AccScience Publishing / IJB / Volume 10 / Issue 6 / DOI: 10.36922/ijb.4312
RESEARCH ARTICLE

Development and applications of an in vitro non-alcoholic fatty liver disease model based on 3D-printed liver tissue

Kun Du1 Wei Peng2 Ying Zhao2 Tianma He2 Tao Ding2 Feifei Pu3 Zibei Ming2 Renquan Ruan4 Jing Liu2*
Show Less
1 Department of Medical Equipment, Wuhan No. 1 Hospital, Wuhan, Hubei, China
2 Department of Biological Engineering, School of Biology, Food and Environment, Hefei University, Hefei, Anhui, China
3 Department of Orthopedics, Wuhan No.1 Hospital, Wuhan, Hubei, China
4 Shenzhen Mellgen Biotechnology Co. Ltd., Shenzhen, Guangdong, China
IJB 2024, 10(6), 4312 https://doi.org/10.36922/ijb.4312
Submitted: 23 July 2024 | Accepted: 18 September 2024 | Published: 18 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic disease worldwide, but its underlying etiology and molecular mechanisms are complex, and there are currently no effective clinical treatments. Animal models for studying NAFLD have limitations, necessitating the development of novel in vitro models. In this study, a bioink was first optimized for the cultivation of liver tissue. Subsequently, 3D bioprinting technology was utilized to construct large-scale liver tissue with a vascular-like function in vitro using the optimized bioink. Thereafter, the printed HepaRG cells were induced to form liver organoids. Compared with traditional liver tissue models, 3D-printed liver tissue has superior hepatic functions and greater cell viability. Moreover, glycogen storage and the formation of bile canaliculi-like structures were observed within it. Subsequently, 3D-printed liver tissue was induced to establish an NAFLD model, which was confirmed by lipid droplet analysis, liver function assays, and cell viability assessments. Additionally, this NAFLD model was used for drug testing and analysis. Our study successfully constructed a functional NAFLD model, which contributes to a deeper understanding of the mechanisms underlying NAFLD, facilitates the development of related pharmaceuticals, and promotes the development of new therapeutic strategies.  

Graphical abstract
Keywords
Non-alcoholic fatty liver disease
3D bioprinting
Large-scale liver tissue
In vitro model
Drug testing
Funding
This research was funded by the Natural Science Foundation of Hubei Province (grant number 2023AFB411) and the Knowledge Innovation Project of Wuhan Science and Technology Bureau (grant number 2023020201020532).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Lazarus JV, Mark HE, Villota-Rivas M, et al. The global NAFLD policy review and preparedness index: are countries ready to address this silent public health challenge? J Hepatol. 2022;76(4):771-780. doi: 10.1016/j.jhep.2021.10.025
  2. Sozen E, Demirel-Yalciner T, Sari D, Ozer NK. Cholesterol accumulation in hepatocytes mediates IRE1/p38 branch of endoplasmic reticulum stress to promote nonalcoholic steatohepatitis. Free Radic Biol Med. 2022;191:1-7. doi: 10.1016/j.freeradbiomed.2022.08.024
  3. Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med. 2024;95:101231. doi: 10.1016/j.mam.2023.101231
  4. Rosso C, Kazankov K, Younes R, et al. Crosstalk between adipose tissue insulin resistance and liver macrophages in non-alcoholic fatty liver disease. J Hepatol. 2019;71(5):1012-1021. doi: 10.1016/j.jhep.2019.06.031
  5. Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261-273. doi: 10.1038/s41574-019-0156-z
  6. Hendriks D, Brouwers JF, Hamer K, et al. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nat Biotechnol. 2023;41(11):1567-1581. doi: 10.1038/s41587-023-01680-4
  7. Zhu C, Huai Q, Zhang X, Dai H, Li X, Wang H. Insights into the roles and pathomechanisms of ceramide and sphigosine- 1-phosphate in nonalcoholic fatty liver disease. Int J Biol Sci. 2023;19(1):311. doi: 10.7150/ijbs.78525
  8. Im YR, Hunter H, de Gracia Hahn D, et al. A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD. Hepatology. 2021;74(4):1884-1901. doi: 10.1002/hep.31897
  9. Smati S, Polizzi A, Fougerat A, et al. Integrative study of diet-induced mouse models of NAFLD identifies PPARalpha as a sexually dimorphic drug target. Gut. 2022;71(4):807-821. doi: 10.1136/gutjnl-2020-323323
  10. Trépo E, Valenti L. Update on NAFLD genetics: from new variants to the clinic. J Hepatol. 2020;72(6): 1196-1209. doi: 10.1016/j.jhep.2020.02.020
  11. Tsuchida T, Lee YA, Fujiwara N, et al. A simple diet-and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol. 2018;69(2):385-395. doi: 10.1016/j.jhep.2018.03.011
  12. Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease – a practical approach for translational research. J Hepatol. 2020;73(2):423-440. doi: 10.1016/j.jhep.2020.04.011
  13. Ma L, Wu Y, Li Y, et al. Current advances on 3D‐bioprinted liver tissue models. Adv Healthc Mater. 2020;9(24):2001517. doi: 10.1002/adhm.202001517
  14. Suurmond CE, Lasli S, van den Dolder FW, et al. In vitro human liver model of nonalcoholic steatohepatitis by coculturing hepatocytes, endothelial cells, and Kupffer cells. Adv Healthc Mater. 2019;8(24):e1901379. doi: 10.1002/adhm.201901379
  15. Cheng S, Yang Y, Zhou Y, Xiang W, Yao H, Ma L. Influence of different concentrations of uric acid on oxidative stress in steatosis hepatocytes. Exp Ther Med. 2018;15(4):3659-3665. doi: 10.3892/etm.2018.5855
  16. Michaut A, Le Guillou D, Moreau C, et al. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: application to acetaminophen. Toxicol Appl Pharmacol. 2016;292:40-55. doi: 10.1016/j.taap.2015.12.020
  17. Luckert C, Braeuning A, de Sousa G, et al. Adverse outcome pathway-driven analysis of liver steatosis in vitro: a case study with cyproconazole. Chem Res Toxicol. 2018;31(8): 784-798. doi: 10.1021/acs.chemrestox.8b00112
  18. Kimura M, Iguchi T, Iwasawa K, et al. En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH. Cell. 2022;185(22):4216-4232 e16. doi: 10.1016/j.cell.2022.09.031
  19. Yang H, Sun L, Pang Y, et al. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut. 2021;70(3):567-574. doi: 10.1136/gutjnl-2019-319960
  20. Ryu JS, Lee M, Mun SJ, et al. Targeting CYP4A attenuates hepatic steatosis in a novel multicellular organotypic liver model. J Biol Eng. 2019;13:69. doi: 10.1186/s13036-019-0198-8
  21. Leite SB, Roosens T, El Taghdouini A, et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials. 2016;78:1-10. doi: 10.1016/j.biomaterials.2015.11.026
  22. Zhang B, Korolj A, Lai BFL, Radisic M. Advances in organ-on-a-chip engineering. Nat Rev Mater. 2018;3(8):257-278. doi: 10.1038/ s41578-018-0034-7
  23. Feaver RE, Cole BK, Lawson MJ, et al. Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis. JCI Insight. 2016;1(20):e90954. doi: 10.1172/jci.insight.90954
  24. Bulutoglu B, Rey-Bedón C, Kang YBA, Mert S, Yarmush ML, Usta OB. A microfluidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation. Lab Chip. 2019;19(18):3022-3031. doi: 10.1039/c9lc00354a
  25. Lasli S, Kim HJ, Lee K, et al. A human liver-on-a-chip platform for modeling nonalcoholic fatty liver disease. Adv Biosyst. 2019;3(8):e1900104. doi: 10.1002/adbi.201900104
  26. Gori M, Simonelli MC, Giannitelli SM, Businaro L, Trombetta M, Rainer A. Investigating nonalcoholic fatty liver disease in a liver-on-a-chip microfluidic device. PLoS One. 2016;11(7):e0159729. doi: 10.1371/journal.pone.0159729
  27. Du K, Li S, Li C, et al. Modeling nonalcoholic fatty liver disease on a liver lobule chip with dual blood supply. Acta Biomater. 2021;134:228-239. doi: 10.1016/j.actbio.2021.07.013
  28. Kostrzewski T, Maraver P, Ouro-Gnao L, et al. A microphysiological system for studying nonalcoholic steatohepatitis. Hepatol Commun. 2020;4(1):77-91. doi: 10.1002/hep4.1450
  29. Liu J, Zhou Z, Zhang M, Song F, Feng C, Liu H. Simple and robust 3D bioprinting of full-thickness human skin tissue. Bioengineered. 2022;13(4):10087-10097. doi: 10.1080/21655979.2022.2063651
  30. Li R, Liu J, Ma J, et al. Fibrinogen improves liver function via promoting cell aggregation and fibronectin assembly in hepatic spheroids. Biomaterials. 2022;280:121266. doi: 10.1016/j.biomaterials.2021.121266
  31. Lee JB, Park JS, Shin YM, et al. Implantable vascularized liver chip for cross‐validation of disease treatment with animal model. Adv Funct Mater. 2019;29(23): 1900075. doi: 10.1002/adfm.201900075
  32. Mahjoubin-Tehran M, De Vincentis A, Mikhailidis DP, et al. Non-alcoholic fatty liver disease and steatohepatitis: state of the art on effective therapeutics based on the gold standard method for diagnosis. Mol Metab. 2021;50:101049. doi: 10.1016/j.molmet.2020.101049
  33. Jamwal R, Barlock BJJP. Nonalcoholic fatty liver disease (NAFLD) and hepatic cytochrome P450 (CYP) enzymes. Pharmaceuticals (Basel). 2020;13(9):222. doi: 10.3390/ph13090222
  34. Fierbinteanu-Braticevici C, Baicus C, Tribus L, Papacocea R. Predictive factors for nonalcoholic steatohepatitis (NASH) in patients with nonalcoholic fatty liver disease (NAFLD). J Gastrointestin Liver Dis. 2011;20(2):153-159. doi: 10.15403/jgld.2011.1121.202
  35. Roth JD, Veidal SS, Fensholdt LKD, et al. Combined obeticholic acid and elafibranor treatment promotes additive liver histological improvements in a diet-induced ob/ob mouse model of biopsy-confirmed NASH. Sci Rep. 2019;9(1):9046. doi: 10.1038/s41598-019-45178-z
  36. Boeckmans J, Natale A, Rombaut M, et al. Human hepatic in vitro models reveal distinct anti-NASH potencies of PPAR agonists. Cell Biol Toxicol. 2021;37:293-311. doi: 10.1007/s10565-020-09544-2
  37. Pingitore P, Sasidharan K, Ekstrand M, Prill S, Lindén D, Romeo S. Human multilineage 3D spheroids as a model of liver steatosis and fibrosis. Int J Mol Sci. 2019;20(7):1629. doi: 10.3390/ijms20071629
  38. Boeckmans J, Buyl K, Natale A, et al. Elafibranor restricts lipogenic and inflammatory responses in a human skin stem cell-derived model of NASH. Pharmacol Res. 2019;144:377-389.
  39. Banaeiyan AA, Theobald J, Paukštyte J, Wölfl S, Adiels CB, Goksör MJB. Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. 2017;9(1):015014. doi:10.1088/1758-5090/9/1/015014. doi: 10.1016/j.phrs.2019.04.016

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing