AccScience Publishing / IJB / Volume 10 / Issue 6 / DOI: 10.36922/ijb.4538
RESEARCH ARTICLE

3D-printed polycaprolactone-magnetic nanoparticles composite multifunctional scaffolds for bone tissue regeneration and hyperthermia treatment

Susheem Kanwar1,2 Sanjairaj Vijayavenkataraman1,2
Show Less
1 The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
2 Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States of America
IJB 2024, 10(6), 4538 https://doi.org/10.36922/ijb.4538
Submitted: 15 August 2024 | Accepted: 18 September 2024 | Published: 18 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cancer management after tumor resection is characterized by two critical needs: (i) rehabilitation of the resected tissue and (ii) preventing post-surgical tumor recurrence by destroying any residual tumors. The state-of-the-art in literature is limited because it tackles these two major priorities individually: achieving tissue regeneration via autologous grafting and preventing tumor recurrence through chemotherapy. In this paper, extrusion 3D printing has been employed to manufacture composite multi-functional scaffolds with polycaprolactone (PCL) as a polymeric matrix and magnetic nanoparticles (MNPs) in a 0–50 wt% ratio, which would aid in bone regeneration and cancer management via magnetic hyperthermia treatment. The fabricated scaffolds were evaluated for their mechanical, magnetic, and thermal characteristics. The Young’s modulus of the scaffolds increased multi-fold with increasing concentration of MNPs added to PCL (i.e., 26.88 ± 9.02 MPa for pure PCL to 229.06 ± 37.05 MPa for PCL/50 wt% MNP scaffolds). PCL/MNP scaffolds displayed a directly proportional correlation between MNP concentration and saturation magnetization. While the in vitro tests demonstrated a statistically significant cell growth of human mesenchymal stem cells (hMSCs) over 7 days for all MNP concentrations, only the 50% MNP scaffold exhibited an increase in temperature over 41oC when subjected to an alternating magnetic field, making it suitable for the hyperthermia treatment. On application of alternating magnetic fields to PCL and PCL/50 wt% MNP scaffolds, there was an increase in hMSCs proliferation and a decrease in bone cancer cell proliferation, thus validating the potential of the multi-functional scaffold for post-surgical bone cancer management.

Graphical abstract
Keywords
Cancer
Hyperthermia
Magnetic nanoparticles
Polycaprolactone
3D printing
Scaffolds
Funding
Sanjairaj Vijayavenkataraman was supported by the start-up funds from NYUAD. Susheem Kanwar acknowledges the NYUAD Global PhD Fellowship received to pursue his graduate education.
Conflict of interest
Sanjairaj Vijayavenkataraman serves as the Editorial Board Member of the journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Susheem Kanwar declares no known competing financial interests or conflicts of interest.
References
  1. Kanwar S, Al-Ketan O, Vijayavenkataraman S. A novel method to design biomimetic, 3D printable stochastic scaffolds with controlled porosity for bone tissue engineering. Mater Design. 2022;220:110857. doi: 10.1016/j.matdes.2022.110857
  2. Liu JMH, Zhang J, Zhang X, et al. Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets. Biomaterials. 2016;80:11-19. doi: 10.1016/j.biomaterials.2015.11.065
  3. Llopis-Hernández V, Cantini M, González-García C, et al. Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Sci Adv. 2016;2(8):e1600188. doi: 10.1126/sciadv.1600188
  4. Wan T, Stylios GK, Giannoudi M, Giannoudis PV. Investigating a new drug delivery nano composite membrane system based on PVA/PCL and PVA/HA(PEG) for the controlled release of biopharmaceuticals for bone infections. Injury. 2015;46:S39-S43. doi: 10.1016/s0020-1383(15)30053-x
  5. Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials. 2019;12(4):568. doi: 10.3390/jfb14070343
  6. Dong S, Chen Y, Yu L, Lin K, Wang X. Magnetic hyperthermia–synergistic H2O2 self-sufficient catalytic suppression of osteosarcoma with enhanced bone-regeneration bioactivity by 3D-printing composite scaffolds. Adv Funct Mater. 2020;30(4):1907071. doi: 10.1002/adfm.201907071
  7. Gu J, Liu X, Cui P, Yi X. Multifunctional bioactive glasses with spontaneous degradation for simultaneous osteosarcoma therapy and bone regeneration. Biomater Adv. 2023;154:213626. doi: 10.1016/j.bioadv.2023.213626
  8. Kiumarsi N, Najmoddin N. Systematically engineered GO with magnetic CuFe2O4 to enhance bone regeneration on 3D printed PCL scaffold. Surf Interf. 2023;39:102973. doi: 10.1016/j.surfin.2023.102973
  9. Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes PJ. Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life. 2010;1(1n02):10.1142/S1793984410000067. doi: 10.1142/S1793984410000067
  10. Sadeghzadeh H, Dianat-Moghadam H, Del Bakhshayesh AR, Mohammadnejad D, Mehdipour A. A review on the effect of nanocomposite scaffolds reinforced with magnetic nanoparticles in osteogenesis and healing of bone injuries. Stem Cell Res Ther. 2023;14(1):194. doi: 10.1186/s13287-023-03426-0
  11. Díaz E, Valle MB, Barandiarán JM. Magnetic composite scaffolds of polycaprolactone/nFeHA, for bone-tissue engineering. Int J Polym Mater Polym Biomater. 2016;65(12):593-600. doi: 10.1080/00914037.2016.1149848
  12. Cojocaru FD, Balan V, Popa MI, et al. Biopolymers - calcium phosphates composites with inclusions of magnetic nanoparticles for bone tissue engineering. Int J Biol Macromol. 2019;125:612-620. doi: 10.1016/j.ijbiomac.2018.12.083
  13. Li Y, Huang L, Tai G, et al. Graphene oxide-loaded magnetic nanoparticles within 3D hydrogel form high-performance scaffolds for bone regeneration and tumour treatment. Compos A: Appl Sci Manuf. 2022;152:106672. doi: 10.1016/j.compositesa.2021.106672
  14. Zhang Y, Zhang Y, Yang Z, et al. Cytotoxicity effect of iron oxide (Fe3O4)/graphene oxide (GO) nanosheets in cultured HBE cells. Front Chem. 2022;10:888033. doi: 10.3389/fchem.2022.888033
  15. Ali A, Shah T, Ullah R, et al. Review on recent progress in magnetic nanoparticles: synthesis, characterization, and diverse applications. Front Chem. 2021;9:629054. doi: 10.3389/fchem.2021.629054
  16. Obisesan OS, Ajiboye TO, Mhlanga SD, Mufhandu HT. Biomedical applications of biodegradable polycaprolactone-functionalized magnetic iron oxides nanoparticles and their polymer nanocomposites. Colloids Surf B Biointerfaces. 2023;227:113342. doi: 10.1016/j.colsurfb.2023.113342
  17. Shuai C, Yang W, He C, et al. A magnetic micro-environment in scaffolds for stimulating bone regeneration. Mater Design. 2020;185:108275. doi: 10.1016/j.matdes.2019.108275
  18. Ortolani A, Bianchi M, Mosca M, et al. The prospective opportunities offered by magnetic scaffolds for bone tissue engineering: a review. Joints. 2017;4(4):228-235. doi: 10.11138/jts/2016.4.4.228
  19. Gujjalapudi M, Anam C, Mamidi P, Chiluka R, Kumar AG, Bibinagar R. Effect of magnetic field on bone healing around endosseous implants - an in-vivo study. J Clin Diagn Res. 2016;10(10):ZF01-ZF4. doi: 10.7860/JCDR/2016/21509.8666
  20. Zhu Y, Yang Q, Yang M, et al. Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway. ACS Nano. 2017;11(4):3690-3704. doi: 10.1021/acsnano.6b08193
  21. Wójcik-Piotrowicz K, Kaszuba-Zwoińska J, Rokita E, Thor P. Cell viability modulation through changes of Ca(2+)- dependent signalling pathways. Prog Biophys Mol Biol. 2016;121(1):45-53. doi: 10.1016/j.pbiomolbio.2016.01.004
  22. Wang Q, Chen B, Cao M, et al. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials. 2016;86:11-20. doi: 10.1016/j.biomaterials.2016.02.004
  23. Hu S, Zhou Y, Zhao Y, et al. Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats. J Tissue Eng Regen Med. 2018;12(4):e2085-e98. doi: 10.1002/term.2641
  24. Duarte A, Paola S-A, João CS, Frederico CF. 3D (bio)printing of magnetic hydrogels: formulation and applications in tissue engineering. Int J Bioprinting. 2024;10(1):0965. doi: 10.36922/ijb.0965
  25. Paun IA, Popescu RC, Calin BS, Mustaciosu CC, Dinescu M, Luculescu CR. 3D biomimetic magnetic structures for static magnetic field stimulation of osteogenesis. Int J Mol Sci. 2018;19(2):495. doi: 10.3390/ijms19020495
  26. Jia Y, Zhang P, Sun Y, et al. Regeneration of large bone defects using mesoporous silica coated magnetic nanoparticles during distraction osteogenesis. Nanomedicine. 2019;21:102040. doi: 10.1016/j.nano.2019.102040
  27. Wu D, Chang X, Tian J, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnol. 2021;19(1):209. doi: 10.1186/s12951-021-00958-6
  28. Jasemi A, Kamyab Moghadas B, Khandan A, Saber- Samandari S. A porous calcium-zirconia scaffolds composed of magnetic nanoparticles for bone cancer treatment: fabrication, characterization and FEM analysis. Ceram Int. 2022;48(1):1314-1325. doi: 10.1016/j.ceramint.2021.09.216
  29. Zhao Y, Fan T, Chen J, et al. Magnetic bioinspired micro/ nanostructured composite scaffold for bone regeneration. Colloids Surf B Biointerfaces. 2019;174:70-79. doi: 10.1016/j.colsurfb.2018.11.003
  30. Zhang J, Zhao S, Zhu M, et al. 3D-printed magnetic Fe3O4/ MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B. 2014;2(43):7583-7595. doi: 10.1039/C4TB01063A
  31. Daňková J, Buzgo M, Vejpravová J, et al. Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles. Int J Nanomed. 2015;7(10):7307-7317. doi: 10.2147/ijn.s93670
  32. De Santis R, Russo A, Gloria A, et al. Towards the design of 3D fiber-deposited poly( -caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J Biomed Nanotechnol. 2015;11(7):1236-1246. doi: 10.1166/jbn.2015.2065
  33. Rezaei V, Mirzaei E, Taghizadeh S-M, Berenjian A, Ebrahiminezhad A. Nano iron oxide-PCL composite as an improved soft tissue scaffold. Processes. 2021;9(9):1559. doi: 10.3390/pr9091559
  34. Cheah C, Chua C, Leong K, et al. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: investigation and classification. Int J Adv Manuf Technol. 2003;21:291-301. doi: 10.1007/s001700300034
  35. Sato K, Watanabe Y, Horiuchi A, et al. Feasibility of new heating method of hepatic parenchyma using a sintered MgFe2O4 needle under an alternating magnetic field. J Surg Res. 2008;146(1):110-116. doi: 10.1016/j.jss.2007.05.022
  36. Newman D, Laredo E, Bello A, Grillo A, Feijoo JL, Müller AJ. Molecular mobilities in biodegradable poly(dl-lactide)/poly(ε-caprolactone) blends. Macromolecules. 2009;42(14):5219-5525. doi: 10.1021/ma9007303
  37. Galarreta-Rodriguez I, Lopez-Ortega A, Garayo E, et al. Magnetically activated 3D printable polylactic acid/ polycaprolactone/magnetite composites for magnetic induction heating generation. Adv Compos Hybrid Mater. 2023;6:102. doi: 10.1007/s42114-023-00687-4
  38. Atanasova N, Paunova-Krasteva T, Stoitsova S, et al. Degradation of poly(ε-caprolactone) by a thermophilic community and Brevibacillus thermoruber Strain 7 isolated from Bulgarian hot spring. Biomolecules. 2021;11(10):1488. doi: 10.3390/biom11101488
  39. Bin S, Wang A, Guo W, Yu L, Feng P. Micro magnetic field produced by Fe3O4 nanoparticles in bone scaffold for enhancing cellular activity. Polymers (Basel). 2020;12(9):2045. doi: 10.3390/polym12092045
  40. Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized 3D printed bone scaffolds: a review. Acta Biomater. 2023;156:110-124. doi: 10.1016/j.actbio.2022.04.014
  41. Kanwar S, Vijayavenkataraman S. 3D printable bone-mimicking functionally gradient stochastic scaffolds for tissue engineering and bone implant applications. Mater Design. 2022;223:111199. doi: 10.1016/j.matdes.2022.111199
  42. Meenarathi B, Siva P, Palanikumar S, Kannammal L, Anbarasan R. Synthesis, characterization and drug release activity of poly(ε-caprolactone)/Fe3O4–alizarinred nanocomposites. Nanocomposites. 2016;2(2):98-107. doi: 10.1080/20550324.2016.1207009
  43. Saeed M, Beigi-Boroujeni S, Rajabi S, Ashteiani GR, Dolatfarahi M, Özcan M. A simple, green chemistry technology for fabrication of tissue-engineered scaffolds based on mussel-inspired 3D centrifugal spun. Mater Sci Eng C. 2021;121:111849. doi: 10.1016/j.msec.2020.111849
  44. Zeng X, Meng Z, Qiu Z, He J, Fan J, Li D. Melt-based embedded printing for freeform fabrication of overhanging and flexible polycaprolactone scaffolds. Virtual Phys Prototype. 2023;18(1):e2209778. doi: 10.1080/17452759.2023.2209778
  45. Haag H, Dalton PD, Bloemen V. The synergy of biomimetic design strategies for tissue constructs. Adv Funct Mater. 2022;32:2201414. doi: 10.1002/adfm.202201414
  46. Bakhtiary N, Pezeshki-Modaress M, Najmoddin N. Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation. Chem Eng Sci. 2022;264:118144. doi: 10.1016/j.ces.2022.118144
  47. Lam T, Moy A, Lee HR, Shao Q, Bischof JC, Azarin SM. Iron oxide-loaded polymer scaffolds for non-invasive hyperthermic treatment of infiltrated cells. AIChE J. 2020;66(12):e17001. doi: 10.1002/aic.17001
  48. Shah RR, Davis TP, Glover AL, Nikles DE, Brazel CS. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J Magn Magn Mater. 2015;387:96-106. doi: 10.1016/j.jmmm.2015.03.085
  49. Xie W, Guo Z, Gao F, et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics. 2018;8(12):3284-3307. doi: 10.7150/thno.25220
  50. Urano M, Kuroda M, Nishimura Y. For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia. 1999;15(2):79-107. doi: 10.1080/026567399285765
  51. Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43(1):33-56. doi: 10.1016/S1040-8428(01)00179-2
  52. Freeman C, Halperin EC, Brady LW, David EW. Perez and Brady’s Principles and Practice of Radiation Oncology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008: 637-644. ISBN 978-0-7817-6369-1.
  53. Chew SA, Danti S. Biomaterial-based implantable devices for cancer therapy. Adv Healthc Mater. 2017;6(2):1600766. doi: 10.1002/adhm.201600766
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing