PBF-LB fabrication of microgrooves for induction of osteogenic differentiation of human mesenchymal stem cells

Stem cell differentiation has important implications for biomedical device design and tissue engineering. Recently, inherent material properties, including surface chemistry, stiffness, and topography, have been found to influence stem cell fate. Among these, surface topography is a key regulator of stem cells in contact with materials. The most important aspect of ideal bone tissue engineering is to control the organization of the bone extracellular matrix with fully differentiated osteoblasts. Here, we found that laser powder bed fusion (PBF-LB)-fabricated grooved surface inspired by the microstructure of bone, which induced human mesenchymal stem cell (hMSC) differentiation into the osteogenic lineage without any differentiation supplements. The periodic grooved structure was fabricated by PBF-LB which induced cell elongation facilitated by cytoskeletal tension along the grooves. This resulted in the upregulation of osteogenesis via Runx2 expression. The aligned hMSCs successfully differentiated into osteoblasts and further organized the bone mimetic-oriented extracellular matrix microstructure. Our results indicate that metal additive manufacturing technology has a great advantage in controlling stem cell fate into the osteogenic lineage, and in the construction of bone-mimetic microstructural organization. Our findings on material-induced stem cell differentiation under standard cell culture conditions open new avenues for the development of medical devices that realize the desired tissue regeneration mediated by regulated stem cell functions.
- Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4(1):22. doi: 10.1038/s41536-019-0083-6
- Grotheer V, Skrynecki N, Oezel L, Windolf J, Grassmann J. Osteogenic differentiation of human mesenchymal stromal cells and fibroblasts differs depending on tissue origin and replicative senescence. Sci Rep. 2021;11(1):11968. doi: 10.1038/s41598-021-91501-y
- Mazzoni E, Mazziotta C, Iaquinta MR, et al. Enhanced osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by a hybrid hydroxylapatite/ collagen scaffold. Front Cell Dev Biol. 2021;8:610570. doi: 10.3389/fcell.2020.610570
- Murphy W, McDevitt T, Engler AJ. Materials as stem cell regulators. Nat Mater. 2014;13(6):547-557. doi: 10.1038/nmat3937
- Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4): 677-689. doi: 10.1016/j.cell.2006.06.044
- Park JS, Chu JS, Tsou AD, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF‐β. Biomaterials. 2011;32(16):3921-3930. doi: 10.1016/j.biomaterials.2011.02.019
- McMurray RJ, Gadegaard N, Tsimbouri PM, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011;10(8):637-644. doi: 10.1038/nmat3058
- Dalby MJ, Gadegaard N, Tare T, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997-1003. doi: 10.1038/nmat2013
- Barradas AM, Fernandes HA, Groen N, et al. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials. 2012;33(11):3205-3215. doi: 10.1016/j.biomaterials.2012.01.020
- Yang F, Yong D, Tu J, Zheng Q, Cai L, Wang L. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells. 2011;29(6):981-991. doi: 10.1002/stem.646
- Jayasree A, Raveendran NT, Guo T, Ivanovski S, Gulati K. Electrochemically nano-engineered titanium: Influence of dual micro-nanotopography of anisotropic nanopores on bioactivity and antimicrobial activity. Mater Today Adv. 2022;15:100256. doi: 10.1016/j.mtadv.2022.100256
- Luo J, Walker M, Xiao Y, Donnelly H, Dalby MJ, Salmeron- Sanchez M. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix – A review. Bioact Mater. 2022. 15:145-159. doi: 10.1016/j.bioactmat.2021.11.024
- Matsugaki A, Aramoto G, Ninomiya T, et al. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure. Biomaterials. 2015. 37:134-143. doi: 10.1016/j.biomaterials.2014.10.025
- Frazier WE. Metal additive manufacturing: A review. J Mater Eng Perform. 2014;23(6):1917-1928. doi: 10.1007/s11665-014-0958-z
- Hagihara K, Nakano T. Control of anisotropic crystallographic texture in powder bed fusion additive manufacturing of metals and ceramics - A review. J Metals. 2022.74(4):1760-1773. doi: 10.1007/s11837-021-04966-7
- Matsugaki A, Aramoto G, Nakano T. The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion. Biomaterials. 2012;33(30):7327-7335. doi: 10.1016/j.biomaterials.2012.06.022
- Matsugaki A, Isobe Y, Saku T, Nakano T. Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates. J Biomed Mater Res A. 2015;103(2):489-499. doi: 10.1002/jbm.a.35189
- Matsugaki A, Fujiwara N, Nakano T. Continuous cyclic stretch induces osteoblast alignment and formation of anisotropic collagen fiber matrix. Acta Biomater. 2013;9(7):7227-7235. doi: 10.1016/j.actbio.2013.03.015
- Ozasa R, Matsugaki A, Matsuzaka T, Ishimoto T, Yun H-S, Nakano T. Superior alignment of human iPSC-osteoblasts associated with focal adhesion formation stimulated by oriented collagen scaffold. Int J Mol Sci. 2021;22(12):1-11. doi: 10.3390/ijms22126232
- Nakano T, Kaibara K, Ishimoto T, Tabata Y, Umakoshi Y. Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering. Bone. 2012;51(4):741-747. doi: 10.1016/j.bone.2012.07.003
- Nakano T, Kaibara K, Tabata Y, et al. Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractometer system. Bone. 2002;31(4):479-487. doi: 10.1016/s8756-3282(02)00850-5
- Ishimoto T, Nakano T, Umakoshi Y, Yamamoto M, Tabata Y. Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2. J Bone Miner Res. 2013;28(5):1170-1179. doi: 10.1002/jbmr.1825
- Nakanishi Y, Matsugaki A, Kawahara K, Ninomiya T, Sawada H, Nakano T. Unique arrangement of bone matrix orthogonal to osteoblast alignment controlled by Tspan11-mediated focal adhesion assembly. Biomaterials. 2019;209:103-110. doi: 10.1016/j.biomaterials.2019.04.016
- Ishimoto T, Kobayashi Y, Takahata M, et al. Outstanding in vivo mechanical integrity of additively manufactured spinal cages with a novel “honeycomb tree structure” design via guiding bone matrix orientation. Spine J. 2022;22(10):1742-1757. doi: 10.1016/j.spinee.2022.05.006
- Matsugaki A, Ito M, Kobayashi Y, et al. Innovative design of bone quality-targeted intervertebral spacer: Accelerated functional fusion guiding oriented collagen/apatite microstructure without autologous bone graft. Spine J. 2022;23(4):609-620. doi: 10.1016/j.spinee.2022.12.011
- Kimura Y, Matsugaki A, Sekita A, Nakano T. Alteration of osteoblast arrangement via direct attack by cancer cells: New insights into bone metastasis. Sci Rep. 2017;7(1):1-11. doi: 10.1038/srep44824
- Leclech C, Villard C. Cellular and subcellular contact guidance on microfabricated substrates. Front Bioeng Biotechnol. 2020;8:551505. doi: 10.3389/fbioe.2020.551505
- Ramirez-San Juan GR, Gardel PW, Oakes ML. Contact guidance requires spatial control of leading-edge protrusion. Mol Biol Cell. 2017;28(8):1043-1053.
- Bade ND, Kamien RD, Assoian RK, et al. Curvature and Rho activation differentially control the alignment of cells and stress fibers. Sci Adv. 2017;3(9):e1700150. doi: 10.1126/sciadv.1700150
- Reynolds MJ, Hachicho C, Carl AG, Gong R, Alushin GM. Bending forces and nucleotide state jointly regulate F-actin structure. Nature. 2022;611(7935):380-386. doi: 10.1038/s41586-022-05366-w
- Steward AJ, Kelly DJ. Mechanical regulation of mesenchymal stem cell differentiation. J Anat. 2015;227(6):717-731. doi: 10.1111/joa.12243
- McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483-495. doi: 10.1016/s1534-5807(04)00075-9
- Pajerowski JD, Dahl KN, Zhong FL, et al. Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci USA. 2007;104(40):15619-15624. doi: 10.1073/pnas.0702576104
- Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104. doi: 10.1126/science.1240104
- Gokcekaya O, Ishimoto T, Nishikawa Y, et al. Novel single crystalline-like non-equiatomic TiZrHfNbTaMo bio-high entropy alloy (BioHEA) developed by laser powder bed fusion. Mater Res Lett. 2023;11(4):274-280. doi: 10.1080/21663831.2022.2147406
- Warnke PH, Douglas T, Wollny P, et al. Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng C. 2009;15(2):115-124. doi: 10.1089/ten.tec.2008.0288
- Hrabe NW, Heinl P, Bordia RK, Körner Carolin, Fernandes RJ. Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting. Connect Tissue Res. 2013;54(6):351-360. doi: 10.3109/03008207.2013.822864
- Wysocki B, Idaszek J, Zdunek J, et al. The influence of selective laser melting (SLM) process parameters on in-vitro cell response. Int J Mol Sci. 2018;19(6):1619. doi: 10.3390/ijms19061619
- Weißmann V, Drescher P, Seitz H, et al. Effects of build orientation on surface morphology and bone cell activity of additively manufactured Ti6Al4V specimens. Materials. 2018;11(6):915. doi: 10.3390/ma11060915
- Papaefstathiou S, Larochette N, Liste RMV, et al. Three-dimensional printing of biomimetic titanium mimicking trabecular bone induces human mesenchymal stem cell proliferation: An in-vitro analysis. Spine. 2022;47(14):1027. doi: 10.1097/brs.0000000000004317
- Shen H, Liao C, Zhou J, Zhao K. Two-step laser based surface treatments of laser metal deposition manufactured Ti6Al4V components. J Manuf Process. 2021;64: 239-252. doi: 10.1016/j.jmapro.2021.01.028
- Wang C, Hu H, Li Z, et al. Enhanced osseointegration of titanium alloy implants with laser microgrooved surfaces and graphene oxide coating. ACS Appl Mater Interfaces. 2019;11(43):39470-39483. doi: 10.1021/acsami.9b12733
- Ninomiya JT, Struve JA, Krolikowski J, Hawkins Michael, Weihrauch D. Porous ongrowth surfaces alter osteoblast maturation and mineralization. J Biomed Mater Res A. 2015;103(1):276-281. doi: 10.1002/jbm.a.35140