3D-printed hydrogels for treating diabetic wounds: Recent developments
Diabetic wound healing disorder is one of the common complications in diabetic patients, characterized by chronic inflammation, impaired angiogenesis, abnormal extracellular matrix (ECM) remodeling, and markedly elevated oxidative stress. Although traditional treatment models have achieved some success, they still face challenges such as prolonged wound healing duration, increased risk of infection, and continuous formation of scar tissue, particularly in gastrointestinal surgical incisions, breast surgery incisions, orthopedic surgical incisions, and neurosurgical incisions. In recent years, the integration of biomaterials and advanced manufacturing technologies has brought new opportunities for diabetic wound healing. Hydrogels have gained increasing attention due to their excellent biocompatibility, degradability, and significant wound healing ability. As an emerging advanced manufacturing method, 3D printing technology could accurately fabricate hydrogels according to the shape and size of the wound, providing an ideal microenvironment for wound healing. This work systematically reviewed the latest research on 3D-printed hydrogels in diabetic wound healing in the past 5 years. It also thoroughly discussed the preparation methods, including physical, chemical, and biological cross-linking methods, and the specific mechanisms of promoting wound healing, such as regulating inflammatory response, promoting angiogenesis, and guiding the normal remodeling of ECM. This review aimed to provide a solid theoretical and experimental basis for the continued development and eventual clinical application of 3D-printed hydrogels for diabetic wounds.
- Chung WK, Erion K, Florez JC, et al. Precision medicine in diabetes: A consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(7):1617-1635. doi: 10.2337/dci20-0022
- Zhang J, Lin C, Jin S, et al. The pharmacology and therapeutic role of cannabidiol in diabetes. Exploration. 2023;3(5):20230047. doi: 10.1002/EXP.20230047
- Ogurtsova K, Guariguata L, Barengo NC, et al. IDF diabetes atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract. 2022;183:109118. doi: 10.1016/j.diabres.2021.109118
- Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi: 10.1016/j.diabres.2019.107843
- Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-281. doi: 10.1016/j.diabres.2018.02.023
- Verma AK, Goyal Y, Bhatt D, et al. A compendium of perspectives on diabetes: A challenge for sustainable health in the modern era. Diabetes Metab Syndr Obes. 2021;14:2775-2787. doi: 10.2147/DMSO.S304751
- Sharma S, Kishen A. Dysfunctional crosstalk between macrophages and fibroblasts under LPS-infected and hyperglycemic environment in diabetic wounds. Sci Rep. 2025;15(1). doi: 10.1038/s41598-025-00673-4
- Kartika RW, Alwi I, Suyatna FD, et al. The role of VEGF, PDGF and IL-6 on diabetic foot ulcer after platelet rich fibrin + hyaluronic therapy. Heliyon. 2021;7(9):e07934. doi: 10.1016/j.heliyon.2021.e07934
- Sharifiaghdam M, Shaabani E, Faridi-Majidi R, et al. Macrophages as a therapeutic target to promote diabetic wound healing. Mol Ther. 2022;30(9):2891-2908. doi: 10.1016/j.ymthe.2022.07.016
- Kamal R, Awasthi A, Pundir M, et al. Healing the diabetic wound: Unlocking the secrets of genes and pathways. Eur J Pharmacol. 2024;975:176645. doi: 10.1016/j.ejphar.2024.176645
- Prema D, Balashanmugam P, Kumar JS, et al. Fabrication of GO/ZnO nanocomposite incorporated patch for enhanced wound healing in streptozotocin (STZ) induced diabetic rats. Colloid Surface A. 2022;649:129331. doi: 10.1016/j.colsurfa.2022.129331
- Talebi M, Ghale RA, Asl RM, et al. Advancements in characterization and preclinical applications of hyaluronic acid-based biomaterials for wound healing: A review. Carbohydr Polym Tech. 2025;9:100706. doi: 10.1016/j.carpta.2025.100706
- Yong SK, Meera G. Macrophages in wound healing: Activation and plasticity. Immunol Cell Biol. 2019;97(3):258-267. doi: 10.1111/imcb.12236
- Wang X, Ding J, Chen X, et al. Light-activated nanoclusters with tunable ROS for wound infection treatment. Bioact Mater. 2024;41:385-399. doi: 10.1016/j.bioactmat.2024.07.009
- Nguyen HM, Le TTN, Nguyen AT, et al. Biomedical materials for wound dressing: Recent advances and applications. RSC Adv. 2023;13(8):5509-5528. doi: 10.1039/d2ra07673j
- Kim JH, Ruegger PR, Lebig EG, et al. High levels of oxidative stress create a microenvironment that significantly decreases the diversity of the microbiota in diabetic chronic wounds and promotes biofilm formation. Front Cell Infect Microbiol. 2020;10:259. doi: 10.3389/fcimb.2020.00259
- Li M, Xia W, Khoong YM, et al. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res. 2023;27(1):87. doi: 10.1186/s40824-023-00426-2
- Shi S, Wang L, Song C, et al. Recent progresses of collagen dressings for chronic skin wound healing. Collagen Leather. 2023;5(1):31. doi: 10.1186/s42825-023-00136-4
- Zhou C, Sheng C, Gao L, et al. Engineering poly(ionic liquid) semi-IPN hydrogels with fast antibacterial and anti-inflammatory properties for wound healing. Chem Eng J. 2021;413:127429. doi: 10.1016/j.cej.2020.127429
- Zhao X, Xue W, Ding W, et al. A novel injectable sodium alginate/chitosan/sulfated bacterial cellulose hydrogel as biohybrid artificial pancreas for real-time glycaemic regulation. Carbohydr Polym. 2025;354:123323. doi: 10.1016/j.carbpol.2025.123323
- Chen J, He J, Yang Y, et al. Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomater. 2022;146:119-130. doi: 10.1016/j.actbio.2022.04.041
- Miao L, Lu X, Wei Y, et al. Near-infrared light-responsive nanocomposite hydrogels loaded with epidermal growth factor for diabetic wound healing. Mater Today Bio. 2025;31:101578. doi: 10.1016/j.mtbio.2025.101578
- Zhang L, Nasar NKA, Huang X, et al. Light-assisted 3D-printed hydrogels for antibacterial applications. Small Sci. 2024;4(8):2400097. doi: 10.1002/smsc.202400097
- Li J, Wang Y, Fan L, et al. Liquid metal hybrid antibacterial hydrogel scaffolds from 3D printing for wound healing. Chem Eng J. 2024;496:153805. doi: 10.1016/j.cej.2024.153805
- Ma R, Xu L, Li Z, et al. NIR-responsive tissue-adaptive hydrogel for accelerating healing of seawater-immersed wounds. Mater Today Bio. 2025;32:101915. doi: 10.1016/j.mtbio.2025.101915
- Ribeiro MM, Simões M, Vitorino C, et al. Physical crosslinking of hydrogels: The potential of dynamic and reversible bonds in burn care. Coord Chem Rev. 2025;542:216868. doi: 10.1016/j.ccr.2025.216868
- Yang J, Chen Y, Zhao L, et al. Constructions and properties of physically cross-linked hydrogels based on natural polymers. Polym Rev. 2022;63(3):574-612. doi: 10.1080/15583724.2022.2137525
- Drzewiecki KE, Parmar AS, Gaudet ID, et al. Methacrylation induces rapid, temperature-dependent, reversible self-assembly of type-I collagen. Langmuir. 2014;30:11204-11211. doi: 10.1021/la502418s
- Rombouts HW, Kort DWD, Pham TTH, et al. Reversible temperature-switching of hydrogel stiffness of coassembled, silk-collagen-like hydrogels. Biomacromolecules. 2015;16(8):2506-2513. doi: 10.1021/acs.biomac.5b00766
- Sun-Hee C, Ahreum K, Woojung S, et al. Photothermo-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid) hydrogel. Int J Nanomedicine. 2017;12:2607-2620. doi: 10.2147/ijn.s133078
- Naik K, Singh P, Yadav M, et al. 3D printable, injectable amyloid-based composite hydrogel of bovine serum albumin and aloe vera for rapid diabetic wound healing. J Mater Chem B. 2023;11(34):8142-8158. doi: 10.1039/D3TB01151H
- Zhang X, Gan J, Fan L, et al. Bioinspired adaptable indwelling microneedles for treatment of diabetic ulcers. Adv Mater. 2023;35(23):2210903. doi: 10.1002/adma.202210903
- Xia S, Weng T, Jin R, et al. Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds. Burns Trauma. 2022;10:tkac001. doi: 10.1093/burnst/tkac001
- Kumi M, Hou Z, Zhang Y, et al. 3D printed chitosan-based flexible electrode with antimicrobial properties for electrical stimulation therapy in wound healing. Supramol Mater. 2025;4:100110. doi: 10.1016/j.supmat.2025.100110
- Metwally WM, El-Habashy SE, El-Hosseiny LS, et al. Bioinspired 3D-printed scaffold embedding DDAB-nano ZnO/nanofibrous microspheres for regenerative diabetic wound healing. Biofabrication. 2023;16(1):015001. doi: 10.1088/1758-5090/acfd60
- Xue X, Hu Y, Wang S, et al. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 2022;12:327-339. doi: 10.1016/j.bioactmat.2021.10.029
- Zhang Q, Yan K, Zheng X, et al. Research progress of photo-crosslink hydrogels in ophthalmology: A comprehensive review focus on the applications. Mater Today Bio. 2024;26:101082. doi: 10.1016/j.mtbio.2024.101082
- Chen Z, Song S, Zeng H, et al. 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem Eng J. 2023;471:144649. doi: 10.1016/j.cej.2023.144649
- Cao W, Peng S, Yao Y, et al. A nanofibrous membrane loaded with doxycycline and printed with conductive hydrogel strips promotes diabetic wound healing in vivo. Acta Biomater. 2022;152:60-73. doi: 10.1016/j.actbio.2022.08.048
- Li S, Xu Y, Zheng L, et al. High self-supporting chitosan-based hydrogel ink for in situ 3D printed diabetic wound dressing. Adv Funct Mater. 2024;35(5):2414625. doi: 10.1002/adfm.202414625
- Ding N, Fu X, Gui Q, et al. Biomimetic structure hydrogel loaded with long-term storage platelet-rich plasma in diabetic wound repair. Adv Healthc Mater. 2023;13(10):2303192. doi: 10.1002/adhm.202303192
- Hu Y, Xiong Y, Zhu Y, et al. Copper-epigallocatechin gallate enhances therapeutic effects of 3D-printed dermal scaffolds in mitigating diabetic wound scarring. ACS Appl Mater Interfaces. 2023;15(32):38230-38246. doi: 10.1021/acsami.3c04733
- Wan T, Fan P, Zhang M, et al. Multiple crosslinking hyaluronic acid hydrogels with improved strength and 3D printability. ACS Appl Bio Mater. 2021; 5(1):334-343. doi: 10.1021/acsabm.1c01141
- Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Rad JS. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur Polym J. 2019;117:64-76. doi: 10.1016/j.eurpolymj.2019.05.004
- Fu C, Liu G, Fan Y, et al. Highly printable and multifunctional cell-laden collagen-based bioinks for precise DLP bioprinting and rapid diabetic wound regeneration. Mater Today Bio. 2025;32:101908. doi: 10.1016/j.mtbio.2025.101908
- Yang H, Wang Y, Li R, et al. A 3D-printed grid-like hyaluronic acid-based hydrogel loaded with deferoxamine as wound dressing promotes diabetic wound healing. Int J Biol Macromol. 2025;303:140598. doi: 10.1016/j.ijbiomac.2025.140598
- Lin Z, Xie W, Cui Z, Huang J, Cao H, Li Y. 3D printed alginate/gelatin-based porous hydrogel scaffolds to improve diabetic wound healing. Giant. 2023;16:100185. doi: 10.1016/j.giant.2023.100185
- Ding X, Yu Y, Li W, Zhao Y. In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter. 2023;6(3):1000-1014. doi: 10.1016/j.matt.2023.01.001
- Finetti C, Sola L, Elliott J, Chiari M. Synthesis of hydrogel via click chemistry for DNA electrophoresis. J Chromatogr A. 2017;1513:226-234. doi: 10.1016/j.chroma.2017.07.042
- Li Y, Wang X, Han Y, Sun HY, Hilborn J, Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater. 2021;16(2):022003. doi: 10.1088/1748-605X/abc0b3
- Huang J, Yang R, Jiao J, et al. A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing. Nat Commun. 2023;14(1):7856. doi: 10.1038/s41467-023-43364-2
- Moreira TLS, Feijen J, van Be CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials. 2012;33(5):1281-1290. doi: 10.1016/j.biomaterials.2011.10.067
- Zhang Y, Cao Y, Zhao H, et al. An injectable BMSC-laden enzyme-catalyzed crosslinking collagen-hyaluronic acid hydrogel for cartilage repair and regeneration. J Mater Chem B. 2020;8(19):4237-4244. doi: 10.1039/d0tb00291g
- Mahran A, Howaili F, Bhadane R, et al. Functional enzyme delivery via surface-modified mesoporous silica nanoparticles in 3D printed nanocomposite hydrogels. Eur J Pharm Sci. 2025;211:107132. doi: 10.1016/j.ejps.2025.107132
- Sakai S, Yamamoto S, Hirami R, Hidaka M, Elvitigala KCML. Enzymatically gellable chitosan inks with enhanced printability by chitosan nanofibers for 3D printing of wound dressings. Eur Polym J. 2024;210:112960. doi: 10.1016/j.eurpolymj.2024.112960
- Huang J, Lei X, Huang Z, et al. Bioprinted gelatin-recombinant type III collagen hydrogel promotes wound healing. Int J Bioprinting. 2022;8(2):517. doi: 10.18063/ijb.v8i2.517
- Jafari H, Alimoradi H, Delporte C, et al. An injectable, self-healing, 3D printable, double network co-enzymatically crosslinked hydrogel using marine poly- and oligo-saccharides for wound healing application. Appl Mater Today. 2022;29:101581. doi: 10.1016/j.apmt.2022.101581
- Zhou M, Lee BH, Tan YJ, Tan LP. Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing. Biofabrication. 2019;11(2):025011. doi: 10.1088/1758-5090/ab063f
- Hassan M, Misra M, Taylor GW, Mohanty AK. A review of AI for optimization of 3D printing of sustainable polymers and composites. Compos Part C Open Access. 2024; 15:100513. doi: 10.1016/j.jcomc.2024.100513
- Mohammad S, Akand R, Cook KM, Nilufar S, Chowdhury F. Leveraging deep learning and generative AI for predicting rheological properties and material compositions of 3D printed polyacrylamide hydrogels. Gels. 2024; 10(10):660. doi: 10.3390/gels10100660
- Chen B, Dong J, Ruelas M, et al. Artificial intelligence-assisted high-throughput screening of printing conditions of hydrogel architectures for accelerated diabetic wound healing. Adv Funct Mater. 2022;32(38):2201843. doi: 10.1002/adfm.202201843
- Kim N, Lee H, Han G, et al. 3D-printed functional hydrogel by DNA-induced biomineralization for accelerated diabetic wound healing. Adv Sci. 2023;10(17):2300816. doi: 10.1002/advs.202300816
- Gao J, Yu X, Wang X, He Y, Ding J. Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine. Engineering. 2022;13:31-45. doi: 10.1016/j.eng.2021.11.025
- Lin X, Mao Y, Li P, et al. Ultra-conformable ionic skin with multi-modal sensing, broad-spectrum antimicrobial and regenerative capabilities for smart and expedited wound care. Adv Sci. 2021;8(9):2004627. doi: 10.1002/advs.202004627
- Li J, Zhang T, Pan M, et al. Nanofiber/hydrogel core-shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing. J Nanobiotechnol. 2022;20(1):28. doi: 10.1186/s12951-021-01208-5
- Sun Z, Zhao Q, Ma S, Wu J. DLP 3D printed hydrogels with hierarchical structures post-programmed by lyophilization and ionic locking. Mater Horiz. 2023;10(1):179-186. doi: 10.1039/d2mh00962e
- Zhou X, Yu X, You T, et al. 3D printing-based hydrogel dressings for wound healing. Adv Sci. 2024;11(47):2404580. doi: 10.1002/advs.202404580
- Xu C, Dai G, Hong Y. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Acta Biomater. 2019;95:50-59. doi: 10.1016/j.actbio.2019.05.032
- Jin E, Yang Y, Cong S, et al. Lemon-derived nanoparticle-functionalized hydrogels regulate macrophage reprogramming to promote diabetic wound healing. J Nanobiotechnol. 2025;23(1):68. doi: 10.1186/s12951-025-03138-y
- Huang Y, Song M, Li X, et al. Temperature-responsive self-contraction nanofiber/hydrogel composite dressing facilitates the healing of diabetic-infected wounds. Mater Today Bio. 2024;28:101214. doi: 10.1016/j.mtbio.2024.101214
- Schäfer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacol Res. 2008;58(2):165-171. doi: 10.1016/j.phrs.2008.06.004
- Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736-1743. doi: 10.1016/S0140-6736(05)67700-8
- Wei H, Zhang H, Yan S, et al. 3D-printed ROS-scavenging, proangiogenic, and biodegradable hydrogel for enhancing burn wound healing. ACS Appl Mater Interfaces. 2025;17(28):39955-39966. doi: 10.1021/acsami.5c04216
- Fellin C, Steiner R, Yuan X, Jariwala S. A collagen-based biomaterial ink for the digital light processing 3D printing of tough, dual-crosslinked hydrogels via post-print tannic acid treatment. Bioprinting. 2025;50:e0042. doi: 10.2139/ssrn.5164808
- Tu C, Lu H, Zhou T, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials. 2022;286:121597. doi: 10.1016/j.biomaterials.2022.121597
- Guo Y, Li Y, Fan R, et al. Silver@prussian blue core-satellite nanostructures as multimetal ions switch for potent zero-background SERS bioimaging-guided chronic wound healing. Nano Lett. 2023;23(18):8761-8769. doi: 10.1021/acs.nanolett.3c02857
- Li Z, Zhao Y, Huang H, et al. A nanozyme-immobilized hydrogel with endogenous ROS-scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv Healthc Mater. 2022;11(22):2201524. doi: 10.1002/adhm.202201524
- Cano SM, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants. 2018;7(8):98. doi: 10.3390/antiox7080098
- Ding Q, Sun T, Su W, et al. Bioinspired multifunctional black phosphorus hydrogel with antibacterial and antioxidant properties: a stepwise countermeasure for diabetic skin wound healing. Adv Healthc Mater. 2022; 11(12):2102791. doi: 10.1002/adhm.202102791
- Lee H, Kim KS, Zare I, et al. Smart nanomaterials for multimodal theranostics and tissue regeneration. Coord Chem Rev. 2025;541:216801. doi: 10.1016/j.ccr.2025.216801
- Chen Y, Han H, Liu L, et al. 3D bioprinted nanozyme-enhanced GelMA hydrogel with antioxidant/anti-inflammatory potential for bone repair. Nano Res. 2025;18:94907979. doi: 10.26599/nr.2025.94907979
- Muñoz TG, Dahis D, Dosta P, Edelman E, Artzi N. Sprayable hydrogel sealant for gastrointestinal wound shielding. Adv Mater. 2024;36(24):2311798. doi: 10.1002/adma.202311798
- Lu Z, Cui J, Liu F, et al. A 4D printed adhesive, thermo-contractile, and degradable hydrogel for diabetic wound healing. Adv Healthc Mater. 2024;13(10):2303499. doi: 10.1002/adhm.202303499
- Maschalidi S, Mehrotra P, Keçeli BN, et al. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature. 2022;606(7915):776-784. doi: 10.1038/s41586-022-04754-6
- Theocharidis G, Yuk H, Roh H, et al. A strain-programmed patch for the healing of diabetic wounds. Nat Biomed Eng. 2022;6(10):1118-1133. doi: 10.1038/s41551-022-00905-2
- Xiong Y, Feng Q, Lu L, et al. Metal–organic frameworks and their composites for chronic wound healing: from bench to bedside. Adv Mater. 2024;36(2):2302587. doi: 10.1002/adma.202302587
- Liu H, Mei H, Jiang H, et al. Bioprinted symbiotic dressings: a lichen-inspired approach to diabetic wound healing with enhanced bioactivity and structural integrity. Small. 2025;21(4):2407105. doi: 10.1002/smll.202407105
- Wang Z, Lao A, Huang X, Zhou Y, Shen SG, Lin D. Apt- 19s-functionalized 3D-printed mesoporous bioactive glass scaffold promotes BMSC recruitment in bone regeneration via SDF-1α/CXCR4 axis and MAPK signaling. Adv Funct Mater. 2024;34(27):2316675. doi: 10.1002/adfm.202316675
- Li L, Wang Z, Wang K, et al. Paintable bioactive extracellular vesicle ink for wound healing. ACS Appl Mater Interfaces. 2023;15(21):25427-25436. doi: 10.1021/acsami.3c03630
- Yu Q, Wang Q, Zhang L, et al. The applications of 3D printing in wound healing: the external delivery of stem cells and antibiosis. Adv Drug Deliv Rev. 2023;197:114823. doi: 10.1016/j.addr.2023.114823
- Guo L, Niu X, Chen X, Lu F, Gao J, Chang Q. 3D direct writing egg white hydrogel promotes diabetic chronic wound healing via self-relied bioactive property. Biomaterials. 2022;282:121406. doi: 10.1016/j.biomaterials.2022.121406
- Rybak D, Du J, Nakielski P, et al. NIR-light activable 3D printed platform nanoarchitectured with electrospun plasmonic filaments for on demand treatment of infected wounds. Adv Healthc Mater. 2025;14(6):2404274. doi: 10.1002/adhm.202404274
- Zhang S, Huang D, Lin H, Xiao Y, Zhang X. Cellulose nanocrystal reinforced collagen-based nanocomposite hydrogel with self-healing and stress-relaxation properties for cell delivery. Biomacromolecules. 2020;21(6): 2400-2408. doi: 10.1021/acs.biomac.0c00345
- Li X, Teng Y, Liu J, Lin H, Fan Y, Zhang X. Chondrogenic differentiation of BMSCs encapsulated in chondroinductive polysaccharide/collagen hybrid hydrogels. J Mater Chem B. 2017;5(26):5109-5119. doi: 10.1039/c7tb01020f
- Yang J, Tang Z, Liu Y, Luo Z, Xiao Y, Zhang X. Comparison of chondro-inductivity between collagen and hyaluronic acid hydrogel based on chemical/physical microenvironment. Int J Biol Macromol. 2021;182:1941-1952. doi: 10.1016/j.ijbiomac.2021.05.188
- Moura FBR, Ferreira BA, Muniz EH, et al. Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites. Int J Pharm. 2022;617:121620. doi: 10.1016/j.ijpharm.2022.121620
- Kong X, Fu J, Shao K, Wang L, Lan X, Shi J. Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomater. 2019;100:255-269. doi: 10.1016/j.actbio.2019.10.011
- Liang M, Dong L, Guo Z, et al. Collagen-hyaluronic acid composite hydrogels with applications for chronic diabetic wound repair. ACS Biomater Sci Eng. 2023;9(9): 5376-5388. doi: 10.1021/acsbiomaterials.3c00695
- Huang F, Gao T, Feng Y, et al. Bioinspired collagen scaffold loaded with bFGF-overexpressing human mesenchymal stromal cells accelerating diabetic skin wound healing via HIF-1 signal pathway regulated neovascularization. ACS Appl Mater Interfaces. 2024;16(14):17072-17085. doi: 10.1021/acsami.4c08174
- Liu S, Luan Z, Wang T, et al. Endoscopy deliverable and mushroom-cap-inspired hyperboloid-shaped drug-laden bioadhesive hydrogel for stomach perforation repair. ACS Nano. 2023;17(1):111-126. doi: 10.1021/acsnano.2c05247
- Wang J, Li J, Sun Y, et al. Genetically encoded incorporation of IFN-α into collagen-like protein-hyaluronic acid hydrogels for diabetic chronic wound healing. ACS Mater Lett. 2024;6(9):4133-4141. doi: 10.1021/acsmaterialslett.4c01170
- Jiang J, Wang F, Huang W, et al. Mobile mechanical signal generator for macrophage polarization. Explor. 2023;3(2):20220147. doi: 10.1002/exp.20220147
- Louiselle AE, Niemiec SM, Zgheib C, Liechty KW. Macrophage polarization and diabetic wound healing. Transl Res. 2021;236:109-116. doi: 10.1093/burnst/tkac051
- Kong L, Wu Z, Zhao H, et al. Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing. ACS Appl Mater Interfaces. 2018;10(36):30103-30114. doi: 10.1021/acsami.8b09191
- Choi SM, Lee KM, Kim HJ, et al. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice. Acta Biomater. 2017;66:325-334. doi: 10.1016/j.actbio.2017.11.045
- Bonito V, Smits AIPM, Goor OJGM, et al. Modulation of macrophage phenotype and protein secretion via heparin- IL-4 functionalized supramolecular elastomers. Acta Biomater. 2018;71:247-260. doi: 10.1016/j.actbio.2018.02.032
- Koria P, Yagi H, Kitagawa Y, et al. Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. Proc Natl Acad Sci U S A. 2011;108(3):1034-1039. doi: 10.1073/pnas.1009881108
- Chen Y, Chen W, Ren Y, et al. Macrophage-targeted efferocytosis therapy promotes diabetic wound healing via cellular level debridement. Adv Funct Mater. 2025;2503035. doi: 10.1002/adfm.202503035
- Fu YJ, Shi YF, Wang LY, et al. All-natural immunomodulatory bioadhesive hydrogel promotes angiogenesis and diabetic wound healing by regulating macrophage heterogeneity. Adv Sci. 2023;10(13):2206771. doi: 10.1002/advs.202206771
- Shi Y, Wang S, Wang K, et al. Relieving macrophage dysfunction by inhibiting SREBP2 activity: a hypoxic mesenchymal stem cells-derived exosomes loaded multifunctional hydrogel for accelerated diabetic wound healing. Small. 2024;20(25):2309276. doi: 10.1002/smll.202309276
- Shu F, Huang H, Xiao S, Xia Z, Zheng Y. Netrin-1 co-cross-linked hydrogel accelerates diabetic wound healing in situ by modulating macrophage heterogeneity and promoting angiogenesis. Bioact Mater. 2024;39:302-316. doi: 10.1016/j.bioactmat.2024.04.019
- Wang H, Zhou M, Ruan Y, et al. 2A-biohydrogels accelerate diabetic wound healing by promoting M2 macrophage polarization and functionalized mitochondrial transfer to endothelial cells. Chem Eng J. 2025;514:163130. doi: 10.1016/j.cej.2025.163130
- Su Z, Zhang W, Mo Z, et al. Novel asymmetrical double-layer structural adhesive hydrogels with synergetic neuroprotection and angiogenesis effect for diabetic wound healing. Chem Eng J. 2024;492:159081. doi: 10.1016/j.cej.2024.159081
- Wang Z, Xu J, Wu X, et al. A sprayable Janus hydrogel as an effective bioadhesive for gastrointestinal perforation repair. Adv Funct Mater. 2024;34(48):2408479. doi: 10.1002/adfm.202408479
- Liu C, Yalavarthi S, Tambralli A, et al. Inhibition of neutrophil extracellular trap formation alleviates vascular dysfunction in type 1 diabetic mice. Sci Adv. 2023;9(43):eadj1019. doi: 10.1126/sciadv.adj1019
- Okonkwo UA, Chen L, Ma D, et al. Compromised angiogenesis and vascular integrity in impaired diabetic wound healing. PLoS One. 2020;15(4):e0231962. doi: 10.1371/journal.pone.0231962
- Luo Y, Zhang T, Lin X. 3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization. Chem Eng J. 2022;430:132926. doi: 10.1016/j.cej.2021.132926
- Mujawar SS, Arbade GK, Bisht N, et al. 3D printed Aloe barbadensis loaded alginate-gelatin hydrogel for wound healing and scar reduction: in vitro and in vivo study. Int J Biol Macromol. 2025;296:139745. doi: 10.1016/j.ijbiomac.2025.139745
- Shao Z, Yin T, Jiang J, He Y, Xiang T, Zhou S. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact Mater. 2023;20:561-573. doi: 10.1016/j.bioactmat.2022.06.018
- Han X, Chen S, Cai Z, et al. A diagnostic and therapeutic hydrogel to promote vascularization via blood sugar reduction for wound healing. Adv Funct Mater. 2023;33(14):2213008. doi: 10.1002/adfm.202213008
- Huang W, Guo Q, Wu H, Zheng Y, Xiang T, Zhou S. Engineered exosomes loaded in intrinsic immunomodulatory hydrogels with promoting angiogenesis for programmed therapy of diabetic wounds. ACS Nano. 2025;19(14):14467-14483. doi: 10.1021/acsnano.5c02896
- Kim K, Yang J, Li C, et al. Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments. Bioact Mater. 2025;47:64-82. doi: 10.1016/j.bioactmat.2025.01.004
- Chen J, Qin S, Liu S, et al. Targeting matrix metalloproteases in diabetic wound healing. Front Immunol. 2023;14:1089001. doi: 10.3389/fimmu.2023.1089001
- Lan B, Zhang L, Yang L, et al. Sustained delivery of MMP- 9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J Nanobiotechnol. 2021;19(1):130. doi: 10.1186/s12951-021-00869-6
- Lei H, Fan D. A combination therapy using electrical stimulation and adaptive, conductive hydrogels loaded with self-assembled nanogels incorporating short interfering RNA promotes the repair of diabetic chronic wounds. Adv Sci. 2022;9(30):2201425. doi: 10.1002/advs.202201425
- Wu L, Chen Y, Zeng G, et al. Supramolecular peptide hydrogel doped with nanoparticles for local siRNA delivery and diabetic wound healing. Chem Eng J. 2023;457:141244. doi: 10.1016/j.cej.2022.141244
- Zheng X, Deng S, Li Y, et al. Targeting m6A demethylase FTO to heal diabetic wounds with ROS-scavenging nanocolloidal hydrogels. Biomaterials. 2025;317:123065. doi: 10.1016/j.biomaterials.2024.123065
- Shi S, Hu L, Hu D, Ou X, Huang Y. Emerging nanotherapeutic approaches for diabetic wound healing. Int J Nanomed. 2024;19:8815-8830. doi: 10.2147/ijn.s476006
