AccScience Publishing / IJB / Volume 12 / Issue 1 / DOI: 10.36922/IJB025430430
REVIEW ARTICLE

Application and prospects of chitosan-based 3D-printed scaffolds in the repair of osteochondral defects

Jiahui Liang1,2† Jiyang Zou1† Yuqing He1† Jiyuan Qi1 Yihan Wang1 Zhaoyang Liu1 Weiguo Zhang1 Duo Zhang3 Xiaolin Cui3* Xing Wang2* Kang Tian1*
Show Less
1 Department of Joint and Sports Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
2 Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
3 School of Medicine, the Chinese University of Hong Kong, Shenzhen, Guangdong, China
†These authors contributed equally to this work.
IJB 2026, 12(1), 102–124; https://doi.org/10.36922/IJB025430430
Received: 20 October 2025 | Accepted: 26 November 2025 | Published online: 1 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Osteochondral defects, which involve injury to both the articular cartilage and the underlying subchondral bone, present a considerable therapeutic challenge due to cartilage’s poor intrinsic capacity for regeneration and the intricate, gradient structure of the osteochondral junction. Tissue engineering offers a promising strategy for regenerating this biphasic tissue. Chitosan has attracted significant research interest due to its favorable biocompatibility, controlled degradability, natural antibacterial activity, and structural resemblance to endogenous glycosaminoglycans. Integrating chitosan with 3D printing allows the production of scaffolds with customizable structures, porosity, and mechanical properties tailored to patient needs. Moreover, chitosan can easily be blended with various natural polymers to develop composite bioinks that improve osteogenic and chondrogenic potential, thereby enhancing the functional performance of scaffolds. This review examines research literature spanning January 2020 to October 2025. Recent advances include the development of functionalized chitosan derivatives for improved printability and crosslinking, as well as the incorporation of cells and growth factors to create bioactive, cell-laden constructs. This review provides an extensive overview of the physicochemical and biological characteristics of chitosan pertinent to osteochondral regeneration, discusses diverse 3D printing strategies utilized to construct chitosan-based composite scaffolds, and emphasizes their demonstrated potential in improving cellular responses, stimulating bone and cartilage formation, supporting biomineralization, and achieving controlled delivery of bioactive agents. Finally, we discuss current challenges, such as optimizing scaffold degradation kinetics and vascularization, and future perspectives on the clinical translation of these innovative constructs for effective osteochondral regeneration.

Graphical abstract
Keywords
3D-printed
Chitosan
Osteochondral defect
Scaffold
Funding
This work is supported by the Beijing Natural Science Foundation (L244037), National Natural Science Foundation of China (No.81601901), the Natural Science Foundation of Liaoning, China (No.2019-MS-079), the Peak Climbing Program, Dalian (No.2022DF012), and the Dalian Science and Technology Innovation Fund (No.2023JJ13SN051). Xiaolin Cui would like to acknowledge the support from The Chinese University of Hong Kong (CUHK)-Practical Biotech Joint Laboratory Fund, the University Development Fund (UDF01002532) of The CUHK, Shenzhen, the CUHK Shenzhen start-up funding (K10120220254), the Shenzhen Natural Science Foundation, the Shenzhen-Hong Kong Cooperation Zone for Technology and Innovation (HZQB-KCZYB-2020056), the Shenzhen Peacock Talent Program, the key project at central government level: The Ability Establishment of Sustainable Use for Valuable Chinese Medicine Resources (2060302), the Ministry of Science and Technology of China’s International Young Scholar Grant (QN2023032004L), and the CUHK, Shenzhen University, and Affiliated Hospital Collaboration Fund (HUUF-ZD-202305).
Conflict of interest
The author declares no conflict of interest, financial or otherwise.
References
  1. Lu J, Gao Y, Cao C, et al. 3D bioprinted scaffolds for osteochondral regeneration: advancements and applications. Mater Today Bio. 2025;32:101834. doi: 10.1016/j.mtbio.2025.101834
  2. Taghizadeh M, Taghizadeh A, Yazdi MK, et al. Chitosan-based inks for 3D printing and bioprinting. Green Chem. 2022; 24(1), 62-101. doi: 10.1039/D1GC01799C
  3. Lin X, Zhang Y, Li J, et al. Biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage in chondral and osteochondral defects. Bioact Mater. 2025;43: 510-549. doi: 10.1016/j.bioactmat.2024.10.001
  4. Zhang G, He S, He X, et al. Local Recruitment of Autologous Stem Cells via a Targeting Microgel for Precise Cartilage Repair without Surgery. Adv Mater. 2025;37(33):e2505544. doi: 10.1002/adma.202505544
  5. Zhang B, Zhang M, Jiang C, Yan W, Pan Y, Meng F. Engineered polysaccharide scaffolds for cartilage regeneration: Mechanisms, functionalization, and clinical prospects. Colloids Surf B Biointerfaces. 2025;257:115134. doi: 10.1016/j.colsurfb.2025.115134
  6. Kunze KN, Persaud S, Briano J, et al. Outcomes of Revision Cartilage Restoration Surgery for Failed Primary Treatment of Chondral or Osteochondral Defects of the Knee: A Systematic Review. Am J Sports Med. 2025;53(6): 1515-1523. doi: 10.1177/03635465241260271
  7. Nguyen MN, Vu BT, Truong DM, et al. Fabrication of 3-Dimensional-Printed Bilayered Scaffold Carboxymethyl Chitosan/Oxidized Xanthan Gum, Biphasic Calcium Phosphate for Osteochondral Regeneration. Biomater Res. 2025;29:0186. doi: 10.34133/bmr.0186
  8. Wang X, Wu S, Li R, et al. ROS-Activated Nanohydrogel Scaffolds with Multi-Factors Controlled Release for Targeted Dual-Lineage Repair of Osteochondral Defects. Adv Sci (Weinh). 2025;12(20):e2412410. doi: 10.1002/advs.202412410
  9. Koh RH, Kim J, Kim JU, et al. Bioceramic-mediated chondrocyte hypertrophy promotes calcified cartilage formation for rabbit osteochondral defect repair. Bioact Mater. 2024;40:306-317. doi: 10.1016/j.bioactmat.2024.06.018
  10. Wu Z, Yao H, Sun H, et al. Enhanced hyaline cartilage formation and continuous osteochondral regeneration via 3D-Printed heterogeneous hydrogel with multi-crosslinking inks. Mater Today Bio. 2024;26:101080. doi: 10.1016/j.mtbio.2024.101080
  11. Wu H, Chen C, Li J, et al. Engineered Magneto-Piezoelectric Nanoparticles-Enhanced Scaffolds Disrupt Biofilms and Activate Oxidative Phosphorylation in Icam1(+) Macrophages for Infectious Bone Defect Regeneration. ACS Nano. 2024;18(52):35575-35594. doi: 10.1021/acsnano.4c13562
  12. Wang Y, Zhou X, Jiang J, et al. Carboxymethyl chitosan-enhanced multi-level microstructured composite hydrogel scaffolds for bone defect repair. Carbohydr Polym. 2025;348(Pt B):122847. doi: 10.1016/j.carbpol.2024.122847
  13. Wei P, Zhou J, Xiong S, et al. Chestnut-Inspired Hollow Hydroxyapatite 3D Printing Scaffolds Accelerate Bone Regeneration by Recruiting Calcium Ions and Regulating Inflammation. ACS Appl Mater Interfaces. 2024;16(8):9768-9786. doi: 10.1021/acsami.3c17087
  14. Ngau SM, Cheah KH, Wong VL, Khiew PS, Lim SS. 3D-printed poly(ethylene) glycol diacrylate (PEGDA)- chitosan-nanohydroxyapatite scaffolds: Structural characterization and cellular response. Int J Biol Macromol. 2025;296:139652. doi: 10.1016/j.ijbiomac.2025.139652
  15. Hu X, Man Y, Li W, et al. 3D Bio-Printing of CS/Gel/HA/ Gr Hybrid Osteochondral Scaffolds. Polymers (Basel). 2019;11(10). doi: 10.3390/polym11101601
  16. Xu J, Su Y, Yang J, et al. A 3D bioprinted gelatin/quaternized chitosan/decellularized extracellular matrix based hybrid bionic scaffold with multifunctionality for infected full-thickness skin wound healing. Int J Biol Macromol. 2025;309(Pt 1):142816. doi: 10.1016/j.ijbiomac.2025.142816
  17. Zhang W, Shi K, Yang J, et al. 3D printing of recombinant collagen/chitosan methacrylate/nanoclay hydrogels loaded with Kartogenin nanoparticles for cartilage regeneration. Regen Biomater. 2024;11:rbae097. doi: 10.1093/rb/rbae097
  18. Corrado F, Di Maio L, Palmero P, et al. Vat photo-polymerization 3D printing of gradient scaffolds for osteochondral tissue regeneration. Acta Biomater. 2025;200:67-86. doi: 10.1016/j.actbio.2025.05.042
  19. Jacob G, Shimomura K, Nakamura N. Osteochondral Injury, Management and Tissue Engineering Approaches. Front Cell Dev Biol. 2020;8:580868. doi: 10.3389/fcell.2020.580868
  20. Wu H, Wang X, Wang G, et al. Advancing Scaffold- Assisted Modality for In Situ Osteochondral Regeneration: A Shift From Biodegradable to Bioadaptable. Adv Mater. 2024;36(47):e2407040. doi: 10.1002/adma.202407040
  21. Kwon H, Brown WE, Lee CA, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol. 2019;15(9):550-570. doi: 10.1038/s41584-019-0255-1
  22. Gao F, Xu Z, Liang Q, et al. Direct 3D Printing of High Strength Biohybrid Gradient Hydrogel Scaffolds for Efficient Repair of Osteochondral Defect. Adv Funct Mater. 2018;28(13):1706644. doi: 10.1002/adfm.201706644
  23. Gu Y, Zou Y, Huang Y, et al. 3D-printed biomimetic scaffolds with precisely controlled and tunable structures guide cell migration and promote regeneration of osteochondral defect. Biofabrication. 2023;16(1):015003. doi: 10.1088/1758-5090/ad0071
  24. Qu H, Gao C, Liu K, et al. Gradient matters via filament diameter-adjustable 3D printing. Nat Commun. 2024;15(1):2930. doi: 10.1038/s41467-024-47360-y
  25. Li CJ, Park JH, Jin GS, et al. Strontium/Silicon/Calcium- Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair. Adv Healthc Mater. 2024;13(20):e2400154. doi: 10.1002/adhm.202400154
  26. Li Q, Yu H, Zhao F, et al. 3D Printing of Microenvironment- Specific Bioinspired and Exosome-Reinforced Hydrogel Scaffolds for Efficient Cartilage and Subchondral Bone Regeneration. Adv Sci (Weinh). 2023;10(26):e2303650. doi: 10.1002/advs.202303650
  27. Li C, Wang K, Li T, et al. Patient-specific Scaffolds with a Biomimetic Gradient Environment for Articular Cartilage- Subchondral Bone Regeneration. ACS Appl Bio Mater. 2020;3(8):4820-4831. doi: 10.1021/acsabm.0c00334
  28. Jahani A, Nourbakhsh MS, Moradi A, Mohammadi M, Tayebi L. Incorporating insulin into alginate-chitosan 3D-printed scaffolds: A comprehensive study on structure, mechanics, and biocompatibility for cartilage tissue engineering. Carbohydr Polym Technol Appl. 2025;9:100696. doi: 10.1016/j.carpta.2025.100696
  29. Kang Y, Xu J, Meng L, et al. 3D bioprinting of dECM/Gel/ QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis. Biofabrication. 2023;15(2):024103. doi: 10.1088/1758-5090/acb6b8
  30. Wang W, Zheng L, Liu W, et al. Enhanced efficacy of 3D architectural glass–ceramic scaffolds in vertical bone augmentation compared with conventional bone-block grafts of different origins. Mater Des. 2025;253,113989. doi: 10.1016/j.matdes.2025.113989
  31. Sun Q, Qiu T, Liu X, Wei Q. Cellular Spatial Sensing Determines Cell Mechanotransduction Activity on the Aligned Nanofibers. Small. 2025;21(13):e2410351. doi: 10.1002/smll.202410351
  32. Cho S, Lee KS, Lee K, et al. Surface Crystal and Degradability of Shape Memory Scaffold Essentialize Osteochondral Regeneration. Small. 2024;20(40):e2401989. doi: 10.1002/smll.202401989
  33. Tang W, Pan P, Chen T, et al. 3D chitosan scaffolds loaded with ZnO nanoparticles for bone tissue engineering. Colloids Surf B Biointerfaces. 2025;245:114199. doi: 10.1016/j.colsurfb.2024.114199
  34. Zhao W, Chen H, Zhang Y, et al. Adaptive multi-degree-of-freedom in situ bioprinting robot for hair-follicle-inclusive skin repair: A preliminary study conducted in mice. Bioeng Transl Med. 2022;7(3):e10303. doi: 10.1002/btm2.10303
  35. Lipskas J, Deep K, Yao W. Robotic-Assisted 3D Bio-printing for Repairing Bone and Cartilage Defects through a Minimally Invasive Approach. Sci Rep. 2019;9(1):3746. doi: 10.1038/s41598-019-38972-2
  36. Shariatinia Z. Carboxymethyl chitosan: Properties and biomedical applications. Int J Biol Macromol. 2018;120(Pt B):1406-1419. doi: 10.1016/j.ijbiomac.2018.09.131
  37. Liu Y, Yuan K, Lin Y, et al. Directional Freeze-Casting Cryogel Loaded with Quaternized Chitosan Modified Gallium Metal-Organic Frameworks to Capture and Eradicate the Resistant Bacteria for Guided Regeneration in Infected Bone Defects. Adv Mater. 2025;37(9):e2414437. doi: 10.1002/adma.202414437
  38. Chen YR, Yan X, Yuan FZ, et al. Kartogenin-Conjugated Double-Network Hydrogel Combined with Stem Cell Transplantation and Tracing for Cartilage Repair. Adv Sci (Weinh). 2022;9(35):e2105571. doi: 10.1002/advs.202105571
  39. Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater. 2020;5(1):164-183. doi: 10.1016/j.bioactmat.2020.01.012
  40. Furuike T, Komoto D, Hashimoto H, Tamura H. Preparation of chitosan hydrogel and its solubility in organic acids. Int J Biol Macromol. 2017;104(Pt B):1620-1625. doi: 10.1016/j.ijbiomac.2017.02.099
  41. Jirofti N, Hashemi M, Moradi A, Kalalinia F. Fabrication and characterization of 3D printing biocompatible crocin-loaded chitosan/collagen/hydroxyapatite-based scaffolds for bone tissue engineering applications. Int J Biol Macromol. 2023;252:126279. doi: 10.1016/j.ijbiomac.2023.126279
  42. Kumi M, Wang T, Ejeromedoghene O, Wang J, Li P, Huang W. Exploring the Potentials of Chitin and Chitosan- Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. Small Methods. 2024;8(9):e2301341. doi: 10.1002/smtd.202301341
  43. Jiang T, Yang Y, Lin Z, Hong Y, Luo Z. Modified Polysaccharides: Potential Biomaterials for Bioprinting. J Funct Biomater. 2025;16(9):338. doi: 10.3390/jfb16090338
  44. Qin S, Wang W, Chen L, et al. 3D printed osteochondral lineage-specific biphasic scaffolds for functional repair of full-thickness articular cartilage defects in weight-bearing area. Biofabrication. 2025;17(3):035025. doi: 10.1088/1758-5090/ade8a9
  45. Liu K, Zhang Y, Huang L, et al. Enhanced printability of high-viscosity chitosan/acrylamide inks via aluminum ions coordination for precision 3D bioprinting of scaffolds. Carbohydr Polym. 2025;355:123359. doi: 10.1016/j.carbpol.2025.123359
  46. Chang HK, Yang DH, Ha MY, et al. 3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering. Carbohydr Polym. 2022;287:119328. doi: 10.1016/j.carbpol.2022.119328
  47. Lin M, Stehle Y, Chen L, et al. A 3D-printed chitosan-based pH-responsive dual functional scaffold for osteomyelitis: synergistic antibacterial and osteogenic treatment. Carbohydr Polym. 2025;366:123866. doi: 10.1016/j.carbpol.2025.123866
  48. Liu X, Wang Y, Zhang W, et al. Caffeic acid and adenine modified chitosan dual-network hydrogel with antioxidant and pro-proliferative properties for diabetic wound healing. Carbohydr Polym. 2025;369:124290. doi: 10.1016/j.carbpol.2025.124290
  49. Wang X, Zhang J, Shan J, et al. Polypyrrole-Modified Triple- Responsive Hydrogel Dressing Based on Bacterial Cellulose and Quaternary Ammonium Chitosan and Its Synergistic Antibacterial Mechanism. ACS Appl Mater Interfaces. 2025;17(36):50417-50431. doi: 10.1021/acsami.5c12061
  50. Liu Y, Zhou C, Zhang X, Liu W. Chirality Hydroxyapatite Gradient Scaffold Drives Osteochondral Regeneration via YAP/TAZ-Mediated Mechanotransduction. Adv Healthc Mater. 2025;14(22):e2501668. doi: 10.1002/adhm.202501668
  51. Pitrolino KA, Felfel RM, Pellizzeri LM, et al. Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold. Carbohydr Polym. 2022;282:119126. doi: 10.1016/j.carbpol.2022.119126
  52. Cui R, Lu Q, Teng Y, Li K, Li N. Chitosan Promoted the Corneal Epithelial Wound Healing via Activation of ERK Pathway. Curr Eye Res. 2017;42(1):21-27. doi: 10.3109/02713683.2016.1145235
  53. Hoemann CD, Rodríguez González J, Guzmán-Morales J, Chen G, Jalali Dil E, Favis BD. Chitosan coatings with distinct innate immune bioactivities differentially stimulate angiogenesis, osteogenesis and chondrogenesis in poly-caprolactone scaffolds with controlled interconnecting pore size. Bioact Mater. 2022;10:430-442. doi: 10.1016/j.bioactmat.2021.09.012
  54. Olza S, Hadj Bouzidi NM, Rubatat L, et al. Mineralized chitin nanocrystals enhance osteoinductive ability of chitosan 3D porous biohybrid scaffolds for bone tissue regeneration. Carbohydr Polym. 2025;366:123911. doi: 10.1016/j.carbpol.2025.123911
  55. Tu C, Gao X, Zheng H, et al. Innovative injectable, self-healing, exosome cross-linked biomimetic hydrogel for cartilage regeneration. J Control Release. 2025;381:113608. doi: 10.1016/j.jconrel.2025.113608
  56. Tikakosol P, Topham PD, Derry MJ, et al. Kartogenin-encapsulated self-healing injectable hydrogel based on hyaluronic acid and chitosan derivative for use as viscosupplementation in knee osteoarthritis. Int J Biol Macromol. 2025;328(Pt 1):147304. doi: 10.1016/j.ijbiomac.2025.147304
  57. Li P, Fu L, Liao Z, et al. Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment. Biomaterials. 2021;278:121131. doi: 10.1016/j.biomaterials.2021.121131
  58. Xu J, Ji J, Jiao J, et al. 3D Printing for Bone-Cartilage Interface Regeneration. Front Bioeng Biotechnol. 2022;10:828921. doi: 10.3389/fbioe.2022.828921
  59. Fan D, Liu Y, Wang Y, et al. 3D printing of bone and cartilage with polymer materials. Front Pharmacol. 2022;13:1044726. doi: 10.3389/fphar.2022.1044726
  60. Pourfaraj A, Najmoddin N, Behzadnasab M, Pedram MS, Pezeshki-Modaress M. Rapid continuous 3D printed multi-channel poly(ethylene glycol) diacrylate/chitosan nerve guidance conduit: In vivo study. Int J Biol Macromol. 2025;321(Pt 4):146491. doi: 10.1016/j.ijbiomac.2025.146491
  61. Wang Z, Sun Y, Li C. Advances in 3D printing technology for preparing bone tissue engineering scaffolds from biodegradable materials. Front Bioeng Biotechnol. 2024;12:1483547. doi: 10.3389/fbioe.2024.1483547
  62. Liu G, Wei X, Zhai Y, et al. 3D printed osteochondral scaffolds: design strategies, present applications and future perspectives. Front Bioeng Biotechnol. 2024;12: 1339916. doi: 10.3389/fbioe.2024.1339916
  63. Novotná R, Franková J. Materials Suitable for Osteochondral Regeneration. ACS Omega. 2024;9(28):30097-30108. doi: 10.1021/acsomega.4c04789
  64. Li S, Liu J, Liu S, Jiao W, Wang X. Chitosan oligosaccharides packaged into rat adipose mesenchymal stem cells-derived extracellular vesicles facilitating cartilage injury repair and alleviating osteoarthritis. J Nanobiotechnology. 2021;19(1):343. doi: 10.1186/s12951-021-01086-x
  65. Chen Y, Mehmood K, Chang YF, Tang Z, Li Y, Zhang H. The molecular mechanisms of glycosaminoglycan biosynthesis regulating chondrogenesis and endochondral ossification. Life Sci. 2023;335:122243. doi: 10.1016/j.lfs.2023.122243
  66. Mochizuki M, Yamagata N, Philp D, et al. Integrin-dependent cell behavior on ECM peptide-conjugated chitosan membranes. Biopolymers. 2007;88(2):122-30. doi: 10.1002/bip.20684
  67. Yeh HY, Liu BH, Sieber M, Hsu SH. Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics. 2014;15(1):10. doi: 10.1186/1471-2164-15-10
  68. Xu B, Ye J, Song S, et al. Inherently bioactive iron-chelating Poly (N-acryloyl 2-glycine)/chitosan hydrogel scaffolds orchestrating dual hypoxic-immune microenvironment for functional meniscus regeneration. Bioact Mater. 2025;54:492-508. doi: 10.1016/j.bioactmat.2025.08.028
  69. Liu H, Liu S, Liao L, Liao H, Pan W, Hu J. Dual stimulus-responsive dECM cryogel sequentially regulate bone microenvironment for one-step surgical therapy of chronic osteomyelitis. Mater Today Bio. 2025;34:102243. doi: 10.1016/j.mtbio.2025.102243
  70. He S, Lin B, Zhang C, et al. Injectable chitosan-based thermosensitive hydrogel loaded with adipose-derived mesenchymal stem cells promotes pressure ulcer healing. Colloids Surf B Biointerfaces. 2025;256(Pt 2):115089. doi: 10.1016/j.colsurfb.2025.115089
  71. Hia EM, Park J, Suh IW, Park CH. Synergistic effects of modified zinc oxide nanoparticle in a hybrid chitosan-gelatin hydrogel for bone regeneration. Int J Biol Macromol. 2025;315(Pt 2):144490. doi: 10.1016/j.ijbiomac.2025.144490
  72. Mokhtari H, Bahari M, Yeganeh F. Chitosan-based Biomaterials in Regenerative Medicine: Optimizing Mesenchymal Stem Cell Viability and Function. Stem Cell Rev Rep. 2025;21(7):2010-2030. doi: 10.1007/s12015-025-10901-z
  73. Liu XL, Zhang CJ, Shi JJ, et al. Nacre-mimetic cerium-doped nano-hydroxyapatite/chitosan layered composite scaffolds regulate bone regeneration via OPG/RANKL signaling pathway. J Nanobiotechnology. 2023;21(1):259. doi: 10.1186/s12951-023-01988-y
  74. Pahlevanzadeh F, Emadi R, Kharaziha M, et al. Amorphous magnesium phosphate-graphene oxide nano particles laden 3D-printed chitosan scaffolds with enhanced osteogenic potential and antibacterial properties. Biomater Adv. 2024;158:213760. doi: 10.1016/j.bioadv.2024.213760
  75. Duan X, Hu K, Wang J, et al. Core-shell engineered Col/Cs@ ECM microspheres for macrophage-targeted intracellular drug release in RA therapy. Bioact Mater. 2025;54:715-729. doi: 10.1016/j.bioactmat.2025.08.043
  76. Klak M, Kosowska K, Czajka M, et al. The Impact of the Methacrylation Process on the Usefulness of Chitosan as a Biomaterial Component for 3D Printing. J Funct Biomater. 2024;15(9):251. doi: 10.3390/jfb15090251
  77. Chen XD, Zhang XY, Zhu HQ, Lu HH, Wang M. Three- Dimensional Printing of Hydrogel Blend Tissue Engineering Scaffolds with In Situ Delivery of Anticancer Drug for Treating Melanoma Resection-Induced Tissue Defects. J Funct Biomater. 2024;15(12). doi: 10.3390/jfb15120381
  78. Ding Y, Zhu J, Guan X, et al. Photocrosslinkable hydrogel of kartogenin functionalized chitosan methacrylate preserves chondrogenesis. Int J Biol Macromol. 2025;321(Pt 3):146378. doi: 10.1016/j.ijbiomac.2025.146378
  79. Liu Y, Du L, Zhang H, et al. Bioprinted biomimetic hydrogel matrices guiding stem cell aggregates for enhanced chondrogenesis and cartilage regeneration. J Mater Chem B. 2024;12(22):5360-5376. doi: 10.1039/d4tb00323c
  80. Lingait D, Rahagude R, Gaharwar SS, et al. A review on versatile applications of biomaterial/polycationic chitosan: An insight into the structure-property relationship. Int J Biol Macromol. 2024;257(Pt 2):128676. doi: 10.1016/j.ijbiomac.2023.128676
  81. Tomal W, Ortyl J. Water-Soluble Photoinitiators in Biomedical Applications. Polymers (Basel). 2020;12(5). doi: 10.3390/polym12051073
  82. Wang L, Huang P, Huang J, et al. Modeling of molecular weight changes of polysaccharides subjected to irradiation. Carbohydr Polym Technol Appl. 2025;10(000):100815. doi: 10.1016/j.carpta.2025.100815
  83. Torgal S, Subramani G, Manian R. Comprehensive insights into chitosan hydrogels: from crosslinking and characterization to immunomodulation, microbiome interactions and biomedical uses. Biomass Convers Biorefin. 2025;(9):15. doi: 10.1007/s13399-024-06350-2
  84. Taghizadeh M, Taghizadeh A, Yazdi MK, et al. Chitosan-based inks for 3D printing and bioprinting (vol 24, pg 62, 2022). Green Chem. 2025;(18):27. doi: 10.1039/d5gc90073e
  85. Afra S, Samadi A, Asadi P, et al. Chitosan crosslinkers and their functionality in 3D bioprinting to produce chitosan-based bioinks. Inorg Chem Commun. 2024;168(000):12. doi: 10.1016/j.inoche.2024.112842
  86. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26(11):1211-8. doi: 10.1016/j.biomaterials.2004.04.024
  87. Pitrolino K, Felfel R, Roberts G, Scotchford C, Grant D, Sottile V. In vitrodegradation of a chitosan-based osteochondral construct points to a transient effect on cellular viability. Biomed Mater. 2024;19(5):055025. doi: 10.1088/1748-605X/ad6547
  88. Rahayu DP, Yunus AL, Yunus MY, et al. Study the effect of gamma-irradiation on the physical properties of Chitosan powder with the presence of water. AIP Conf Proc. 2024;3074(1):5. doi: 10.1063/5.0211274
  89. Cowie RM, Macri-Pellizzeri L, Mclaren J, et al. Functional performance of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold: a pre-clinical in vitro tribological study. R Soc Open Sci. 2024;11(1):13. doi: 10.1098/rsos.230431
  90. Andreica BI, Cheng X, Marin L. Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. Eur Polym J. 2022;(164-):164. doi: 10.1016/j.eurpolymj.2020.110016
  91. Jergitsch M, Mateos-Timoneda MA. 3D extrusion bioprinting: rational bioink design and advanced fabrication techniques. Trends Biotechnol. 2025; S0167-7799(25)00223-9. doi: 10.1016/j.tibtech.2025.06.008
  92. Agarwal T, Chiesa I, Costantini M, et al. Chitosan and its derivatives in 3D/4D (bio) printing for tissue engineering and drug delivery applications. Int J Biol Macromol. 2023;246:125669. doi: 10.1016/j.ijbiomac.2023.125669
  93. Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
  94. Sonaye SY, Bohara S, Welsh BL, et al. Extrusion-Based 3D Bioprinting of Bioactive and Piezoelectric Scaffolds as Potential Therapy for Treating Critical Soft Tissue Wounds. Adv Wound Care (New Rochelle). 2025;14(3):143-158. doi: 10.1089/wound.2024.0073
  95. Che QT, Seo JW, Charoensri K, Nguyen MH, Park HJ, Bae H. 4D-printed microneedles from dual-sensitive chitosan for non-transdermal drug delivery. Int J Biol Macromol. 2024;261(Pt 2):129638. doi: 10.1016/j.ijbiomac.2024.129638
  96. Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang YS. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience. 2023;26(2):106039. doi: 10.1016/j.isci.2023.106039
  97. Zhou X, Zou B, Chen Q, Yang G, Lai Q, Wang X. Construction of bilayer biomimetic periosteum based on SLA-3D printing for bone regeneration. Colloids Surf B Biointerfaces. 2025;246:114368. doi: 10.1016/j.colsurfb.2024.114368
  98. Risangud N, Lertwimol T, Sitthisang S, Wongvitvichot W, Uppanan P, Tanodekaew S. The preparation of 3D-printed self-healing hydrogels composed of carboxymethyl chitosan and oxidized dextran via stereolithography for biomedical applications. Int J Biol Macromol. 2025;292:139251. doi: 10.1016/j.ijbiomac.2024.139251
  99. Zhang X, Cheng F, Islam MR, Li H. The fabrication of the chitosan-based bioink for in vitro tissue repair and regeneration: A review. Int J Biol Macromol. 2024;257(Pt 2):128504. doi: 10.1016/j.ijbiomac.2023.128504
  100. Singh S, GurminderPrakash, ChanderRamakrishna, SeeramLamberti, LucianoPruncu, Catalin, I. 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold. Polym Test. 2020;89(1):106722. doi: 10.1016/j.polymertesting.2020.106722
  101. Guo W, Peng Z, Ning D, et al. Chitosan microporous foam filled 3D printed polylactic acid-pearl macroporous scaffold: Dual-scale porous structure, biological and mechanical properties. Int J Biol Macromol. 2025;303:140508. doi: 10.1016/j.ijbiomac.2025.140508
  102. Ye X, Li L, Lin Z, et al. Integrating 3D-printed PHBV/ Calcium sulfate hemihydrate scaffold and chitosan hydrogel for enhanced osteogenic property. Carbohydr Polym. 2018;202:106-114. doi: 10.1016/j.carbpol.2018.08.117
  103. Hui I, Pasquier E, Solberg A, Agrenius K, Håkansson J, Chinga-Carrasco G. Biocomposites containing poly(lactic acid) and chitosan for 3D printing - Assessment of mechanical, antibacterial and in vitro biodegradability properties. J Mech Behav Biomed Mater. 2023;147:106136. doi: 10.1016/j.jmbbm.2023.106136
  104. Bera T, Vincent S, Mohanty S. Mechanical Properties of Polylactic Acid/Chitosan Composites by Fused Deposition Modeling. J Mater Eng Perform. 2025;34(16):17106-17120. doi: 10.1007/s11665-024-10506-6
  105. Blanzeanu E, Marin M, Verziu MN, et al. Chitosan-polylactic acid composites: from seafood waste to advanced functional materials for 3D printing. Adv Compos Hybrid Mater. 2025;8(1). doi: 10.1007/s42114-024-01131-x
  106. Alparslan C, Bayraktar Ş. Advances in Digital Light Processing (DLP) Bioprinting: A Review of Biomaterials and Its Applications, Innovations, Challenges, and Future Perspectives. Polymers (Basel). 2025;17(9). doi: 10.3390/polym17091287
  107. Shen Y, Tang H, Huang X, et al. DLP printing photocurable chitosan to build bio-constructs for tissue engineering. Carbohydr Polym. 2020;235:115970. doi: 10.1016/j.carbpol.2020.115970
  108. Zanon M, Cue-López R, Martínez-Campo E, et al. Bioderived dyes-mediated vat photopolymerization 3D printing of chitosan hydrogels for tissue engineering. Addit Manuf. 2023;69(c):103553. doi: 10.1016/j.addma.2023.103553
  109. He Y, Wang F, Wang X, Zhang J, Wang D, Huang X. A photocurable hybrid chitosan/acrylamide bioink for DLP based 3D bioprinting. Mater Des. 2021;202(1):109588. doi: 10.1016/j.matdes.2021.109588
  110. García-García A, Pérez-Álvarez L, Ruiz-Rubio L, Larrea- Sebal A, Martin C, Vilas-Vilela JL. Extrusion-Based 3D Printing of Photocrosslinkable Chitosan Inks. Gels. 2024;10(2):126. doi: 10.3390/gels10020126
  111. Banigo AT, Nauta L, Zoetebier B, Karperien M. Hydrogel- Based Bioinks for Coaxial and Triaxial Bioprinting: A Review of Material Properties, Printing Techniques, and Applications. Polymers (Basel). 2025;17(7):917. doi: 10.3390/polym17070917
  112. Mccauley PJ, Fromen CA, Bayles AV. Cell viability in extrusion bioprinting: the impact of process parameters, bioink rheology, and cell mechanics. Rheol Acta. 2025; 64(9-10):497-515. doi: 10.1007/s00397-025-01504-z
  113. Rossi A, Pescara T, Gambelli AM, et al. Biomaterials for extrusion-based bioprinting and biomedical applications. Front Bioeng Biotechnol. 2024;12:1393641. doi: 10.3389/fbioe.2024.1393641
  114. Rajabi M, McConnell M, Cabral J, Ali MA. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr Polym. 2021;260:117768. doi: 10.1016/j.carbpol.2021.117768
  115. Elango J, Zamora-Ledezma C. Rheological, Structural, and Biological Trade-Offs in Bioink Design for 3D Bioprinting. Gels. 2025;11(8):659. doi: 10.3390/gels11080659
  116. Hirami R, Sakai S. Freeze-dryable inks combining chitosan nanofibers and hyaluronic acid for extrusion bioprinting. Int J Biol Macromol. 2025;322(Pt 1):146679. doi: 10.1016/j.ijbiomac.2025.146679

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing