AccScience Publishing / IJB / Volume 10 / Issue 3 / DOI: 10.36922/ijb.2565
Cite this article
136
Download
1190
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Effects of modeling strategies of triply periodic minimal surface on the mechanical properties and permeability of biomedical TC4 porous scaffolds

Binghao Wang1,2 Chengliang Yang1,2 Chuanchuan Zheng1,2 Miao Luo1,2 Zheng Shi3 Yuting Lv3* Wen Peng4* Liqiang Wang5,6*
Show Less
1 Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Baise, Guangxi, China
2 Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, Guangxi, China
3 College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
4 Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, Guangdong, China
5 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
6 National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
IJB 2024, 10(3), 2565 https://doi.org/10.36922/ijb.2565
Submitted: 28 December 2023 | Accepted: 16 February 2024 | Published: 29 March 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Modeling strategies play a crucial role in determining the unit shapes of triply periodic minimal surface (TPMS), significantly affecting the mechanical and permeability properties of porous scaffolds. In this study, two distinct strategies including surface thickening and surface filling were used to construct scaffold models based on four basic TPMS structures (Primitive [P], Gyroid [G], Diamond [D], and I-graph-wrapped package [IW-P]). These models were successfully prepared using TC4 alloy and selective laser melting technology. Macro/micro morphology, mechanical properties, and permeability tests of porous implants were carried out. The results indicate that the scaffolds effectively replicated the designed models, exhibiting mechanical properties that match those of human tissue. The elastic modulus ranges from 3.03 to 4.57 GPa, and the tensile strength varies between 135.78 and 250.90 MPa. The surface thickening strategy alters the material distribution within the unit, enhancing load uniformity on the scaffolds, thereby increasing the strength of the scaffolds with G, D, and IW-P units, while reducing stress fluctuations during compression. In contrast, the surface filling structure exhibits excellent permeability, with permeability rates falling within the range of 0.88 to 1.91 × 10-9 m2, aligning with the permeability performance of trabecular bone. This study offers new insights into the design of porous scaffold models tailored for various application scenarios.

 

Keywords
Porous scaffolds
Triply periodic minimal surface
Mechanical performance
Modeling strategies
Funding
The authors acknowledge the financial supports from National Natural Science Foundation of China (Grant Nos. 52274387 and 52311530772).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Gupta K, Meena K. Artificial bone scaffolds and bone joints by additive manufacturing: a review. Bioprinting. 2023;31:e00268. doi: 10.1016/j.bprint.2023.e00268
  2. Fang Y, Wang Q, Yang Z, et al. An efficient approach to endow TiNbTaZr implant with osteogenic differentiation and antibacterial activity in vitro. Mater Des. 2022;221: 110987. doi: 10.1016/j.matdes.2022.110987
  3. Zhang Y, Attarilar S, Wang L, Lu W, Yang J, Fu Y. A review on design and mechanical properties of additively manufactured NiTi implants for orthopedic applications. Int J Bioprint. 2021;7(2):340. doi: 10.18063/ijb.v7i2.340
  4. Qu H. Additive manufacturing for bone tissue engineering scaffolds. Mater Today Commun. 2020;24:101024. doi: 10.1016/j.mtcomm.2020.101024
  5. Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review. Bioact Mater. 2019;4:56-70. doi: 10.1016/j.bioactmat.2018.12.003
  6. Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83: 127-141. doi: 10.1016/j.biomaterials.2016.01.012
  7. Oh I-H, Nomura N, Masahashi N, Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater. 2003;49(12):1197-1202. doi: 10.1016/j.scriptamat.2003.08.018
  8. Yang G, Xu B, Lei X, et al. Preparation of porous titanium by direct in-situ reduction of titanium sesquioxide. Vacuum. 2018;157:453-457. doi: 10.1016/j.vacuum.2018.09.021
  9. Wang L, Xie L, Zhang L, et al. Microstructure evolution and superelasticity of layer-like NiTiNb porous metal prepared by eutectic reaction. Acta Mater. 2018;143:214-226. doi: 10.1016/j.actamat.2017.10.021
  10. Biasetto L, de Moraes EG, Colombo P, Bonollo F. Ovalbumin as foaming agent for Ti6Al4V foams produced by gelcasting. J Alloys Compd. 2016;687:839-844. doi: 10.1016/j.jallcom.2016.06.218
  11. Ma HY, Wang JC, Qin P, et al. Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: microstructure, defects, and mechanical behavior. J Mech Behav Biomed Mater. 2024;183:32-62. doi: 10.1016/j.jmst.2023.11.003
  12. Hafeez N, Liu J, Wang L, et al. Superelastic response of low-modulus porous beta-type Ti-35Nb-2Ta-3Zr alloy fabricated by laser powder bed fusion. Addit Manuf. 2020;34. doi: 10.1016/j.addma.2020.101264
  13. Hafeez N, Wei D, Xie L, et al. Evolution of microstructural complex transitions in low-modulus β-type Ti-35Nb-2Ta- 3Zr alloy manufactured by laser powder bed fusion. Addit Manuf. 2021;48. doi: 10.1016/j.addma.2021.102376
  14. Zhang T, Wei D, Lu E, et al. Microstructure evolution and deformation mechanism of α+β dual-phase Ti-xNb-yTa- 2Zr alloys with high performance. J Mater Sci Technol. 2022;131:68-81. doi: 10.1016/j.jmst.2022.04.052
  15. Lv Y, Wang B, Liu G, et al. Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: a review. Front Bioeng Biotechnol. 2021;9:641130. doi: 10.3389/fbioe.2021.641130
  16. Guo W, Yang Y, Liu C, et al. 3D printed TPMS structural PLA/GO scaffold: process parameter optimization, porous structure, mechanical and biological properties. J Mech Behav Biomed Mater. 2023;142. doi: 10.1016/j.jmbbm.2023.105848
  17. Belda R, Megías R, Marco M, Vercher-Martínez A, Giner E. Numerical analysis of the influence of triply periodic minimal surface structures morphometry on the mechanical response. Comput Methods Programs Biomed. 2023;230:107342. doi: 10.1016/j.cmpb.2023.107342 
  18. Yang L, Li Y, Wu S, et al. Tailorable and predictable mechanical responses of additive manufactured TPMS lattices with graded structures. Mat Sci Eng A. 2022;843. doi: 10.1016/j.msea.2022.143109
  19. Yang L, Han C, Wu H, et al. Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion, J Mech Behav Biomed Mater. 2020;109:103843. doi: 10.1016/j.jmbbm.2020.103843
  20. Kaur I, Singh P. Flow and thermal transport characteristics of triply-periodic minimal surface (TPMS)-based gyroid and Schwarz-P cellular materials. Numer Heat Transfer, Part A. 2021;79(8):553-569. doi: 10.1080/10407782.2021.1872260
  21. Wu G, More KL, Johnston CM, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science. 2011;332(6028): 443-447. doi: 10.1126/science.1200832
  22. Yadroitsev I, Shishkovsky I, Bertrand P, Smurov I. Manufacturing of fine-structured 3D porous filter elements by selective laser melting. Appl Surf Sci. 2009;255(10): 5523-5527. doi: 10.1016/j.apsusc.2008.07.154
  23. Attarilar S, Ebrahimi M, Djavanroodi F, Fu Y, Wang L, Yang J. 3D printing technologies in metallic implants: a thematic review on the techniques and procedures. Int J Bioprint. 2021;7(1). doi: 10.18063/ijb.v7i1.306
  24. Yoo D. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int J Precis Eng Manuf. 2011;12(1):61-71. doi: 10.1007/s12541-011-0008-9
  25. Ma S, Tang Q, Han X, et al. Manufacturability, mechanical properties, mass-transport properties and biocompatibility of triply periodic minimal surface (TPMS) porous scaffolds fabricated by selective laser melting. Mater Des. 2020;195. doi: 10.1016/j.matdes.2020.109034
  26. Ma S, Tang Q, Feng Q, Song J, Han X, Guo F. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting. J Mech Behav Biomed Mater. 2019;93:158-169. doi: 10.1016/j.jmbbm.2019.01.023
  27. Yang N, Quan Z, Zhang D, Tian Y. Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering. Comput- Aided Des. 2014;56:11-21. doi: 10.1016/j.cad.2014.06.006
  28. Aliyu A, Poungsiri K, Shinjo J, Panwisawas C, et al. Additive manufacturing of tantalum scaffolds:Processing, microstructure and process-induced defects, Int J Refract Met H. 2023;112:106132. doi: 10.1016/j.ijrmhm.2023.106132
  29. Naghavi SA, Tamaddon M, Marghoub A, et al. Mechanical characterisation and numerical modelling of TPMS-based gyroid and diamond Ti6Al4V scaffolds for bone implants: an integrated approach for translational consideration. Bioengineering. 2022;9(10). doi: 10.3390/bioengineering9100504
  30. Lu Y, Cheng L, Yang Z, Li J, Zhu H. Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure. Plos One. 2020;15(9). doi: 10.1371/journal.pone.0238471
  31. Guo X, Zheng X, Yang Y, Yang X, Yi Y. Mechanical behavior of TPMS-based scaffolds: a comparison between minimal surfaces and their lattice structures. SN Appl Sci. 2019;1(10). doi: 10.1007/s42452-019-1167-z
  32. Zhang X, Fang G, Xing L, Liu W, Zhou J. Effect of porosity variation strategy on the performance of functionally graded Ti-6Al-4V scaffolds for bone tissue engineering. Mater Des. 2018;157:523-538. doi: 10.1016/j.matdes.2018.07.064
  33. Pires T, Santos J, Ruben RB, Gouveia BP, Castro APG, Fernandes PR. Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds. J Biomech. 2021;117. doi: 10.1016/j.jbiomech.2021.110263 
  34. Santos J, Pires T, Gouveia BP, Castro APG, Fernandes PR. On the permeability of TPMS scaffolds. J Mech Behav Biomed Mater. 2020;110. doi: 10.1016/j.jmbbm.2020.103932
  35. Zhao S, Hou W, Xu Q, Li SJ, Hao YL, Yang R. Ti-6Al-4V lattice structures fabricated by electron beam melting for biomedical applications. Titanium Med Dent Appl. 2018; 277-301. doi: 10.1016/B978-0-12-812456-7.00013-5
  36. Yan C, Hao L, Hussein A, Young P, Raymont D. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des. 2014;55: 533-541. doi: 10.1016/j.matdes.2013.10.027
  37. Li X, Xiong Y-Z, Zhang H, Gao R-N. Development of functionally graded porous titanium/silk fibroin composite scaffold for bone repair. Mater Lett. 2021;282. doi: 10.1016/j.matlet.2020.128670
  38. Huo P, Zhao Z, Bai P, et al. Deformation evolution and fracture mechanism of porous TC4 alloy scaffolds fabricated using selective laser melting under uniaxial compression. J Alloys Compd. 2021;861:158529. doi: 10.1016/j.jallcom.2020.158529
  39. Wang S, Liu L, Li K, Zhu L, Chen J, Hao Y. Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application. Mater Des. 2019;168. doi: 10.1016/j.matdes.2019.107643
  40. McGregor M, Patel S, McLachlin S, Vlasea M. Architectural bone parameters and the relationship to titanium lattice design for powder bed fusion additive manufacturing. Addit Manuf. 2021;47. doi: 10.1016/j.addma.2021.102273
  41. Hara D, Nakashima Y, Sato T, et al. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique. Mater Sci Eng C Mater Biol Appl. 2016;59:1047-1052. doi: 10.1016/j.msec.2015.11.025
  42. Wang S, Shi Z, Liu L, Zhou X, Zhu L, Hao Y. The design of Ti6Al4V primitive surface structure with symmetrical gradient of pore size in biomimetic bone scaffold. Mater Des. 2020;193. doi: 10.1016/j.matdes.2020.108830
  43. Carluccio D, Xu C, Venezuela J, et al. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomater. 2020;103:346-360. doi: 10.1016/j.actbio.2019.12.018
  44. Lv Y, Liu G, Wang B, et al. Pore strategy design of a novel NiTi- Nb biomedical porous scaffold based on a triply periodic minimal surface. Front Bioeng Biotechnol. 2022;10:910475. doi: 10.3389/fbioe.2022.910475
  45. Lv Y, Guo J, Zhang Q, Wei G, Yu H. Design of low elastic modulus and high strength TC4 porous scaffolds via new variable gradient strategies. Mater Lett. 2022;325: 132616. doi: 10.1016/j.matlet.2022.132616
  46. Tan C, Zou J, Li S, et al. Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures. Int J Mach Tools Manuf. 2021;167. doi: 10.1016/j.ijmachtools.2021.103764
  47. Yu G, Li Z, Li S, et al. The select of internal architecture for porous Ti alloy scaffold: a compromise between mechanical properties and permeability. Mater Des. 2020;192:108754. doi: 10.1016/j.matdes.2020.108754
  48. Xiong Y, Gao R, Zhang H, Dong L-L, Li J-T, Li X. Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications. J Mech Behav Biomed Mater. 2020;104:103673. doi: 10.1016/j.jmbbm.2020.103673
  49. Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53:572-584. doi: 10.1016/j.actbio.2017.02.024
  50. Lv Y, Wang B, Liu G, et al. Design of bone-like continuous gradient porous scaffold based on triply periodic minimal surfaces. J Mater Res Technol. 2022;21:3650-3665. doi: 10.1016/j.jmrt.2022.10.160 
  51. Xiong Y, Han Z, Qin J, et al. Effects of porosity gradient pattern on mechanical performance of additive manufactured Ti- 6Al-4V functionally graded porous structure. Mater Des. 2021;208. doi: 10.1016/j.matdes.2021.109911
  52. Zhao S, Li S, Hou W, Hao YL, Yang R, Misra RDK. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting. J Mech Behav Biomed Mater. 2016;59: 251-264. doi: 10.1016/j.jmbbm.2016.01.034
  53. Heinl P, Muller L, Korner C, Singer RF, Müller FA. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4(5):1536-1544. doi: 10.1016/j.actbio.2008.03.013
  54. Heinl P, Körner C, Singer RF. Selective electron beam melting of cellular titanium: mechanical properties. Adv Eng Mater. 2008;10(9):882-888. doi: 10.1002/adem.200800137
  55. Cheng X, Li S, Murr L, et al. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting. J Mech Behav Biomed Mater. 2012;16:153-162. doi: 10.1016/j.jmbbm.2012.10.005
  56. Chen S, Huang J, Pan C, et al. Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting. J Alloys Compd. 2017;713:248-254. doi: 10.1016/j.jallcom.2017.04.190
  57. Nauman EA, Fong KE, Keaveny TM. Dependence of intertrabecular permeability on flow direction and anatomic site. Ann Biomed Eng. 1999;27:517-524. doi: 10.1114/1.195
  58. Zhang X-Y, Yan X-C, Fang G, Liu M. Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface. Addit Manuf. 2020;32. doi: 10.1016/j.addma.2019.101015
  59. Zou S, Mu Y, Pan B, et al. Mechanical and biological properties of enhanced porous scaffolds based on triply periodic minimal surfaces. Mater Des. 2022;219. doi: 10.1016/j.matdes.2022.110803
  60. Wang S, Shi Z, Liu L, et al. Honeycomb structure is promising for the repair of human bone defects. Mater Des. 2021;207. doi: 10.1016/j.matdes.2021.109832
  61. Wang H, Su K, Su L, Liang P, Ji P, Wang C. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater Sci Eng C Mater Biol Appl. 2019;104:109908. doi: 10.1016/j.msec.2019.109908
  62. Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018;67:378-392. doi: 10.1016/j.actbio.2017.12.008
  63. Wang Z, Wang C, Li C, et al. Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: a review, J Alloy Compd. 2017;717: 271-285. doi: 10.1016/j.jallcom.2017.05.079
  64. Li Y, Shi Y, Lu Y, et al. Additive manufacturing of vascular stents. Acta Biomater. 2023;167:16-37. doi: 10.1016/j.actbio.2023.06.014
  65. Zhang Y, Liu J, Wang L, et al. Porous NiTiNb alloys with superior strength and ductility induced by modulating eutectic microregion. Acta Mater. 2022;239:118295. doi: 10.1016/j.actamat.2022.118295
  66. Lv Y, Shi Z, Wang B, et al. Design of biomedical gradient porous scaffold via a minimal surface dual-unit continuous transition connection strategy. Int J Bioprint. 2024;10(1). doi: 10.36922/ijb.1263
  67. Zhang Y, Wei D, Chen Y, et al. Non-negligible role of gradient porous structure in superelasticity deterioration and improvement of NiTi shape memory alloys. J Mater Sci Technol. 2024;186:48-63. doi: 10.1016/j.jmst.2023.10.053 
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing