.1016/j.msec.2015.12.087
  41. Foster AL, Moriarty TF, Zalavras C, et al. The influence of biomechanical stability on bone healing and fracture-related infection: the legacy of Stephan Perren. Injury. 2021;52(1):43-52. doi: 10.1016/j.injury.2020.06.044
Conflict of interest
The authors declare no conflicts of interest
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing