AccScience Publishing / IJB / Volume 11 / Issue 6 / DOI: 10.36922/IJB025320322
REVIEW ARTICLE

3D-printed hydrogels for treating diabetic wounds: Recent developments

Mengdi Yin1† Yutong Wang2† Yuhang Wei2† Changjia Li3 Yiqiao Yin2 Tiantang Fan2 Peixin Wang1*
Show Less
1 Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
2 College of Medical Engineering, Jining Medical University, Jining, Shandong, China
3 Department of Colorectal and Anal Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
†These authors contributed equally to this work.
IJB 2025, 11(6), 107–129; https://doi.org/10.36922/IJB025320322
Received: 10 August 2025 | Accepted: 15 September 2025 | Published online: 18 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Diabetic wound healing disorder is one of the common complications in diabetic patients, characterized by chronic inflammation, impaired angiogenesis, abnormal extracellular matrix (ECM) remodeling, and markedly elevated oxidative stress. Although traditional treatment models have achieved some success, they still face challenges such as prolonged wound healing duration, increased risk of infection, and continuous formation of scar tissue, particularly in gastrointestinal surgical incisions, breast surgery incisions, orthopedic surgical incisions, and neurosurgical incisions. In recent years, the integration of biomaterials and advanced manufacturing technologies has brought new opportunities for diabetic wound healing. Hydrogels have gained increasing attention due to their excellent biocompatibility, degradability, and significant wound healing ability. As an emerging advanced manufacturing method, 3D printing technology could accurately fabricate hydrogels according to the shape and size of the wound, providing an ideal microenvironment for wound healing. This work systematically reviewed the latest research on 3D-printed hydrogels in diabetic wound healing in the past 5 years. It also thoroughly discussed the preparation methods, including physical, chemical, and biological cross-linking methods, and the specific mechanisms of promoting wound healing, such as regulating inflammatory response, promoting angiogenesis, and guiding the normal remodeling of ECM. This review aimed to provide a solid theoretical and experimental basis for the continued development and eventual clinical application of 3D-printed hydrogels for diabetic wounds.  

Keywords
3D-printed hydrogel
Diabetic wound
Mechanism
Preparation method
Surgical incision
Funding
This work was supported by the Research Fund for Academician Lin He New Medicine.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Chung WK, Erion K, Florez JC, et al. Precision medicine in diabetes: A consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(7):1617-1635. doi: 10.2337/dci20-0022
  2. Zhang J, Lin C, Jin S, et al. The pharmacology and therapeutic role of cannabidiol in diabetes. Exploration. 2023;3(5):20230047. doi: 10.1002/EXP.20230047
  3. Ogurtsova K, Guariguata L, Barengo NC, et al. IDF diabetes atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract. 2022;183:109118. doi: 10.1016/j.diabres.2021.109118
  4. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi: 10.1016/j.diabres.2019.107843
  5. Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-281. doi: 10.1016/j.diabres.2018.02.023
  6. Verma AK, Goyal Y, Bhatt D, et al. A compendium of perspectives on diabetes: A challenge for sustainable health in the modern era. Diabetes Metab Syndr Obes. 2021;14:2775-2787. doi: 10.2147/DMSO.S304751
  7. Sharma S, Kishen A. Dysfunctional crosstalk between macrophages and fibroblasts under LPS-infected and hyperglycemic environment in diabetic wounds. Sci Rep. 2025;15(1). doi: 10.1038/s41598-025-00673-4
  8. Kartika RW, Alwi I, Suyatna FD, et al. The role of VEGF, PDGF and IL-6 on diabetic foot ulcer after platelet rich fibrin + hyaluronic therapy. Heliyon. 2021;7(9):e07934. doi: 10.1016/j.heliyon.2021.e07934
  9. Sharifiaghdam M, Shaabani E, Faridi-Majidi R, et al. Macrophages as a therapeutic target to promote diabetic wound healing. Mol Ther. 2022;30(9):2891-2908. doi: 10.1016/j.ymthe.2022.07.016
  10. Kamal R, Awasthi A, Pundir M, et al. Healing the diabetic wound: Unlocking the secrets of genes and pathways. Eur J Pharmacol. 2024;975:176645. doi: 10.1016/j.ejphar.2024.176645
  11. Prema D, Balashanmugam P, Kumar JS, et al. Fabrication of GO/ZnO nanocomposite incorporated patch for enhanced wound healing in streptozotocin (STZ) induced diabetic rats. Colloid Surface A. 2022;649:129331. doi: 10.1016/j.colsurfa.2022.129331
  12. Talebi M, Ghale RA, Asl RM, et al. Advancements in characterization and preclinical applications of hyaluronic acid-based biomaterials for wound healing: A review. Carbohydr Polym Tech. 2025;9:100706. doi: 10.1016/j.carpta.2025.100706
  13. Yong SK, Meera G. Macrophages in wound healing: Activation and plasticity. Immunol Cell Biol. 2019;97(3):258-267. doi: 10.1111/imcb.12236
  14. Wang X, Ding J, Chen X, et al. Light-activated nanoclusters with tunable ROS for wound infection treatment. Bioact Mater. 2024;41:385-399. doi: 10.1016/j.bioactmat.2024.07.009
  15. Nguyen HM, Le TTN, Nguyen AT, et al. Biomedical materials for wound dressing: Recent advances and applications. RSC Adv. 2023;13(8):5509-5528. doi: 10.1039/d2ra07673j
  16. Kim JH, Ruegger PR, Lebig EG, et al. High levels of oxidative stress create a microenvironment that significantly decreases the diversity of the microbiota in diabetic chronic wounds and promotes biofilm formation. Front Cell Infect Microbiol. 2020;10:259. doi: 10.3389/fcimb.2020.00259
  17. Li M, Xia W, Khoong YM, et al. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res. 2023;27(1):87. doi: 10.1186/s40824-023-00426-2
  18. Shi S, Wang L, Song C, et al. Recent progresses of collagen dressings for chronic skin wound healing. Collagen Leather. 2023;5(1):31. doi: 10.1186/s42825-023-00136-4
  19. Zhou C, Sheng C, Gao L, et al. Engineering poly(ionic liquid) semi-IPN hydrogels with fast antibacterial and anti-inflammatory properties for wound healing. Chem Eng J. 2021;413:127429. doi: 10.1016/j.cej.2020.127429
  20. Zhao X, Xue W, Ding W, et al. A novel injectable sodium alginate/chitosan/sulfated bacterial cellulose hydrogel as biohybrid artificial pancreas for real-time glycaemic regulation. Carbohydr Polym. 2025;354:123323. doi: 10.1016/j.carbpol.2025.123323
  21. Chen J, He J, Yang Y, et al. Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomater. 2022;146:119-130. doi: 10.1016/j.actbio.2022.04.041
  22. Miao L, Lu X, Wei Y, et al. Near-infrared light-responsive nanocomposite hydrogels loaded with epidermal growth factor for diabetic wound healing. Mater Today Bio. 2025;31:101578. doi: 10.1016/j.mtbio.2025.101578
  23. Zhang L, Nasar NKA, Huang X, et al. Light-assisted 3D-printed hydrogels for antibacterial applications. Small Sci. 2024;4(8):2400097. doi: 10.1002/smsc.202400097
  24. Li J, Wang Y, Fan L, et al. Liquid metal hybrid antibacterial hydrogel scaffolds from 3D printing for wound healing. Chem Eng J. 2024;496:153805. doi: 10.1016/j.cej.2024.153805
  25. Ma R, Xu L, Li Z, et al. NIR-responsive tissue-adaptive hydrogel for accelerating healing of seawater-immersed wounds. Mater Today Bio. 2025;32:101915. doi: 10.1016/j.mtbio.2025.101915
  26. Ribeiro MM, Simões M, Vitorino C, et al. Physical crosslinking of hydrogels: The potential of dynamic and reversible bonds in burn care. Coord Chem Rev. 2025;542:216868. doi: 10.1016/j.ccr.2025.216868
  27. Yang J, Chen Y, Zhao L, et al. Constructions and properties of physically cross-linked hydrogels based on natural polymers. Polym Rev. 2022;63(3):574-612. doi: 10.1080/15583724.2022.2137525
  28. Drzewiecki KE, Parmar AS, Gaudet ID, et al. Methacrylation induces rapid, temperature-dependent, reversible self-assembly of type-I collagen. Langmuir. 2014;30:11204-11211. doi: 10.1021/la502418s
  29. Rombouts HW, Kort DWD, Pham TTH, et al. Reversible temperature-switching of hydrogel stiffness of coassembled, silk-collagen-like hydrogels. Biomacromolecules. 2015;16(8):2506-2513. doi: 10.1021/acs.biomac.5b00766
  30. Sun-Hee C, Ahreum K, Woojung S, et al. Photothermo-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid) hydrogel. Int J Nanomedicine. 2017;12:2607-2620. doi: 10.2147/ijn.s133078
  31. Naik K, Singh P, Yadav M, et al. 3D printable, injectable amyloid-based composite hydrogel of bovine serum albumin and aloe vera for rapid diabetic wound healing. J Mater Chem B. 2023;11(34):8142-8158. doi: 10.1039/D3TB01151H
  32. Zhang X, Gan J, Fan L, et al. Bioinspired adaptable indwelling microneedles for treatment of diabetic ulcers. Adv Mater. 2023;35(23):2210903. doi: 10.1002/adma.202210903
  33. Xia S, Weng T, Jin R, et al. Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds. Burns Trauma. 2022;10:tkac001. doi: 10.1093/burnst/tkac001
  34. Kumi M, Hou Z, Zhang Y, et al. 3D printed chitosan-based flexible electrode with antimicrobial properties for electrical stimulation therapy in wound healing. Supramol Mater. 2025;4:100110. doi: 10.1016/j.supmat.2025.100110
  35. Metwally WM, El-Habashy SE, El-Hosseiny LS, et al. Bioinspired 3D-printed scaffold embedding DDAB-nano ZnO/nanofibrous microspheres for regenerative diabetic wound healing. Biofabrication. 2023;16(1):015001. doi: 10.1088/1758-5090/acfd60
  36. Xue X, Hu Y, Wang S, et al. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 2022;12:327-339. doi: 10.1016/j.bioactmat.2021.10.029
  37. Zhang Q, Yan K, Zheng X, et al. Research progress of photo-crosslink hydrogels in ophthalmology: A comprehensive review focus on the applications. Mater Today Bio. 2024;26:101082. doi: 10.1016/j.mtbio.2024.101082
  38. Chen Z, Song S, Zeng H, et al. 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem Eng J. 2023;471:144649. doi: 10.1016/j.cej.2023.144649
  39. Cao W, Peng S, Yao Y, et al. A nanofibrous membrane loaded with doxycycline and printed with conductive hydrogel strips promotes diabetic wound healing in vivo. Acta Biomater. 2022;152:60-73. doi: 10.1016/j.actbio.2022.08.048
  40. Li S, Xu Y, Zheng L, et al. High self-supporting chitosan-based hydrogel ink for in situ 3D printed diabetic wound dressing. Adv Funct Mater. 2024;35(5):2414625. doi: 10.1002/adfm.202414625
  41. Ding N, Fu X, Gui Q, et al. Biomimetic structure hydrogel loaded with long-term storage platelet-rich plasma in diabetic wound repair. Adv Healthc Mater. 2023;13(10):2303192. doi: 10.1002/adhm.202303192
  42. Hu Y, Xiong Y, Zhu Y, et al. Copper-epigallocatechin gallate enhances therapeutic effects of 3D-printed dermal scaffolds in mitigating diabetic wound scarring. ACS Appl Mater Interfaces. 2023;15(32):38230-38246. doi: 10.1021/acsami.3c04733
  43. Wan T, Fan P, Zhang M, et al. Multiple crosslinking hyaluronic acid hydrogels with improved strength and 3D printability. ACS Appl Bio Mater. 2021; 5(1):334-343. doi: 10.1021/acsabm.1c01141
  44. Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Rad JS. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur Polym J. 2019;117:64-76. doi: 10.1016/j.eurpolymj.2019.05.004
  45. Fu C, Liu G, Fan Y, et al. Highly printable and multifunctional cell-laden collagen-based bioinks for precise DLP bioprinting and rapid diabetic wound regeneration. Mater Today Bio. 2025;32:101908. doi: 10.1016/j.mtbio.2025.101908
  46. Yang H, Wang Y, Li R, et al. A 3D-printed grid-like hyaluronic acid-based hydrogel loaded with deferoxamine as wound dressing promotes diabetic wound healing. Int J Biol Macromol. 2025;303:140598. doi: 10.1016/j.ijbiomac.2025.140598
  47. Lin Z, Xie W, Cui Z, Huang J, Cao H, Li Y. 3D printed alginate/gelatin-based porous hydrogel scaffolds to improve diabetic wound healing. Giant. 2023;16:100185. doi: 10.1016/j.giant.2023.100185
  48. Ding X, Yu Y, Li W, Zhao Y. In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter. 2023;6(3):1000-1014. doi: 10.1016/j.matt.2023.01.001
  49. Finetti C, Sola L, Elliott J, Chiari M. Synthesis of hydrogel via click chemistry for DNA electrophoresis. J Chromatogr A. 2017;1513:226-234. doi: 10.1016/j.chroma.2017.07.042
  50. Li Y, Wang X, Han Y, Sun HY, Hilborn J, Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater. 2021;16(2):022003. doi: 10.1088/1748-605X/abc0b3
  51. Huang J, Yang R, Jiao J, et al. A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing. Nat Commun. 2023;14(1):7856. doi: 10.1038/s41467-023-43364-2
  52. Moreira TLS, Feijen J, van Be CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials. 2012;33(5):1281-1290. doi: 10.1016/j.biomaterials.2011.10.067
  53. Zhang Y, Cao Y, Zhao H, et al. An injectable BMSC-laden enzyme-catalyzed crosslinking collagen-hyaluronic acid hydrogel for cartilage repair and regeneration. J Mater Chem B. 2020;8(19):4237-4244. doi: 10.1039/d0tb00291g
  54. Mahran A, Howaili F, Bhadane R, et al. Functional enzyme delivery via surface-modified mesoporous silica nanoparticles in 3D printed nanocomposite hydrogels. Eur J Pharm Sci. 2025;211:107132. doi: 10.1016/j.ejps.2025.107132
  55. Sakai S, Yamamoto S, Hirami R, Hidaka M, Elvitigala KCML. Enzymatically gellable chitosan inks with enhanced printability by chitosan nanofibers for 3D printing of wound dressings. Eur Polym J. 2024;210:112960. doi: 10.1016/j.eurpolymj.2024.112960
  56. Huang J, Lei X, Huang Z, et al. Bioprinted gelatin-recombinant type III collagen hydrogel promotes wound healing. Int J Bioprinting. 2022;8(2):517. doi: 10.18063/ijb.v8i2.517
  57. Jafari H, Alimoradi H, Delporte C, et al. An injectable, self-healing, 3D printable, double network co-enzymatically crosslinked hydrogel using marine poly- and oligo-saccharides for wound healing application. Appl Mater Today. 2022;29:101581. doi: 10.1016/j.apmt.2022.101581
  58. Zhou M, Lee BH, Tan YJ, Tan LP. Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing. Biofabrication. 2019;11(2):025011. doi: 10.1088/1758-5090/ab063f
  59. Hassan M, Misra M, Taylor GW, Mohanty AK. A review of AI for optimization of 3D printing of sustainable polymers and composites. Compos Part C Open Access. 2024; 15:100513. doi: 10.1016/j.jcomc.2024.100513
  60. Mohammad S, Akand R, Cook KM, Nilufar S, Chowdhury F. Leveraging deep learning and generative AI for predicting rheological properties and material compositions of 3D printed polyacrylamide hydrogels. Gels. 2024; 10(10):660. doi: 10.3390/gels10100660
  61. Chen B, Dong J, Ruelas M, et al. Artificial intelligence-assisted high-throughput screening of printing conditions of hydrogel architectures for accelerated diabetic wound healing. Adv Funct Mater. 2022;32(38):2201843. doi: 10.1002/adfm.202201843
  62. Kim N, Lee H, Han G, et al. 3D-printed functional hydrogel by DNA-induced biomineralization for accelerated diabetic wound healing. Adv Sci. 2023;10(17):2300816. doi: 10.1002/advs.202300816
  63. Gao J, Yu X, Wang X, He Y, Ding J. Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine. Engineering. 2022;13:31-45. doi: 10.1016/j.eng.2021.11.025
  64. Lin X, Mao Y, Li P, et al. Ultra-conformable ionic skin with multi-modal sensing, broad-spectrum antimicrobial and regenerative capabilities for smart and expedited wound care. Adv Sci. 2021;8(9):2004627. doi: 10.1002/advs.202004627
  65. Li J, Zhang T, Pan M, et al. Nanofiber/hydrogel core-shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing. J Nanobiotechnol. 2022;20(1):28. doi: 10.1186/s12951-021-01208-5
  66. Sun Z, Zhao Q, Ma S, Wu J. DLP 3D printed hydrogels with hierarchical structures post-programmed by lyophilization and ionic locking. Mater Horiz. 2023;10(1):179-186. doi: 10.1039/d2mh00962e
  67. Zhou X, Yu X, You T, et al. 3D printing-based hydrogel dressings for wound healing. Adv Sci. 2024;11(47):2404580. doi: 10.1002/advs.202404580
  68. Xu C, Dai G, Hong Y. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Acta Biomater. 2019;95:50-59. doi: 10.1016/j.actbio.2019.05.032
  69. Jin E, Yang Y, Cong S, et al. Lemon-derived nanoparticle-functionalized hydrogels regulate macrophage reprogramming to promote diabetic wound healing. J Nanobiotechnol. 2025;23(1):68. doi: 10.1186/s12951-025-03138-y
  70. Huang Y, Song M, Li X, et al. Temperature-responsive self-contraction nanofiber/hydrogel composite dressing facilitates the healing of diabetic-infected wounds. Mater Today Bio. 2024;28:101214. doi: 10.1016/j.mtbio.2024.101214
  71. Schäfer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacol Res. 2008;58(2):165-171. doi: 10.1016/j.phrs.2008.06.004
  72. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736-1743. doi: 10.1016/S0140-6736(05)67700-8
  73. Wei H, Zhang H, Yan S, et al. 3D-printed ROS-scavenging, proangiogenic, and biodegradable hydrogel for enhancing burn wound healing. ACS Appl Mater Interfaces. 2025;17(28):39955-39966. doi: 10.1021/acsami.5c04216
  74. Fellin C, Steiner R, Yuan X, Jariwala S. A collagen-based biomaterial ink for the digital light processing 3D printing of tough, dual-crosslinked hydrogels via post-print tannic acid treatment. Bioprinting. 2025;50:e0042. doi: 10.2139/ssrn.5164808
  75. Tu C, Lu H, Zhou T, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials. 2022;286:121597. doi: 10.1016/j.biomaterials.2022.121597
  76. Guo Y, Li Y, Fan R, et al. Silver@prussian blue core-satellite nanostructures as multimetal ions switch for potent zero-background SERS bioimaging-guided chronic wound healing. Nano Lett. 2023;23(18):8761-8769. doi: 10.1021/acs.nanolett.3c02857
  77. Li Z, Zhao Y, Huang H, et al. A nanozyme-immobilized hydrogel with endogenous ROS-scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv Healthc Mater. 2022;11(22):2201524. doi: 10.1002/adhm.202201524
  78. Cano SM, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants. 2018;7(8):98. doi: 10.3390/antiox7080098
  79. Ding Q, Sun T, Su W, et al. Bioinspired multifunctional black phosphorus hydrogel with antibacterial and antioxidant properties: a stepwise countermeasure for diabetic skin wound healing. Adv Healthc Mater. 2022; 11(12):2102791. doi: 10.1002/adhm.202102791
  80. Lee H, Kim KS, Zare I, et al. Smart nanomaterials for multimodal theranostics and tissue regeneration. Coord Chem Rev. 2025;541:216801. doi: 10.1016/j.ccr.2025.216801
  81. Chen Y, Han H, Liu L, et al. 3D bioprinted nanozyme-enhanced GelMA hydrogel with antioxidant/anti-inflammatory potential for bone repair. Nano Res. 2025;18:94907979. doi: 10.26599/nr.2025.94907979
  82. Muñoz TG, Dahis D, Dosta P, Edelman E, Artzi N. Sprayable hydrogel sealant for gastrointestinal wound shielding. Adv Mater. 2024;36(24):2311798. doi: 10.1002/adma.202311798
  83. Lu Z, Cui J, Liu F, et al. A 4D printed adhesive, thermo-contractile, and degradable hydrogel for diabetic wound healing. Adv Healthc Mater. 2024;13(10):2303499. doi: 10.1002/adhm.202303499
  84. Maschalidi S, Mehrotra P, Keçeli BN, et al. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature. 2022;606(7915):776-784. doi: 10.1038/s41586-022-04754-6
  85. Theocharidis G, Yuk H, Roh H, et al. A strain-programmed patch for the healing of diabetic wounds. Nat Biomed Eng. 2022;6(10):1118-1133. doi: 10.1038/s41551-022-00905-2
  86. Xiong Y, Feng Q, Lu L, et al. Metal–organic frameworks and their composites for chronic wound healing: from bench to bedside. Adv Mater. 2024;36(2):2302587. doi: 10.1002/adma.202302587
  87. Liu H, Mei H, Jiang H, et al. Bioprinted symbiotic dressings: a lichen-inspired approach to diabetic wound healing with enhanced bioactivity and structural integrity. Small. 2025;21(4):2407105. doi: 10.1002/smll.202407105
  88. Wang Z, Lao A, Huang X, Zhou Y, Shen SG, Lin D. Apt- 19s-functionalized 3D-printed mesoporous bioactive glass scaffold promotes BMSC recruitment in bone regeneration via SDF-1α/CXCR4 axis and MAPK signaling. Adv Funct Mater. 2024;34(27):2316675. doi: 10.1002/adfm.202316675
  89. Li L, Wang Z, Wang K, et al. Paintable bioactive extracellular vesicle ink for wound healing. ACS Appl Mater Interfaces. 2023;15(21):25427-25436. doi: 10.1021/acsami.3c03630
  90. Yu Q, Wang Q, Zhang L, et al. The applications of 3D printing in wound healing: the external delivery of stem cells and antibiosis. Adv Drug Deliv Rev. 2023;197:114823. doi: 10.1016/j.addr.2023.114823
  91. Guo L, Niu X, Chen X, Lu F, Gao J, Chang Q. 3D direct writing egg white hydrogel promotes diabetic chronic wound healing via self-relied bioactive property. Biomaterials. 2022;282:121406. doi: 10.1016/j.biomaterials.2022.121406
  92. Rybak D, Du J, Nakielski P, et al. NIR-light activable 3D printed platform nanoarchitectured with electrospun plasmonic filaments for on demand treatment of infected wounds. Adv Healthc Mater. 2025;14(6):2404274. doi: 10.1002/adhm.202404274
  93. Zhang S, Huang D, Lin H, Xiao Y, Zhang X. Cellulose nanocrystal reinforced collagen-based nanocomposite hydrogel with self-healing and stress-relaxation properties for cell delivery. Biomacromolecules. 2020;21(6): 2400-2408. doi: 10.1021/acs.biomac.0c00345
  94. Li X, Teng Y, Liu J, Lin H, Fan Y, Zhang X. Chondrogenic differentiation of BMSCs encapsulated in chondroinductive polysaccharide/collagen hybrid hydrogels. J Mater Chem B. 2017;5(26):5109-5119. doi: 10.1039/c7tb01020f
  95. Yang J, Tang Z, Liu Y, Luo Z, Xiao Y, Zhang X. Comparison of chondro-inductivity between collagen and hyaluronic acid hydrogel based on chemical/physical microenvironment. Int J Biol Macromol. 2021;182:1941-1952. doi: 10.1016/j.ijbiomac.2021.05.188
  96. Moura FBR, Ferreira BA, Muniz EH, et al. Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites. Int J Pharm. 2022;617:121620. doi: 10.1016/j.ijpharm.2022.121620
  97. Kong X, Fu J, Shao K, Wang L, Lan X, Shi J. Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomater. 2019;100:255-269. doi: 10.1016/j.actbio.2019.10.011
  98. Liang M, Dong L, Guo Z, et al. Collagen-hyaluronic acid composite hydrogels with applications for chronic diabetic wound repair. ACS Biomater Sci Eng. 2023;9(9): 5376-5388. doi: 10.1021/acsbiomaterials.3c00695
  99. Huang F, Gao T, Feng Y, et al. Bioinspired collagen scaffold loaded with bFGF-overexpressing human mesenchymal stromal cells accelerating diabetic skin wound healing via HIF-1 signal pathway regulated neovascularization. ACS Appl Mater Interfaces. 2024;16(14):17072-17085. doi: 10.1021/acsami.4c08174
  100. Liu S, Luan Z, Wang T, et al. Endoscopy deliverable and mushroom-cap-inspired hyperboloid-shaped drug-laden bioadhesive hydrogel for stomach perforation repair. ACS Nano. 2023;17(1):111-126. doi: 10.1021/acsnano.2c05247
  101. Wang J, Li J, Sun Y, et al. Genetically encoded incorporation of IFN-α into collagen-like protein-hyaluronic acid hydrogels for diabetic chronic wound healing. ACS Mater Lett. 2024;6(9):4133-4141. doi: 10.1021/acsmaterialslett.4c01170
  102. Jiang J, Wang F, Huang W, et al. Mobile mechanical signal generator for macrophage polarization. Explor. 2023;3(2):20220147. doi: 10.1002/exp.20220147
  103. Louiselle AE, Niemiec SM, Zgheib C, Liechty KW. Macrophage polarization and diabetic wound healing. Transl Res. 2021;236:109-116. doi: 10.1093/burnst/tkac051
  104. Kong L, Wu Z, Zhao H, et al. Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing. ACS Appl Mater Interfaces. 2018;10(36):30103-30114. doi: 10.1021/acsami.8b09191
  105. Choi SM, Lee KM, Kim HJ, et al. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice. Acta Biomater. 2017;66:325-334. doi: 10.1016/j.actbio.2017.11.045
  106. Bonito V, Smits AIPM, Goor OJGM, et al. Modulation of macrophage phenotype and protein secretion via heparin- IL-4 functionalized supramolecular elastomers. Acta Biomater. 2018;71:247-260. doi: 10.1016/j.actbio.2018.02.032
  107. Koria P, Yagi H, Kitagawa Y, et al. Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. Proc Natl Acad Sci U S A. 2011;108(3):1034-1039. doi: 10.1073/pnas.1009881108
  108. Chen Y, Chen W, Ren Y, et al. Macrophage-targeted efferocytosis therapy promotes diabetic wound healing via cellular level debridement. Adv Funct Mater. 2025;2503035. doi: 10.1002/adfm.202503035
  109. Fu YJ, Shi YF, Wang LY, et al. All-natural immunomodulatory bioadhesive hydrogel promotes angiogenesis and diabetic wound healing by regulating macrophage heterogeneity. Adv Sci. 2023;10(13):2206771. doi: 10.1002/advs.202206771
  110. Shi Y, Wang S, Wang K, et al. Relieving macrophage dysfunction by inhibiting SREBP2 activity: a hypoxic mesenchymal stem cells-derived exosomes loaded multifunctional hydrogel for accelerated diabetic wound healing. Small. 2024;20(25):2309276. doi: 10.1002/smll.202309276
  111. Shu F, Huang H, Xiao S, Xia Z, Zheng Y. Netrin-1 co-cross-linked hydrogel accelerates diabetic wound healing in situ by modulating macrophage heterogeneity and promoting angiogenesis. Bioact Mater. 2024;39:302-316. doi: 10.1016/j.bioactmat.2024.04.019
  112. Wang H, Zhou M, Ruan Y, et al. 2A-biohydrogels accelerate diabetic wound healing by promoting M2 macrophage polarization and functionalized mitochondrial transfer to endothelial cells. Chem Eng J. 2025;514:163130. doi: 10.1016/j.cej.2025.163130
  113. Su Z, Zhang W, Mo Z, et al. Novel asymmetrical double-layer structural adhesive hydrogels with synergetic neuroprotection and angiogenesis effect for diabetic wound healing. Chem Eng J. 2024;492:159081. doi: 10.1016/j.cej.2024.159081
  114. Wang Z, Xu J, Wu X, et al. A sprayable Janus hydrogel as an effective bioadhesive for gastrointestinal perforation repair. Adv Funct Mater. 2024;34(48):2408479. doi: 10.1002/adfm.202408479
  115. Liu C, Yalavarthi S, Tambralli A, et al. Inhibition of neutrophil extracellular trap formation alleviates vascular dysfunction in type 1 diabetic mice. Sci Adv. 2023;9(43):eadj1019. doi: 10.1126/sciadv.adj1019
  116. Okonkwo UA, Chen L, Ma D, et al. Compromised angiogenesis and vascular integrity in impaired diabetic wound healing. PLoS One. 2020;15(4):e0231962. doi: 10.1371/journal.pone.0231962
  117. Luo Y, Zhang T, Lin X. 3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization. Chem Eng J. 2022;430:132926. doi: 10.1016/j.cej.2021.132926
  118. Mujawar SS, Arbade GK, Bisht N, et al. 3D printed Aloe barbadensis loaded alginate-gelatin hydrogel for wound healing and scar reduction: in vitro and in vivo study. Int J Biol Macromol. 2025;296:139745. doi: 10.1016/j.ijbiomac.2025.139745
  119. Shao Z, Yin T, Jiang J, He Y, Xiang T, Zhou S. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact Mater. 2023;20:561-573. doi: 10.1016/j.bioactmat.2022.06.018
  120. Han X, Chen S, Cai Z, et al. A diagnostic and therapeutic hydrogel to promote vascularization via blood sugar reduction for wound healing. Adv Funct Mater. 2023;33(14):2213008. doi: 10.1002/adfm.202213008
  121. Huang W, Guo Q, Wu H, Zheng Y, Xiang T, Zhou S. Engineered exosomes loaded in intrinsic immunomodulatory hydrogels with promoting angiogenesis for programmed therapy of diabetic wounds. ACS Nano. 2025;19(14):14467-14483. doi: 10.1021/acsnano.5c02896
  122. Kim K, Yang J, Li C, et al. Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments. Bioact Mater. 2025;47:64-82. doi: 10.1016/j.bioactmat.2025.01.004
  123. Chen J, Qin S, Liu S, et al. Targeting matrix metalloproteases in diabetic wound healing. Front Immunol. 2023;14:1089001. doi: 10.3389/fimmu.2023.1089001
  124. Lan B, Zhang L, Yang L, et al. Sustained delivery of MMP- 9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J Nanobiotechnol. 2021;19(1):130. doi: 10.1186/s12951-021-00869-6
  125. Lei H, Fan D. A combination therapy using electrical stimulation and adaptive, conductive hydrogels loaded with self-assembled nanogels incorporating short interfering RNA promotes the repair of diabetic chronic wounds. Adv Sci. 2022;9(30):2201425. doi: 10.1002/advs.202201425
  126. Wu L, Chen Y, Zeng G, et al. Supramolecular peptide hydrogel doped with nanoparticles for local siRNA delivery and diabetic wound healing. Chem Eng J. 2023;457:141244. doi: 10.1016/j.cej.2022.141244
  127. Zheng X, Deng S, Li Y, et al. Targeting m6A demethylase FTO to heal diabetic wounds with ROS-scavenging nanocolloidal hydrogels. Biomaterials. 2025;317:123065. doi: 10.1016/j.biomaterials.2024.123065
  128. Shi S, Hu L, Hu D, Ou X, Huang Y. Emerging nanotherapeutic approaches for diabetic wound healing. Int J Nanomed. 2024;19:8815-8830. doi: 10.2147/ijn.s476006

 

 

 

 

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing