AccScience Publishing / IJB / Volume 12 / Issue 1 / DOI: 10.36922/IJB025490505
RESEARCH ARTICLE

3D-printed nano-hydroxyapatite/polylactic acid scaffold with simvastatin-loaded hydroxyethyl methacrylate/sulfobetaine methacrylate hydrogel for accelerated bone repair

Yang Qu1,2† Ya’nan Wang3† Weiqing Kong4 Xiaofan Du1 Jianyi Li1 Yukun Du1 Guanghui Gu1* Yongming Xi1*
Show Less
1 Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
2 Key Laboratory of Trauma and Neural Regeneration, Ministry of Education and National Center for Trauma Medicine, Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
3 Department of Nuclear Medicine, Xuzhou Central Hospital, Southeast University, Xuzhou, Jiangsu, China
4 Department of Orthopedics, Xuzhou Central Hospital, Southeast University, Xuzhou, Jiangsu, China
†These authors contributed equally to this work.
IJB 2026, 12(1), 656–671; https://doi.org/10.36922/IJB025490505
Received: 2 December 2025 | Accepted: 1 January 2026 | Published online: 14 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bone defects resulting from trauma, infection, or tumor resection often exceed the self-healing capacity of bone tissue, requiring bioactive and mechanically robust repair materials. In this study, a composite scaffold was developed via in situ polymerization of a hydroxyethyl methacrylate/sulfobetaine methacrylate (HMSM) hydrogel with a three-dimensional-printed nano-hydroxyapatite/polylactic acid (NP) gradient scaffold to achieve controlled simvastatin (SIM) delivery and enhanced osteogenesis. The HMSM hydrogel served as a hydrophilic and biocompatible matrix, while the NP scaffold provided mechanical strength and structural support. SIM was incorporated into the hydrogel–scaffold composite (SIM@HMSM/NP) to establish a sustained drug-release system. The composite exhibited a smooth microstructure, uniform pore distribution, and a gradient architecture mimicking native bone. Mechanical testing demonstrated improved compressive strength compared with individual components, and in vitro studies revealed stable SIM release over 24 days with a degradation profile compatible with bone regeneration. The SIM@HMSM/ NP demonstrated excellent cytocompatibility, promoting the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, and significantly enhanced bone formation in a rat calvarial defect model. These findings suggest that the SIM@HMSM/NP scaffold provides a promising strategy for sustained drug delivery and accelerated bone regeneration in critical-sized bone defects.  

 

Graphical abstract
Keywords
Bone tissue engineering
Hydrogel–scaffold composite
Hydroxyethyl methacrylate/sulfobetaine methacrylate hydrogel
Nano-hydroxyapatite/polylactic acid scaffold
Simvastatin
Three-dimensional printing
Funding
This study was supported by the Taishan Scholar Project of Shandong Province (No. tstp20250511).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Xu JL, Bao G, Jia B, et al. An adaptive biodegradable zinc alloy with bidirectional regulation of bone homeostasis for treating fractures and aged bone defects. Bioact Mater. 2024;38:207-224. doi: 10.1016/j.bioactmat.2024.04.027
  2. Kim J, Park S, Park JY, et al. Dual-phase blocks for regeneration of critical-sized bone defects. Nano Today. 2024;54:102120. doi: 10.1016/j.nantod.2023.102120
  3. Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8(4):e1801106. doi: 10.1002/adhm.201801106
  4. Yuan B, Cheng Q, Zhao R, et al. Comparison of osteointegration property between PEKK and PEEK: effects of surface structure and chemistry. Biomaterials. 2018;170:116-126. doi: 10.1016/j.biomaterials.2018.04.014
  5. Wang JC, Dou ZL, Xia L, Huang N. Metal-organic complex coating for enhanced corrosion control and biocompatibility on biodegradable magnesium alloy for orthopaedic implants. J Mat Chem B. 2024;12(23):5661-5677. doi: 10.1039/d4tb00347k
  6. Hama R, Ulziibayar A, Reinhardt JW, Watanabe T, Kelly J, Shinoka T. Recent developments in biopolymer-based hydrogels for tissue engineering applications. Biomolecules. 2023;13(2):280. doi: 10.3390/biom13020280
  7. Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6(1):426. doi: 10.1038/s41392-021-00830-x
  8. Huang QT, Zou YJ, Arno MC, et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev. 2017;46(20):6255-6275. doi: 10.1039/c6cs00052e
  9. Gu GH, Cui ZC, Du XF, et al. Recent advances in biomacromolecule-reinforced 2D material (2DM) hydrogels: from interactions, synthesis, and functionalization to biomedical applications. Adv Funct Mater. 2024;34(48):8367. doi: 10.1002/adfm.202408367
  10. Tzoumani I, Iatridi Z, Fidelli A, Krassa P, Kallitsis J, Bokias G. Room-temperature self-healable blends of waterborne polyurethanes with 2-hydroxyethyl methacrylate-based polymers. Int J Mol Sci. 2023;24(3):2575. doi: 10.3390/ijms24032575
  11. He X, He S, Xiang G, et al. Precise lubrication and protection of cartilage damage by targeting hydrogel microsphere. Adv Mater. 2024;36(40):2405943. doi: 10.1002/adma.202405943
  12. Rodzen K, O’Donnell E, Hasson F, et al. Advanced 3D printing of polyetherketoneketone hydroxyapatite composites via fused filament fabrication with increased interlayer connection. Materials (Basel). 2024;17(13):3161. doi: 10.3390/ma17133161
  13. Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338(6109):92-926. doi: 10.1126/science.1226340
  14. Shafiee A, Atala A. Printing technologies for medical applications. Trends Mol Med. 2016;22(3):254-265. doi: 10.1016/j.molmed.2016.01.003
  15. Li JY, Li KK, Du YK, et al. Dual-nozzle 3D printed nano-hydroxyapatite scaffold loaded with vancomycin sustained-release microspheres for enhancing bone regeneration. Int J Nanomedicine. 2023;18:307-322. doi: 10.2147/IJN.S394366
  16. Rajabi M, McConnell M, Cabral J, Ali MA. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr Polym. 2021;260:117768. doi: 10.1016/j.carbpol.2021.117768
  17. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296-332. doi: 10.1016/j.addr.2018.07.004
  18. Mandrycky C, Wang ZJ, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016; 34(4):422-434. doi: 10.1016/j.biotechadv.2015.12.011
  19. Anada T, Pan CC, Stahl AM, et al. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int J Mol Sci. 2019;20(5):1096. doi: 10.3390/ijms20051096
  20. Duarte JA, de Barros ALB, Leite EA. The potential use of simvastatin for cancer treatment: a review. Biomed Pharmacother. 2021;141:111858. doi: 10.1016/j.biopha.2021.111858
  21. Yao X, Xie R, Cao Y, et al. Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnol. 2021;19(1):311. doi: 10.1186/s12951-021-01058-1
  22. Sun TT, Huang J, Zhang W, et al. Simvastatin-hydroxyapatite coatings prevent biofilm formation and improve bone formation in implant-associated infections. Bioact Mater. 2023;21:44-56. doi: 10.1016/j.bioactmat.2022.07.028
  23. Chiu KY, Huang JY, Su YH, Ou SF, Chen KK, Wang YH. A 3D-printed bioactive glass scaffold coated with sustained-release PLGA/simvastatin stimulates calvarial bone repair. Mater Des. 2024;241:112898. doi: 10.1016/j.matdes.2024.112898
  24. Dai BY, Li X, Xu JK, et al. Synergistic effects of magnesium ions and simvastatin on attenuation of high-fat diet-induced bone loss. Bioact Mater. 2021;6(8):2511-2522. doi: 10.1016/j.bioactmat.2021.01.027
  25. Chiu KY, Huang JY, Su YH, Ou SF, Chen KK, Wang YH. A 3D-printed bioactive glass scaffold coated with sustained-release PLGA/simvastatin stimulates calvarial bone repair. Mater Des. 2024;241:112898. doi: 10.1016/j.matdes.2024.112898
  26. Zhen J, Wan T, Sun G, Chen X, Zhang S. A ROS-responsive microsphere capsule encapsulated with NADPH oxidase 4 inhibitor ameliorates macrophage inflammation and ferroptosis. Heliyon. 2024;10(1):e23589. doi: 10.1016/j.heliyon.2023.e23589
  27. Liu XF, Gaihre B, Park S, et al. 3D-printed scaffolds with 2D hetero-nanostructures and immunomodulatory cytokines provide pro-healing microenvironment for enhanced bone regeneration. Bioact Mater. 2023;27:216-230. doi: 10.1016/j.bioactmat.2023.03.021
  28. Gu GH, Xu YY, He P, et al. Bioinspired composite hydrogels with osteogenic, angiogenic, and antioxidant properties for enhanced bone repair. Small Struct. 2025;6(4):2400462. doi: 10.1002/sstr.202400462
  29. Çetin D, Kahraman AS, Gümüsderelioglu M. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. J Biomater Sci Polym Ed. 2011;22(9):1157-1178. doi: 10.1163/092050610x501704
  30. Moura D, Pereira AT, Ferreira HP, et al. Poly(2-hydroxyethyl methacrylate) hydrogels containing graphene-based materials for blood-contacting applications: from soft inert to strong degradable material. Acta Biomater. 2023;164:253-268. doi: 10.1016/j.actbio.2023.04.031
  31. Kim S, Shin BH, Yang C, et al. Development of poly(HEMA-Am) Polymer hydrogel filler for soft tissue reconstruction by facile polymerization. Polymers. 2018;10(7):772. doi: 10.3390/polym10070772
  32. Gao F, Xu ZY, Liang QF, et al. Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv Funct Mater. 2018;28(13):1706644. doi: 10.1002/adfm.201706644
  33. Wang LL, Chen X, Wang XY, et al. Bio-inspired mineralized collagen scaffolds with precisely controlled gradients for the treatment of severe osteoarthritis in a male rabbit model. Int J Biol Macromol. 2025;300:139843. doi: 10.1016/j.ijbiomac.2025.139843
  34. Pathmanapan S, Periyathambi P, Anandasadagopan SK. Fibrin hydrogel incorporated with graphene oxide functionalized nanocomposite scaffolds for bone repair — in vitro and in vivo study. Nanomed. 2020;29:102251. doi: 10.1016/j.nano.2020.102251
  35. Xue X, Hu Y, Deng YH, Su JC. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv Funct Mater. 2021;31(19):2009432. doi: 10.1002/adfm.202009432
  36. Zhou D, Yan X, Xiao L, Wang JL, Wei JC. Gold capped mesoporous bioactive glass guides bone regeneration via BMSCs recruitment and drug adaptive release. Chem Eng J. 2024;487:150546. doi: 10.1016/j.cej.2024.150546
  37. Jang HJ, Yoon JK. The role of vasculature and angiogenic strategies in bone regeneration. Biomimetics. 2024;9(2):75. doi: 10.3390/biomimetics9020075
  38. Schott NG, Friend NE, Stegemann JP. Coupling osteogenesis and vasculogenesis in engineered orthopedic tissues. Tissue Eng Part B Rev. 2021;27(3):199-214. doi: 10.1089/ten.teb.2020.0132
  39. Yu WL, Sun TW, Qi C, et al. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheresderived simvastatin sustained release system for superior bone regeneration. Sci Rep. 2017;7:44129. doi: 10.1038/srep44129
  40. Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. J Nanobiotechnol. 2023;21(1):351. doi: 10.1186/s12951-023-02115-7
  41. Pan Q, Zong Z, Li H, et al. Hydrogel design and applications for periodontitis therapy: a review. Int J Biol Macromol. 2025;284:137893. doi: 10.1016/j.ijbiomac.2024.137893

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing