AccScience Publishing / IJB / Volume 11 / Issue 3 / DOI: 10.36922/IJB025170162
RESEARCH ARTICLE

Three-dimensional-printed hydroxyapatite/nanoclay/polycaprolactone composite scaffold for immunomodulation and bone defect repair

Xiang Li1,2† Zhenyu Wen1† Jiaxiang Song1 Hao Tang1 Wanshun Liu1 Xitao Linghu1 Shuai Huang3* Weikang Xu2,4* Qingde Wa1*
Show Less
1 Department of Orthopedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
2 Medical Materials and Engineering Research Laboratory, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
3 Department of Orthopedic Surgery, The First People’s Hospital of Foshan, Foshan, Guangdong, China
4 Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, China
†These authors contributed equally to this work.
IJB 2025, 11(3), 434–456; https://doi.org/10.36922/IJB025170162
Received: 20 February 2025 | Accepted: 13 May 2025 | Published online: 16 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Excessive inflammation remains a major impediment to the clinical repair of critical-sized bone defects, with the immune micro-environment playing a pivotal role in osteogenesis. An appropriate local immune response following biomaterial implantation is essential for successful bone tissue regeneration. In this study, a hydroxyapatite/montmorillonite nanoclay/polycaprolactone (HNP) composite scaffold was designed and subsequently fabricated using three-dimensional (3D) printing, with the aim of modulating macrophage polarization and promoting bone regeneration. The resulting HNP scaffold exhibited favorable mechanical strength and significantly promoted bone marrow mesenchymal stem cell adhesion, proliferation, secretion of osteogenic cytokines, and osteogenic differentiation. Moreover, it modulated the bone immune micro-environment by suppressing M1 macrophage polarization and promoting a shift toward the M2 phenotype, thereby establishing a pro-osteogenic immune milieu. In vivo studies using a rat calvarial defect model demonstrated that, compared with other groups, the HNP scaffold markedly enhanced M2 macrophage polarization, promoted angiogenesis, and accelerated new bone formation. Overall, the 3D-printed HNP scaffold effectively regulated the immune micro-environment and facilitated both bone regeneration and neovascularization, highlighting its strong potential as a candidate for bone tissue engineering applications.

Graphical abstract
Keywords
Bone repair
Hydroxyapatite
Macrophage polarization
Nanoclay
Three-dimensional printing
Funding
This research was supported by the National Natural Science Foundation of China (82160577, 32000964), the Key Program for Science and Technology Project of Guizhou Province (ZK [2021] 007), the Zunyi City Innovation Team Fund (Zunyi Science Talent (2024) No. 4), Guangdong Province Science and Technology Plan Project (2024A1515012265), the Hainan Academician Innovation Center (Nanfan Medical Materials and Health Technology Innovation Center) (2022GDASZH-2022020402-01).
Conflict of interest
We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.
References
  1. Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater. 2018;80:1-30. doi: 10.1016/j.actbio.2018.09.031
  2. Zhang X, Yang Y, Yang Z, et al. Four-dimensional printing and shape memory materials in bone tissue engineering. Int J Mol Sci. 2023;24(1):814. doi: 10.3390/ijms24010814
  3. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224-247. doi: 10.1016/j.bioactmat.2017.05.007
  4. Schmidt AH. Autologous bone graft: is it still the gold standard? Injury. 2021;52(Suppl 2):S18-S22. doi: 10.1016/j.injury.2021.01.043
  5. Feng Y, Zhu S, Mei D, et al. Application of 3D printing technology in bone tissue engineering: a review. Curr Drug Deliv. 2021;18(7):847-861. doi: 10.2174/1567201817999201113100322
  6. Sadowska JM, Ginebra M-P. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B. 2020;8(41):9404-9427. doi: 10.1039/d0tb01379j
  7. He J, Chen G, Liu M, et al. Scaffold strategies for modulating immune microenvironment during bone regeneration. Mater Sci Eng C Mater Biol Appl. 2020;108:110411. doi: 10.1016/j.msec.2019.110411
  8. Zheng Z-W, Chen Y-H, Wu D-Y, et al. Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis. Theranostics. 2018;8(19):5482-5500. doi: 10.7150/thno.28315
  9. Dutta SD, Ganguly K, Patil TV, Randhawa A, Lim KT. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration. Bioact Mater. 2023;28:284-310. doi: 10.1016/j.bioactmat.2023.05.014
  10. Yang N, Liu Y. The role of the immune microenvironment in bone regeneration. Int J Med Sci. 2021;18(16):3697-3707. doi: 10.7150/ijms.61080
  11. Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8(4):e1801106. doi: 10.1002/adhm.201801106
  12. Xie Y, Hu C, Feng Y, et al. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen Biomater. 2020;7(3):233-245. doi: 10.1093/rb/rbaa006
  13. Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123-147. doi: 10.1146/annurev-pathmechdis-012418-012718
  14. Tian Y, Li Y, Liu J, et al. Photothermal therapy with regulated Nrf2/NF-κB signaling pathway for treating bacteria-induced periodontitis. Bioact Mater. 2022;9:428-445. doi: 10.1016/j.bioactmat.2021.07.033
  15. Zheng K, Niu W, Lei B, Boccaccini AR. Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomater. 2021;133:168-186. doi: 10.1016/j.actbio.2021.08.023
  16. Lin Z, Shen D, Zhou W, et al. Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioact Mater. 2021;6(8):2315-2330. doi: 10.1016/j.bioactmat.2021.01.018
  17. Liu X, Chen M, Luo J, et al. Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials. 2021;276:121037. doi: 10.1016/j.biomaterials.2021.121037
  18. Jin S, Yang R, Chu C, et al. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater. 2021;129:148-158. doi: 10.1016/j.actbio.2021.05.042
  19. Arif ZU, Khalid MY, Noroozi R, Sadeghianmaryan A, Jalalvand M, Hossain M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol. 2022;218:930-968. doi: 10.1016/j.ijbiomac.2022.07.140
  20. Gómez-Lizárraga KK, Flores-Morales C, Del Prado-Audelo ML, Álvarez-Pérez MA, Piña-Barba MC, Escobedo C. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: a comparative study. Mater Sci Eng C. 2017;79:326-335. doi: 10.1016/j.msec.2017.05.003
  21. Nobles KP, Janorkar AV, Williamson RS. Surface modifications to enhance osseointegration–resulting material properties and biological responses. J Biomed Mater Res B Appl Biomater. 2021;109(11):1909-1923. doi: 10.1002/jbm.b.34835
  22. Druzian DM, Bonazza GKC, Sangoi GG, et al. Fabrication and properties of the montmorillonite/ nanobioglass hybrid reinforcement from agroindustrial waste for bone regeneration. ACS Appl Mater Interfaces. 2024;16(15):19391-19410. doi: 10.1021/acsami.4c02160
  23. Gaharwar AK, Cross LM, Peak CW, et al. 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater. 2019;31(23):e1900332. doi: 10.1002/adma.201900332
  24. Katti KS, Jasuja H, Jaswandkar SV, Mohanty S, Katti DR. Nanoclays in medicine: a new frontier of an ancient medical practice. Mater Adv. 2022;3(20):7484-7500. doi: 10.1039/d2ma00528j
  25. Bee S-L, Abdullah MAA, Bee S-T, Sin LT, Rahmat AR. Polymer nanocomposites based on silylated-montmorillonite: a review. Prog Polym Sci. 2018;85:57-82. doi: 10.1016/j.progpolymsci.2018.07.003
  26. Li Y, Yang G, Wang Y, et al. Osteoimmunity-regulating nanosilicate-reinforced hydrogels for enhancing osseointegration. J Mater Chem B. 2023;11(41):9933-9949. doi: 10.1039/d3tb01509b
  27. Stodolak-Zych E, Kurpanik R, Dzierzkowska E, et al. Effects of montmorillonite and gentamicin addition on the properties of electrospun polycaprolactone fibers. Materials (Basel). 2021;14(22):6905. doi: 10.3390/ma14226905
  28. Sadeghianmaryan A, Yazdanpanah Z, Soltani YA, Sardroud HA, Nasirtabrizi MH, Chen X. Curcumin-loaded electrospun polycaprolactone/montmorillonite nanocomposite: wound dressing application with anti-bacterial and low cell toxicity properties. J Biomater Sci Polym Ed. 2020;31(2):169-187. doi: 10.1080/09205063.2019.1680928
  29. Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci. 2017;249:321-330. doi: 10.1016/j.cis.2017.04.007
  30. Ribeiro N, Sousa A, Cunha-Reis C, et al. New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofibers. Nanomedicine. 2021;33:102353. doi: 10.1016/j.nano.2020.102353
  31. Helaehil JV, Lourenço CB, Huang B, et al. In vivo investigation of polymer-ceramic PCL/HA and PCL/β-TCP 3D composite scaffolds and electrical stimulation for bone regeneration. Polymers (Basel). 2021;14(1):65. doi: 10.3390/polym14010065
  32. Rezania N, Asadi-Eydivand M, Abolfathi N, Bonakdar S, Mehrjoo M, Solati-Hashjin M. Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior. J Mater Sci Mater Med. 2022;33(3):31. doi: 10.1007/s10856-022-06653-8
  33. Petretta M, Gambardella A, Desando G, et al. Multifunctional 3D-printed magnetic polycaprolactone/hydroxyapatite scaffolds for bone tissue engineering. Polymers (Basel). 2021;13(21):3825. doi: 10.3390/polym13213825
  34. Shang L, Shao J, Ge S. Immunomodulatory properties: the accelerant of hydroxyapatite-based materials for bone regeneration. Tissue Eng Part C Methods. 2022;28(8):377-392. doi: 10.1089/ten.TEC.2022.00111112
  35. Katti DR, Sharma A, Ambre AH, Katti KS. Molecular interactions in biomineralized hydroxyapatite amino acid modified nanoclay: in silico design of bone biomaterials. Mater Sci Eng C Mater Biol Appl. 2015;46:207-217. doi: 10.1016/j.msec.2014.07.057
  36. Bhowmick A, Banerjee SL, Pramanik N, et al. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. Int J Biol Macromol. 2018;106:11-19. doi: 10.1016/j.ijbiomac.2017.07.168
  37. Bhowmick A, Jana P, Pramanik N, et al. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials. Carbohydr Polym. 2016;151:879-888. doi: 10.1016/j.carbpol.2016.06.034
  38. Cho SJ, Jung SM, Kang M, Shin HS, Youk JH. Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility. Polymer. 2015/07/09/ 2015;69:95-102. doi: 10.1016/j.polymer.2015.05.037
  39. Neufurth M, Wang X, Wang S, et al. 3D printing of hybrid biomaterials for bone tissue engineering: calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater. 2017;64:377-388. doi: 10.1016/j.actbio.2017.09.031
  40. Liang H-Y, Lee W-K, Hsu J-T, et al. Polycaprolactone in bone tissue engineering: a comprehensive review of innovations in scaffold fabrication and surface modifications. J Funct Biomater. 2024;15(9):243. doi: 10.3390/jfb15090243
  41. Esmaeili J, Jalise SZ, Pisani S, et al. Development and characterization of Polycaprolactone/chitosan-based scaffolds for tissue engineering of various organs: a review. Int J Biol Macromol. 2024;272(Pt 2):132941. doi: 10.1016/j.ijbiomac.2024.132941
  42. Mousa M, Evans ND, Oreffo ROC, Dawson JI. Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials. 2018;159:204-214. doi: 10.1016/j.biomaterials.2017.12.024
  43. Jansson M, Lenton S, Plivelic TS, Skepö M. Intercalation of cationic peptides within Laponite layered clay minerals in aqueous suspensions: the effect of stoichiometry and charge distance matching. J Colloid Interface Sci. 2019;557:767-776. doi: 10.1016/j.jcis.2019.09.055
  44. Baveloni FG, Riccio BVF, Di Filippo LD, Fernandes MA, Meneguin AB, Chorilli M. Nanotechnology-based drug delivery systems as potential for skin application: a review. Curr Med Chem. 2021;28(16):3216-3248. doi: 10.2174/0929867327666200831125656
  45. Sajjad W, Khan T, Ul-Islam M, et al. Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr Polym. 2019;206:548-556. doi: 10.1016/j.carbpol.2018.11.023
  46. Cui Z-K, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun. 2019;10(1):3523. doi: 10.1038/s41467-019-11511-3
  47. Sheng R, Chen J, Wang H, et al. Nanosilicate-reinforced silk fibroin hydrogel for endogenous regeneration of both cartilage and subchondral bone. Adv Healthc Mater. 2022;11(17):e2200602. doi: 10.1002/adhm.202200602
  48. Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV. In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med. 2012;23(7):1749-1761. doi: 10.1007/s10856-012-4647-x
  49. Sukhanova A, Boyandin A, Ertiletskaya N, et al. Composite polymer granules based on poly-ε-caprolactone and montmorillonite prepared by solution-casting and melt extrusion. Polymers (Basel). 2023;15(20):4099. doi: 10.3390/polym15204099
  50. Zhu B, Bai T, Wang P, Wang Y, Liu C, Shen C. Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability. Int J Biol Macromol. 2020;153:1272-1280. doi: 10.1016/j.ijbiomac.2019.10.262
  51. Dhania S, Rani R, Kumar R, Thakur R. Fabricated polyhydroxyalkanoates blend scaffolds enhance cell viability and cell proliferation. J Biotechnol. 2023;361:30-40. doi: 10.1016/j.jbiotec.2022.11.014
  52. Boyan BD, Lotz EM, Schwartz Z. Roughness and hydrophilicity as osteogenic biomimetic surface properties. Tissue Eng Part A. 2017;23(23-24):1479-1489. doi: 10.1089/ten.TEA.2017.0048
  53. Ijaola AO, Akamo DO, Damiri F, et al. Polymeric biomaterials for wound healing applications: a comprehensive review. J Biomater Sci Polym Ed. 2022;33(15):1998-2050. doi: 10.1080/09205063.2022.2088528
  54. Yang H, Gao H, Wang Y. Hollow hydroxyapatite microsphere: a promising carrier for bone tissue engineering. J Microencapsul. 2016;33(5):421-426. doi: 10.1080/02652048.2016.1202347
  55. Huang H, Yang A, Li J, et al. Preparation of multigradient hydroxyapatite scaffolds and evaluation of their osteoinduction properties. Regen Biomater. 2022; 9:rbac001. doi: 10.1093/rb/rbac001
  56. Yan L, Wang J, Cai X, et al. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (2020). 2024;5(8):e658. doi: 10.1002/mco2.658
  57. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7(4):292-304. doi: 10.1038/nri2062.
  58. Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage polarization and meta-inflammation. Transl Res. 2018;191:29-44. doi: 10.1016/j.trsl.2017.10.004
  59. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9): 6425-6440. doi: 10.1002/jcp.26429
  60. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450-462. doi: 10.1016/j.immuni.2016.02.015
  61. Rőszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015;2015:816460. doi: 10.1155/2015/816460
  62. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445-455. doi: 10.1038/nature12034
  63. Mahon OR, Browe DC, Gonzalez-Fernandez T, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials. 2020;239:119833. doi: 10.1016/j.biomaterials.2020.119833
  64. Lee E-J, Jain M, Alimperti S. Bone microvasculature: stimulus for tissue function and regeneration. Tissue Eng Part B Rev. 2021;27(4):313-329. doi: 10.1089/ten.TEB.2020.0154
  65. Yu Y, Dai K, Gao Z, et al. Sulfated polysaccharide directs therapeutic angiogenesis via endogenous VEGF secretion of macrophages. Sci Adv. 2021;7(7):eabd8217. doi: 10.1126/sciadv.abd8217
  66. Poon B, Kha T, Tran S, Dass CR. Bone morphogenetic protein-2 and bone therapy: successes and pitfalls. J Pharm Pharmacol. 2016;68(2):139-147. doi: 10.1111/jphp.12506
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing