AccScience Publishing / IJB / Volume 10 / Issue 6 / DOI: 10.36922/ijb.4014
RESEARCH ARTICLE

Internally-crosslinked alginate dialdehyde/ alginate/gelatin-based hydrogels as bioinks for prospective cardiac tissue engineering applications

Giovanni Paolo Stola1,2 Camilla Paoletti1,2 Letizia Nicoletti1,2 Geo Paul3 Claudio Cassino3 Leonardo Marchese3 Valeria Chiono1,2* Elena Marcello1,2*
Show Less
1 Department of Mechanical and Aerospace Engineering, POLITO BioMedLab, Politecnico di Torino, Turin, Italy
2 Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Pisa, Italy
3 Department of Science and Technological Innovation and “Centro Interdisciplinare Nano-SiSTeMI”, Università del Piemonte Orientale, Alessandria, Italy
IJB 2024, 10(6), 4014 https://doi.org/10.36922/ijb.4014
Submitted: 21 June 2024 | Accepted: 18 September 2024 | Published: 18 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cardiovascular diseases represent a global challenge due to heart-limited regenerative capabilities. 3D-bioprinted cell-laden constructs are a promising approach as cardiac patches or in vitro models. However, developing bioinks with optimal mechanical, rheological, and biological properties remains challenging. Although alginate (Alg)- based bioinks have been extensively explored, such hydrogels lack cell adhesion properties and degradability. Additionally, 3D Alg structures are usually obtained by microextrusion bioprinting, exploiting conventional external crosslinking methods, which introduce inhomogeneities and unpredictability in construct formation. This work exploits Alg internal ionic gelation mechanism to obtain homogeneous self-standing multilayered 3D-printed constructs without employing support baths or post-printing crosslinking treatments. Alg was blended with oxidized alginate (ADA) and gelatin (Gel) to achieve degradable and cell-adhesive hydrogels for cardiac tissue engineering. Firstly, ADA/Alg bioink composition was tailored to achieve cardiac tissue-like viscoelastic properties. Then, the amount of Gel in ADA/Alg hydrogels was optimized to support cell adhesion, producing shear thinning inks with tunable viscoelastic properties (storage modulus [G’]: 650–1300 Pa) and degradation profile (40–80% weight loss after 21 days in phosphate-buffered saline [PBS]) by varying Gel concentration. ADA/Alg/Gel hydrogels displayed shear thinning behavior, suitable for 3D bioprinting depending on the ink stabilization time, due to the gradual pH-triggered release of calcium ions over time. Adult human cardiac fibroblast (AHCF) and H9C2-laden ADA/Alg/Gel bioinks were successfully printed, producing scaffolds with high shape fidelity and good cell viability post-printing. Finally, the highest Gel content (25% [w/w]) supported cell adhesion after 24 h of incubation, displaying potential for cardiac tissue modeling. This research presents a comprehensive framework for advancing the design of bioink.  

 

Graphical abstract
Keywords
Alginate dialdehyde
Gelatin
Bioink
Internal gelation
In vitro cardiac models
Funding
This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (BIORECAR, grant agreement number 772168).
Conflict of interest
Elena Marcello serves as the Editorial Board Member of the journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review. Gels. 2022;8(3):179. doi: 10.3390/gels8030179
  2. Ramiah P, du Toit LC, Choonara YE, Kondiah PPD, Pillay V. Hydrogel-based bioinks for 3D bioprinting in tissue regeneration. Front Mater. 2020;7:506968. doi: 10.3389/FMATS.2020.00076/BIBTEX
  3. Taneja H, Salodkar SM, Singh Parmar A, Chaudhary S. Hydrogel based 3D printing: bio ink for tissue engineering. J Mol Liq. 2022;367:120390. doi: 10.1016/J.MOLLIQ.2022.120390
  4. Wissing TB, Bonito V, Bouten CVC, Smits AIPM. Biomaterial-driven in situ cardiovascular tissue engineering—a multi-disciplinary perspective. NPJ Regen Med. 2017;2(1):1-20. doi: 10.1038/s41536-017-0023-2
  5. Mei X, Cheng K. Recent development in therapeutic cardiac patches. Front Cardiovasc Med. 2020;7:610364. doi: 10.3389/fcvm.2020.610364
  6. Testore D, Zoso A, Kortaberria G, Sangermano M, Chiono V. Electroconductive photo-curable PEGDA-Gelatin/PEDOT: PSS hydrogels for prospective cardiac tissue engineering application. Front Bioeng Biotechnol. 2022;10:897575. doi: 10.3389/fbioe.2022.897575
  7. Neuhaus W, Reininger-Gutmann B, Rinner B, et al. The rise of three rs centres and platforms in Europe*. Altern Lab Anim. 2022;50(2):90-120. doi: 10.1177/02611929221099165
  8. Panwar A, Tan LP. Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules. 2016;21(6):685. doi: 10.3390/molecules21060685
  9. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on the printability of hydrogels in 3D bioprinting. Sci Rep. 2016;6(1):1-13. doi: 10.1038/srep29977
  10. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013;6(4):1285-1309. doi: 10.3390/ma6041285
  11. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci (Oxford). 2012;37(1):106-126. doi: 10.1016/j.progpolymsci.2011.06.003
  12. Lee RJ, Hinson A, Bauernschmitt R, et al. The feasibility and safety of Algisyl-LVRTM as a method of left ventricular augmentation in patients with dilated cardiomyopathy: initial first in man clinical results. Int J Cardiol. 2015;199:18-24. doi: 10.1016/j.ijcard.2015.06.111
  13. Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook. From ocean algae to patient bedside. Adv Drug Deliv Rev. 2016;96:54-76. doi: 10.1016/j.addr.2015.04.021
  14. Choy JS, Leng S, Acevedo-Bolton G, et al. Efficacy of intramyocardial injection of Algisyl-LVR for the treatment of ischemic heart failure in swine. Int J Cardiol. 2018;255:129-135. doi: 10.1016/j.ijcard.2017.09.179
  15. Cao L, Lu W, Mata A, Nishinari K, Fang Y. Egg-box model-based gelation of alginate and pectin: a review. Carbohydr Polym. 2020;242:116389. doi: 10.1016/j.carbpol.2020.116389
  16. Hu C, Lu W, Mata A, Nishinari K, Fang Y. Ions-induced gelation of alginate: mechanisms and applications. Int J Biol Macromol. 2021;177:578-588. doi: 10.1016/j.ijbiomac.2021.02.086
  17. Paques JP. Alginate nanospheres prepared by internal or external gelation with nanoparticles. In: Microencapsulation and Microspheres for Food Applications. Cambridge, USA: Academic Press; 2015:39-55. doi: 10.1016/B978-0-12-800350-3.00004-2
  18. Chan LW, Lee HY, Heng PWS. Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydr Polym. 2006;63(2):176-187. doi: 10.1016/j.carbpol.2005.07.033
  19. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
  20. Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN, Feinberg AW. FRESH 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng. 2020;6(11):6453-6459. doi: 10.1021/acsbiomaterials.0c01133
  21. Mirdamadi E, Muselimyan N, Koti P, Asfour H, Sarvazyan N. Agarose slurry as a support medium for bioprinting and culturing freestanding cell-laden hydrogel constructs. 3D Print Addit Manuf. 2019;6(3):158-164. doi: 10.1089/3dp.2018.0175
  22. Hazur J, Detsch R, Karakaya E, et al. Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication. 2020;12(4):045004. doi: 10.1088/1758-5090/ab98e5
  23. Girón-Hernández J, Gentile P, Benlloch-Tinoco M. Impact of heterogeneously crosslinked calcium alginate networks on the encapsulation of β-carotene-loaded beads. Carbohydr Polym. 2021;271:118429. doi: 10.1016/j.carbpol.2021.118429
  24. Baker BM, Chen CS. Deconstructing the third dimension-how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(13):3015-3024. doi: 10.1242/jcs.079509
  25. Marchioli G, Van Gurp L, Van Krieken PP, et al. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication. 2015;7(2). doi: 10.1088/1758-5090/7/2/025009
  26. Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365(6452):482-487. http://science.sciencemag.org/.
  27. Remaggi G, Catanzano O, Quaglia F, Elviri L. Alginate self‐crosslinking ink for 3D extrusion‐based cryoprinting and application for epirubicin‐HCl delivery on MCF‐7 cells. Molecules. 2022;27(3):882. doi: 10.3390/molecules27030882
  28. Sardelli L, Tunesi M, Briatico-Vangosa F, Petrini P. 3D-reactive printing of engineered alginate inks. Soft Matter. 2021;17(35):8105-8117. doi: 10.1039/d1sm00604e
  29. Kim E, Seok JM, Bae SB, Park SA, Park WH. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting. Biomacromolecules. 2021;22(5):1921-1931. doi: 10.1021/acs.biomac.1c00034
  30. Falcone G, Mazzei P, Piccolo A, et al. Advanced printable hydrogels from pre-crosslinked alginate as a new tool in semi solid extrusion 3D printing process. Carbohydr Polym. 2022;276:118746. doi: 10.1016/j.carbpol.2021.118746
  31. Guagliano G, Volpini C, Camilletti J, et al. Internally crosslinked alginate-based bioinks for the fabrication of in vitro hepatic tissue models. Biofabrication. 2023;15(3):035018. doi: 10.1088/1758-5090/acd872
  32. Guagliano G, Volpini C, Sardelli L, et al. Hep3Gel: a shape-shifting extracellular matrix-based, three-dimensional liver model adaptable to different culture systems. ACS Biomater Sci Eng. 2023;9(1):211-229. doi: 10.1021/ACSBIOMATERIALS.2C01226
  33. Guagliano G, Volpini C, Sardelli L, Briatico Vangosa F, Visai L, Petrini P. Bioinspired bioinks for the fabrication of chemomechanically relevant standalone disease models of hepatic steatosis. Adv Healthc Mater. 2024;13(14):e2303349. doi: 10.1002/ADHM.202303349
  34. Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog. 2001;17(5):945-950. doi: 10.1021/bp010070p
  35. Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M. Alginate for cardiac regeneration: from seaweed to clinical trials. Glob Cardiol Sci Pract. 2016; 2016(1):e201604. doi: 10.21542/gcsp.2016.4
  36. Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials. 2021;14(4):1-28. doi: 10.3390/ma14040858
  37. Cattelan G, Guerrero Gerbolés A, Foresti R, et al. Alginate formulations: current developments in the race for hydrogel-based cardiac regeneration. Front Bioeng Biotechnol.2020;8:414. doi: 10.3389/fbioe.2020.00414
  38. Roche CD, Lin H, Huang Y, et al. 3D bioprinted alginate-gelatin hydrogel patches containing cardiac spheroids recover heart function in a mouse model of myocardial infarction. Bioprinting. 2023;30:e00263. doi: 10.1016/j.bprint.2023.e00263
  39. Sonaye SY, Ertugral EG, Kothapalli CR, Sikder P. Extrusion 3D (Bio)printing of alginate-gelatin-based composite scaffolds for skeletal muscle tissue engineering. Materials. 2022;15(22):7945. doi: 10.3390/ma15227945
  40. Heid S, Becker K, Byun J, et al. Bioprinting with bioactive alginate dialdehyde-gelatin (ADA-GEL) composite bioinks: time-dependent in-situ crosslinking via addition of calcium-silicate particles tunes in vitro stability of 3D bioprinted constructs. Bioprinting. 2022;26:e00200. doi: 10.1016/j.bprint.2022.e00200
  41. Sarker B, Papageorgiou DG, Silva R, et al. Fabrication of alginate-gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B. 2014;2(11):1470-1482. doi: 10.1039/c3tb21509a
  42. Wang LL, Highley CB, Yeh YC, Galarraga JH, Uman S, Burdick JA. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J Biomed Mater Res A. 2018;106(4):865-875. doi: 10.1002/jbm.a.36323
  43. Neira-Velàzquez MG, Rodríguez-Hernández MT, Hernández-Hernández E, Ruiz-Martínez AR. Polymer molecular weight measurement. Handbook of polymer synthesis, characterization, and processing. 2013;355-366.
  44. Pamies R, Schmidt RR, Martínez MDCL and de la Torre JG. The influence of mono and divalent cations on dilute and non-dilute aqueous solutions of sodium alginates. Carbohydr Polym. 2010;80(1):248-253. https://www.researchgate.net/publication/272785338
  45. Forgács AF, Papp V, Paul G, et al. Mechanism of hydration and hydration induced structural changes of calcium alginate aerogel. ACS Appl Mater Interfaces. 2021;13:2997-3010. doi: 10.1021/acsami.0c17012
  46. Kaklamani G, Cheneler D, Grover LM, Adams MJ, Bowen J. Mechanical properties of alginate hydrogels manufactured using external gelation. J Mech Behav Biomed Mater. 2014;36:135-142.

doi: 10.1016/j.jmbbm.2014.04.013

  1. Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication. 2016;8(4):045002. doi: 10.1088/1758-5090/8/4/045002
  2. Wang Q, Backman O, Nuopponen M, Xu C, Wang X. Rheological and printability assessments on biomaterial inks of nanocellulose/photo-crosslinkable biopolymer in light-aided 3D printing. Front Chem Eng. 2021;3:723429. doi: 10.3389/fceng.2021.723429
  3. Barceló X, Eichholz KF, Garcia O, Kelly DJ. Tuning the degradation rate of alginate-based bioinks for bioprinting functional cartilage tissue. Biomedicines. 2022;10(7):1621. doi: 10.3390/biomedicines10071621
  4. Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecules. 2018;19(1):3-21. doi: 10.1021/acs.biomac.7b01331
  5. Gomez CG, Rinaudo M, Villar MA. Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydr Polym. 2007;67(3):296-304. doi: 10.1016/J.CARBPOL.2006.05.025
  6. Salomonsen T, Jensen HM, Larsen FH, Steuernagel S, Engelsen SB. Direct quantification of M/G ratio from 13C CP-MAS NMR spectra of alginate powders by multivariate curve resolution. Carbohydr Res. 2009;344(15):2014-2022. doi: 10.1016/j.carres.2009.06.025
  7. Huamani-Palomino RG, Córdova BM, Elvis Renzo Pichilingue L, Venâncio T, Valderrama AC. Functionalization of an alginate-based material by oxidation and reductive amination. Polymers (Basel). 2021;13(2):1-15. doi: 10.3390/polym13020255
  8. Banks SR, Enck K, Wright M, Opara EC, Welker ME. Chemical modification of alginate for controlled oral drug delivery. J Agric Food Chem. 2019;67(37):10481-10488. doi: 10.1021/acs.jafc.9b01911
  9. Sarker B, Singh R, Silva R, et al. Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One. 2014;9(9):e107952. doi: 10.1371/JOURNAL.PONE.0107952
  10. Zhao C, Latif A, Williams KJ, Tirella A. The characterization of molecular weight distribution and aggregation by asymmetrical flow field-flow fractionation of unmodified and oxidized alginate. React Funct Polym. 2022;175:105292. doi: 10.1016/j.reactfunctpolym.2022.105292
  11. Wang H, Chen X, Wen Y, et al. A study on the correlation between the oxidation degree of oxidized sodium alginate on its degradability and gelation. Polymers (Basel). 2022;14(9):1679. doi: 10.3390/polym14091679
  12. Kristiansen KA, Tomren HB, Christensen BE. Periodate oxidized alginates: depolymerization kinetics. Carbohydr Polym. 2011;86(4):1595-1601. doi: 10.1016/J.CARBPOL.2011.06.069
  13. Larsen BE, Bjørnstad J, Pettersen EO, Tønnesen HH, Melvik JE. Rheological characterization of an injectable alginate gel system. BMC Biotechnol. 2015;15(1):29. doi: 10.1186/s12896-015-0147-7
  14. Mccain ML, Lee H, Aratyn-Schaus Y, Kléber AG, Parker KK. Cooperative coupling of cell-matrix and cell–cell adhesions in cardiac muscle. Biophys Comput Biol. 2012;109(25):9881-9886. doi: 10.1073/pnas.1203007109/-/DCSupplemental
  15. Deddens JC, Sadeghi AH, Hjortnaes J, et al. Modeling the human scarred heart in vitro: toward new tissue engineered models. Adv Healthc Mater. 2017;6(3):1600571. doi: 10.1002/adhm.201600571
  16. Maxwell CJ, Soltisz AM, Rich WW, Choi A, Reilly MA, Swindle-Reilly KE. Tunable alginate hydrogels as injectable drug delivery vehicles for optic neuropathy. J Biomed Mater Res A. 2022;110(10):1621-1635. doi: 10.1002/jbm.a.37412
  17. Park H, Lyons J, Ohtsubo T, Song CW. Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer. 1999;80:1892-1897 doi: 10.1038/sj.bjc.6690617
  18. Mirek A, Belaid H, Barranger F, et al. Development of a new 3D bioprinted antibiotic delivery system based on a cross-linked gelatin-alginate hydrogel. J Mater Chem B. 2022;10(43):8862-8874. doi: 10.1039/d2tb01268e
  19. Li Z, Liao Y, Li D, et al. Design and properties of alginate/ gelatin/cellulose nanocrystals interpenetrating polymer network composite hydrogels based on in situ cross-linking. Eur Polym J. 2023;201:112556 doi: 10.21203/rs.3.rs-2215053/v1
  20. Saarai A, Kasparkova V, Sedlacek T, Saha P. On the development and characterisation of crosslinked sodium alginate/gelatine hydrogels. J Mech Behav Biomed Mater. 2013;18:152-166. doi: 10.1016/j.jmbbm.2012.11.010
  21. Hackenhaar CR, Rosa CF, Flores EEE, Santagapita PR, Klein MP, Hertz PF. Development of a biocomposite based on alginate/gelatin crosslinked with genipin for β-galactosidase immobilization: performance and characteristics. Carbohydr Polym. 2022;291:119483. doi: 10.1016/j.carbpol.2022.119483
  22. Karakaya E, Schöbel L, Zhong Y, et al. How to determine a suitable alginate for biofabrication approaches using an extensive alginate library? Biomacromolecules. 2023;24(7):2982-2997. doi: 10.1021/acs.biomac.2c01282
  23. Zehnder T, Sarker B, Boccaccini AR, Detsch R. Evaluation of an alginate-gelatine crosslinked hydrogel for bioplotting. Biofabrication. 2015;7(2):025001. doi: 10.1088/1758-5090/7/2/025001
  24. Bociaga D, Bartniak M, Grabarczyk J, Przybyszewska K. Sodium alginate/gelatine hydrogels for direct bioprinting-the effect of composition selection and applied solvents on the bioink properties. Materials. 2019;12(7):2669. doi: 10.3390/ma12172669
  25. Li Z, Huang S, Liu Y, et al. Tuning alginate-gelatin bioink properties by varying solvent and their impact on stem cell behavior. Sci Rep. 2018;8(1):8020. doi: 10.1038/s41598-018-26407-3
  26. Mondal A, Gebeyehu A, Miranda M, et al. Author correction: characterization and printability of sodium alginate -gelatin hydrogel for bioprinting NSCLC co-culture. Sci Rep. 2020;10(1):1732. doi: 10.1038/s41598-020-58952-1
  27. Distler T, Mcdonald K, Heid S, Karakaya E, Detsch R, Boccaccini AR. Ionically and enzymatically dual cross-linked oxidized alginate gelatin hydrogels with tunable stiffness and degradation behavior for tissue engineering. ACS Biomater Sci Eng. 2020;6(7):3899-3914. doi: 10.1021/acsbiomaterials.0c00677
  28. Bider F, Miola M, Clejanu CE, et al. 3D bioprinting of multifunctional alginate dialdehyde (ADA)–gelatin (GEL) (ADA-GEL) hydrogels incorporating ferulic acid. Int J Biol Macromol. 2024;257:128449. doi: 10.1016/j.ijbiomac.2023.128449
  29. Genç H, Hazur J, Karakaya E, et al. Differential responses to bioink-induced oxidative stress in endothelial cells and fibroblasts. Int J Mol Sci. 2021;22(5):2358. doi: 10.3390/IJMS22052358
  30. Wu Y, Yuan L, Sheng N, et al. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction. Front Mater Sci. 2017;11(3):215-222. doi: 10.1007/S11706-017-0392-X
  31. Emami Z, Ehsani M, Zandi M, Foudazi R. Controlling alginate oxidation conditions for making alginate-gelatin hydrogels. Carbohydr Polym. 2018;198:509-517. doi: 10.1016/j.carbpol.2018.06.080
  32. Dalheim M, Vanacker J, Najmi MA, Aachmann FL, Strand BL, Christensen BE. Efficient functionalization of alginate biomaterials. Biomaterials. 2016;80:146-156. doi: 10.1016/J.BIOMATERIALS.2015.11.043
  33. Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26:2455-2465. doi: 10.1016/j.biomaterials.2004.06.044
  34. Cuomo F, Cofelice M, Lopez F. Rheological characterization of hydrogels from alginate-based nanodispersion. Polymers (Basel). 2019;11(2):259. doi: 10.3390/polym11020259
  35. Cooke ME, Rosenzweig DH. The rheology of direct and suspended extrusion bioprinting. APL Bioeng. 2021;5(1):011502. doi: 10.1063/5.0031475
  36. Schwab A, Levato R, D’este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084
  37. Zhao Y, Li Y, Mao S, Sun W, Yao R. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication. 2015;7(4):045002. doi: 10.1088/1758-5090/7/4/045002
  38. Malekpour A, Chen X. Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views. J Funct Biomater. 2022;13(2):40. doi: 10.3390/jfb13020040
  39. Kim E, Seok JM, Bae S Bin, Park SA, Park WH. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting. Biomacromolecules. 2021;22(5):1921-1931. doi: 10.1021/acs.biomac.1c00034
  40. Li A, Guo C, Li X, Li P, Yang X, Guo Y. Gelation mechanism and physical properties of glucono-δ-lactone induced alginate sodium/casein composite gels. Food Hydrocoll. 2021;118:106775. doi: 10.1016/J.FOODHYD.2021.106775
  41. Jia J, Richards DJ, Pollard S, et al. Engineering alginate as bioink for bioprinting. Acta Biomater. 2014;10(10):4323-4331. doi: 10.1016/j.actbio.2014.06.034

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing