AccScience Publishing / IJB / Volume 11 / Issue 1 / DOI: 10.36922/ijb.5021
RESEARCH ARTICLE

Replication of an intervertebral disc using an in-house bioprinter: A proof-of-concept study

Emmaëlle Carrot1 Perrine de Villemagne2 Paul Humbert1 Sébastien Grastilleur1 Benoit Rosa2 Boris Halgand1 Yoan Le Guennec1 Johann Clouet1 Vianney Delplace1 Pierre Weiss1 Franck Halary3 Jean-Yves Hascoët2 Marion Fusellier1 Luciano Vidal2,4 Jérôme Guicheux1 Catherine Le Visage1*
Show Less
1 Nantes Université, Oniris, INSERM, CHU Nantes, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes, Pays de la Loire, France
2 CNRS UMR 6183, Nantes Université, École Centrale Nantes, Rapid Manufacturing Platform, Institut de Recherche en Génie Civil et Mécanique (GeM), Nantes, Pays de la Loire, France
3 3Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, Pays de la Loire, France
4 Department of Plastic and Reconstructive Surgery, Clinique Bretéché - ELSAN, Nantes, Pays de la Loire, France
IJB 2025, 11(1), 470–484; https://doi.org/10.36922/ijb.5021
Submitted: 10 October 2024 | Accepted: 9 December 2024 | Published: 10 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The intervertebral disc, a fibro-cartilaginous structure, contains a gelatinous core (nucleus pulposus) surrounded by collagen fiber lamellae (annulus fibrosus). Intervertebral disc degeneration leads to a debilitating disorder, and new treatments are currently being developed. Unfortunately, conventional monolayer in vitro models fail to predict the clinical efficacy of novel therapies accurately. Here, we report a bioprinted construct that mimics the macroscopic and microscopic architecture of the intervertebral disc. First, a 3D model was created from a histological section of a sheep lumbar intervertebral disc. The printability of the ink, gelatin (7% w/v), alginate (0.6% w/v), and hyaluronic acid (0.2% w/v) was optimized by varying the printing pressure (70–110 kPa), printing speed (2–10 mm/s), and nozzle type (needle or tip). Nucleus pulposus and annulus fibrosus cells, harvested from 4-month-old lambs, were bioprinted (5 × 105 cells/mL) using an in-house extrusion bioprinter. Cell viability (live/ dead assay), shape (actin immunostaining), distribution (confocal microscopy), and matrix synthesis (immunostaining) were evaluated after 21 days of culture. We used a parametric study to quantify and optimize the factors (pressure, printing speed, nozzle type) influencing the filament width. The 3D construct exhibited fidelity to the initial design and maintained stability in length, width, and height for 21 days. Fluorescent labeling confirmed the distribution of nucleus pulposus and annulus fibrosus cells in each tissue, replicating the native intervertebral disc structure. We also evidenced cell viability and collagen type 1 synthesis. This bioprinted construct offers a promising alternative to current in vitro models, potentially enabling more relevant preclinical evaluations.

Graphical abstract
Keywords
3D bioprinting
Alginate
Hydrogel
In-house extrusion bioprinter
In vitro 3D model
Gelatin
Hyaluronic acid
Funding
The authors acknowledge the SC3M platform from the INSERM/NU/ONIRIS UMR1229 RMeS Laboratory (SFR Bonamy, BioCore, Inserm UMS 016, CNRS UAR 3556, Nantes, France) and the IBISA MicroPICell facility (Biogenouest, France), a member of the national infrastructure France-Bioimaging, supported by the French National Research Agency (ANR-10-INBS-04). The authors thank Hilel Moussi for their assistance. The graphical abstract was created using BioRender.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Wilke HJ, Galbusera F. Biomechanics of the healthy and diseased spine. In: Biological Approaches to Spinal Disc Repair and Regeneration for Clinicians (1st ed.). Stuttgart, Germany: Georg Thieme Verlag KG; 2017:30-36. doi: 10.1055/b-0037-145106
  2. Amin DB, Lawless IM, Sommerfeld D, Stanley RM, Ding B, Costi JJ. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments. J Biomech. 2016;49(14):3407-3414. doi: 10.1016/j.jbiomech.2016.09.009
  3. Gravel JT, Abduljabbar FH, Ouellet J, Haglund L. The human spinal disc: relevant anatomy and physiology. In: Biological Approaches to Spinal Disc Repair and Regeneration for Clinicians (1st ed.). Stuttgart, Germany: Georg Thieme Verlag KG; 2017:2-10. doi: 10.1055/b-0037-145103
  4. Lavignolle B. The intervertebral disc. In: Vital JM, Cawley DT, eds. Spinal Anatomy : Modern Concepts. Springer International Publishing; 2020:207-216. doi: 10.1007/978-3-030-20925-4_14
  5. Al-Abbasi M, Al-Rubai AJF, Assi MH. Quantification of the water content of human intervertebral discs in various regions and conditions. Al-Rafidain J Med Sci. 2024;6(2):43-47. doi: 10.54133/ajms.v6i2.715
  6. Johnstone B, Bayliss MT. The large proteoglycans of the human intervertebral disc. Changes in their biosynthesis and structure with age, topography, and pathology. Spine. 1995;20(6):674-684. doi: 10.1097/00007632-199503150-00008
  7. Pattappa G, Li Z, Peroglio M, Wismer N, Alini M, Grad S. Diversity of intervertebral disc cells: phenotype and function: diversity of intervertebral disc cells. J Anat. 2012;221(6):480-496. doi: 10.1111/j.1469-7580.2012.01521.x
  8. Sivan SS, Hayes AJ, Wachtel E, et al. Biochemical composition and turnover of the extracellular matrix of the normal and degenerate intervertebral disc. Eur Spine J. 2014;23 (Suppl. 3):S344-S353. doi: 10.1007/s00586-013-2767-8
  9. Zhang S, Liu W, Chen S, et al. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res. 2022;390(1):1-22. doi: 10.1007/s00441-022-03662-5
  10. Vogel A, Pioletti DP. Damping properties of the nucleus pulposus. Clin Biomech. 2012;27(9):861-865. doi: 10.1016/j.clinbiomech.2012.06.005
  11. Krull C, Lutton A, Olesik J, Walter B. A method for measuring intra-tissue swelling pressure using a needle micro-osmometer. Eur Cell Mater. 2020;40:146-159. doi: 10.22203/eCM.v040a09
  12. Urban JPG, McMullin JF. Swelling pressure of the inervertebral disc: influence of proteoglycan and collagen contents. Biorheology. 1985;22(2):145-157. doi: 10.3233/BIR-1985-22205
  13. Pazzaglia UE, Salisbury JR, Byers PD. Development and involution of the Notochord in the human spine. J R Soc Med. 1989;82(7):413-415. doi: 10.1177/014107688908200714
  14. Tan Z, Chen P, Dong X, et al. Progenitor-like cells contributing to cellular heterogeneity in the nucleus pulposus are lost in intervertebral disc degeneration. Cell Rep. 2024;43(6):114342. doi: 10.1016/j.celrep.2024.114342
  15. Risbud MV, Schoepflin ZR, Mwale F, et al. Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting. J Orthop Res. 2015;33(3):283-293. doi: 10.1002/jor.22789
  16. Mwale F, Roughley P, Antoniou J. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cells A¨nd Mater. 2004;8:58-64. doi: 10.22203/eCM.v008a06
  17. Tomaszewski KA, Walocha JA, Mizia E, Gładysz T, Głowacki R, Tomaszewska R. Age- and degeneration-related variations in cell density and glycosaminoglycan content in the human cervical intervertebral disc and its endplates. Pol J Pathol. 2015;66(3):296-300. doi: 10.5114/pjp.2015.54964
  18. Urban JPG, Roberts S, Ralphs JR. The nucleus of the intervertebral disc from development to degeneration. Am Zool. 2000;40(1):53-061. doi: 10.1093/icb/40.1.53
  19. Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine. 1990;15(5):402-410. doi: 10.1097/00007632-199005000-00011
  20. Liang H, Luo R, Li G, Zhang W, Song Y, Yang C. The proteolysis of ECM in intervertebral disc degeneration. Int J Mol Sci. 2022;23(3):1715. doi: 10.3390/ijms23031715
  21. Costi JJ, Stokes IA, Gardner-Morse M, Laible JP, Scoffone HM, Iatridis JC. Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom: motions that place disc tissue at risk of injury. J Biomech. 2007;40(11):2457-2466. doi: 10.1016/j.jbiomech.2006.11.006
  22. Guerin HAL, Elliott DM. Structure and properties of soft tissues in the spine. In: Spine Technology Handbook. Academic Press; 2006:35-62. doi: 10.1016/B978-012369390-7/50004-6
  23. Torre OM, Mroz V, Bartelstein MK, Huang AH, Iatridis JC. Annulus fibrosus cell phenotypes in homeostasis and injury: implications for regenerative strategies. Ann N Y Acad Sci. 2019;1442(1):61-78. doi: 10.1111/nyas.13964
  24. Liebscher T, Haefeli M, Wuertz K, Nerlich AG, Boos N. Age-related variation in cell density of human lumbar intervertebral disc. Spine. 2011;36(2):153-159. doi: 10.1097/brs.0b013e3181cd588c
  25. Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration—current therapeutic options and challenges. Front Public Health. 2023;11:1156749. doi: 10.3389/fpubh.2023.1156749
  26. Casiano VE, Sarwan G, Dydyk AM, Varacallo M. Back pain. In: StatPearls. StatPearls Publishing; 2023. Accessed March 29, 2023. http://www.ncbi.nlm.nih.gov/books/NBK538173/
  27. Hay SI, Abajobir AA, Abate KH, et al. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1260-1344. doi: 10.1016/S0140-6736(17)32130-X
  28. Meddeba M, Hatirab F, Habboubia K, Mestiria. Biomechanical Study of the Behavior of the Intervertebral Disc: Intact Lumbar Spine Versus Arthrodesis. J Orthop Bone Disord. 2024;8(2):1-4. doi: 10.23880/jobd-16000265
  29. Sampara P, Banala RR, Vemuri SK, Av GR, Gpv S. Understanding the molecular biology of intervertebral disc degeneration and potential gene therapy strategies for regeneration: a review. Gene Ther. 2018;25(2):67-82. doi: 10.1038/s41434-018-0004-0
  30. Tamagawa S, Schol J, Sakai D. Cell therapy for intervertebral disc regeneration: progress and hurdles in clinical translation. Indian Spine J. 2024;7(2):131-141. doi: 10.4103/isj.isj_17_24
  31. Liu Y, Zhao Z, Guo C, et al. Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review. Front Cell Dev Biol. 2023;11:1286223. doi: 10.3389/fcell.2023.1286223
  32. Doench I, Tran TA, David L, et al. Cellulose nanofiber-reinforced chitosan hydrogel composites for intervertebral disc tissue repair. Biomimetics (Basel). 2019;4(1):19. doi: 10.3390/biomimetics4010019
  33. Hingert D, Barreto Henriksson H, Baranto A, Brisby H. BMP-3 promotes matrix production in co-cultured stem cells and disc cells from low back pain patients. Tissue Eng Part A. 2020;26(1-2):47-56. doi: 10.1089/ten.tea.2019.0125
  34. Tang SN, Salazar-Puerta AI, Heimann MK, et al. Engineered extracellular vesicle-based gene therapy for the treatment of discogenic back pain. Biomaterials. 2024;308:122562. doi: 10.1016/j.biomaterials.2024.122562
  35. Barcellona MN, Ní Néill T, O’Brien FJ, Dixon JE, Curtin CM, Buckley CT. Modulation of inflammation and regeneration in the intervertebral disc using enhanced cell‐penetrating peptides for MicroRNA delivery. Adv NanoBiomed Res. 2024;4(7):2300112. doi: 10.1002/anbr.202300112
  36. Yuan B, Rudeen K, Li J, et al. Biodegradable microspheres and hydrogel drug delivery system of tumor necrosis factor (TNF) inhibitor and growth differentiation factor 5 (GDF5) reduces disk inflammation in the rabbit model. Spine (Phila Pa 1976). 2023;48(15):E257-E265. doi: 10.1097/BRS.0000000000004686
  37. Rivera Tapia ED, Meakin JR, Holsgrove TP. In-vitro models of disc degeneration – a review of methods and clinical relevance. J Biomech. 2022;142:111260. doi: 10.1016/j.jbiomech.2022.111260
  38. Yung Lee J, Hall R, Pelinkovic D, et al. New use of a three-dimensional pellet culture system for human intervertebral disc cells: initial characterization and potential use for tissue engineering. Spine (Phila Pa 1976). 2001;26(21):2316-2322. doi: 10.1097/00007632-200111010-00005
  39. Le Maitre CL, Freemont AJ, Hoyland JA. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther. 2005;7(4):R732. doi: 10.1186/ar1732
  40. McDonnell EE, Buckley CT. Two- and three-dimensional in vitro nucleus pulposus cultures: an in silico analysis of local nutrient microenvironments. JOR Spine. 2022;5(3):e1222. doi: 10.1002/jsp2.1222
  41. Zhang A, Cheng Z, Chen Y, Shi P, Gan W, Zhang Y. Emerging tissue engineering strategies for annulus fibrosus therapy. Acta Biomater. 2023;167:1-15. doi: 10.1016/j.actbio.2023.06.012
  42. Liu Y, Peng L, Li L, et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials. 2021;279:121216. doi: 10.1016/j.biomaterials.2021.121216
  43. Yuan D, Chen Z, Xiang X, et al. The establishment and biological assessment of a whole tissue-engineered intervertebral disc with PBST fibers and a chitosan hydrogel in vitro and in vivo. J Biomed Mater Res B Appl Biomater. 2019;107(7):2305-2316. doi: 10.1002/jbm.b.34323
  44. Fusellier M, Clouet J, Gauthier O, Tryfonidou M, Le Visage C, Guicheux J. Degenerative lumbar disc disease: in vivo data support the rationale for the selection of appropriate animal models. Eur Cell Mater. 2020;39:17-48. doi: 10.22203/eCM.v039a02
  45. Pourchet LJ, Thepot A, Albouy M, et al. Human skin 3D bioprinting using scaffold-free approach. Adv Healthc Mater. 2017;6(4):1601101. doi: 10.1002/adhm.201601101
  46. Wang J, Cui Z, Maniruzzaman M. Bioprinting: a focus on improving bioink printability and cell performance based on different process parameters. Int J Pharm. 2023;640:123020. doi: 10.1016/j.ijpharm.2023.123020
  47. Abedi K, Keshvari H, Solati-Hashjin M. Extrusion-based bioprinting: considerations toward gelatin-alginate bioink. Rapid Prototyp J. 2024;30(6):1094-1104. doi: 10.1108/RPJ-06-2023-0207
  48. Seok JM, Ahn M, Kim D, et al. Decellularized matrix bioink with gelatin methacrylate for simultaneous improvements in printability and biofunctionality. Int J Biol Macromol. 2024;262:130194. doi: 10.1016/j.ijbiomac.2024.130194
  49. Rajasekaran S, Soundararajan DCR, Nayagam SM, et al. Novel biomarkers of health and degeneration in human intervertebral discs: in-depth proteomic analysis of collagen framework of fetal, healthy, scoliotic, degenerate, and herniated discs. Asian Spine J. 2023;17(1):17-29. doi: 10.31616/asj.2021.0535
  50. Melrose J, Smith S, Ghosh P, Taylor TKF. Differential expression of proteoglycan epitopes and growth characteristics of intervertebral disc cells grown in alginate bead culture. Cells Tissues Organs. 2001;168(3):137-146. doi: 10.1159/000047829
  51. Thonar E, An H, Masuda K. Compartmentalization of the matrix formed by nucleus pulposus and annulus fibrosus cells in alginate gel. Biochem Soc Trans. 2002;30(6):874-878. doi: 10.1042/bst0300874
  52. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020. doi: 10.1088/1758-5090/8/3/035020
  53. Habib MA, Khoda B. Rheological analysis of bio-ink for 3D bio-printing processes. J Manuf Process. 2022;76:708-718. doi: 10.1016/j.jmapro.2022.02.048
  54. Magalhães IP, Oliveira PMD, Dernowsek J, Casas EBL, Casas MSL. Investigation of the effect of nozzle design on rheological bioprinting properties using computational fluid dynamics. Matéria (Rio J.) 2019;24(3):e12401. doi: 10.1590/s1517-707620190003.0714
  55. Chand R, Muhire BS, Vijayavenkataraman S. Computational fluid dynamics assessment of the effect of bioprinting parameters in extrusion bioprinting. Int J Bioprint. 2022; 8(2):545. doi: 10.18063/ijb.v8i2.545
  56. Reitmaier S, Schmidt H. Review article on spine kinematics of quadrupeds and bipeds during walking. J Biomech. 2020;102:109631. doi: 10.1016/j.jbiomech.2020.109631
  57. Yoshizato H, Morimoto T, Nonaka T, et al. Animal model for anterior lumbar interbody fusion: a literature review. Spine Surg Relat Res. 2024;8(4):373-382. doi: 10.22603/ssrr.2023-0262
  58. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101A(5):1255-1264. doi: 10.1002/jbm.a.34420
  59. Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJA. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A. 2008;14(1):127-133. doi: 10.1089/ten.a.2007.0158
  60. Wang X, Yan Y, Pan Y, et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng. 2006;12(1):83-90. doi: 10.1089/ten.2006.12.83
  61. Gironi P, Petraro L, Santoni S, Dedé L, Colosimo BM. A computational model of cell viability and proliferation of extrusion-based 3D-bioprinted constructs during tissue maturation process. Int J Bioprinting. 2023;9(4):741. doi: 10.18063/ijb.741
  62. Bruehlmann SB, Rattner JB, Matyas JR, Duncan NA. Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J Anat. 2002;201(2):159-171. doi: 10.1046/j.1469-7580.2002.00080.x.
  63. Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11(4):042001. doi: 10.1088/1758-5090/ab331e
  64. Li QQ, Xu D, Dong QW, Song XJ, Chen YB, Cui YL. Biomedical potentials of alginate via physical, chemical, and biological modifications. Int J Biol Macromol. 2024; 277:134409. doi: 10.1016/j.ijbiomac.2024.134409
  65. Sandvig I, Karstensen K, Rokstad AM, et al. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. J Biomed Mater Res A. 2015; 103(3):896-906. doi: 10.1002/jbm.a.35230
  66. Yang J, Yang X, Wang L, et al. Biomimetic nanofibers can construct effective tissue-engineered intervertebral discs for therapeutic implantation. Nanoscale. 2017;9(35):13095-13103. doi: 10.1039/c7nr03944a
  67. Zhou P, Chu G, Yuan Z, et al. Regulation of differentiation of annulus fibrosus-derived stem cells using heterogeneous electrospun fibrous scaffolds. J Orthop Transl. 2021;26: 171-180. doi: 10.1016/j.jot.2020.02.003
  68. Gluais M, Clouet J, Fusellier M, et al. In vitro and in vivo evaluation of an electrospun-aligned microfibrous implant for Annulus fibrosus repair. Biomaterials. 2019;205:81-93. doi: 10.1016/j.biomaterials.2019.03.010
  69. Mordechai HS, Aharonov A, Sharon SE, et al. Toward a mechanically biocompatible intervertebral disc: engineering of combined biomimetic annulus fibrosus and nucleus pulposus analogs. J Biomed Mater Res A. 2023;111(5):618-633. doi: 10.1002/jbm.a.37519
  70. Moxon SR, McMurran Z, Kibble MJ, Domingos M, Gough JE, Richardson SM. 3D bioprinting of an intervertebral disc tissue analogue with a highly aligned annulus fibrosus via suspended layer additive manufacture. Biofabrication. 2024;17(1):015005. doi: 10.1088/1758-5090/ad8379

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing