AccScience Publishing / IJB / Volume 10 / Issue 3 / DOI: 10.36922/ijb.1750
RESEARCH ARTICLE

Preparation and characterization of angled dual- and multi-branched nerve guidance conduits

Yinchu Dong1† Wenbi Wu1† Haofan Liu1† Xuebing Jiang1 Li Li1 Li Zhang1 Yi Zhang1 Jing Luo1 Maling Gou1*
Show Less
1 Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
IJB 2024, 10(3), 1750 https://doi.org/10.36922/ijb.1750
Submitted: 2 September 2023 | Accepted: 30 October 2023 | Published: 15 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Branched nerve guidance conduit (NGC) provides a promising alternative to autografts for the effective treatment of severe peripheral nerve injuries. Despite this, the impact of branched architecture on nerve regeneration remains unclear, particularly concerning branch angle and number in multi-branched NGCs. In this study, we investigated the effects of branch angle and number on nerve regeneration by preparing and characterizing multi-angled and multi-branched NGCs. We designed and fabricated dual-branched NGCs (DBNs) with various branch angles and multi-branched NGCs (MBNs) through a digital light processing (DLP) printing process. When branched NGCs were implanted to bridge the linear sciatic nerve gap, nerve dual branches with acute (45°), right (90°), or obtuse (120°) branch angles were formed in DBNs, while nerve multi-branches were generated in MBNs. The regenerated nerves in DBNs with various angles exhibited comparable electrophysiological conduction and histological morphologies, indicating that the branch angle of dual-branched NGCs may not affect nerve branch regeneration. In contrast, the diameter of the regenerated nerve branches in MBNs decreased with increasing distance from the scaffold center, highlighting the potential significance of branch number in the design of branched NGCs. This study contributes valuable insights for designing, preparing, and applying branched NGCs, offering potential assistance in advancing nerve regeneration strategies.

Keywords
3D printing
Nerve regeneration
Branched nerve conduit
Nerve graft substitute
Funding
The work is supported by the National Natural Science Foundation (32271468), the Sichuan Science and Technology Program (2021JDTD0001), the Fundamental Research Funds for the Central Universities (2022SCU12046), and Post-Doctor Research Project, West China Hospital, Sichuan University (2023HXBH081).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Rodríguez FJ, Valero-Cabré A, Navarro X. Regeneration and functional recovery following peripheral nerve injury. Drug Discov Today Dis Models. 2004;1(2):177-185. doi: 10.1016/j.ddmod.2004.09.008
  2. Scheib J, Hoke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9(12):668-676. doi: 10.1038/nrneurol.2013.227
  3. Sunderland S. The anatomy and physiology of nerve injury. Muscle Nerve. 1990;13(9):771-784. doi: 10.1002/mus.880130903
  4. Flores AJ, Lavernia CJ, Owens PW. Anatomy and physiology of peripheral nerve injury and repair. Am J Orthop. 2000;29(3):167-173.
  5. Muheremu A, Sun JG, Wang XY, Zhang F, Ao Q, Peng J. Combined use of Y-tube conduits with human umbilical cord stem cells for repairing nerve bifurcation defects. Neural Regen Res. 2016;11(4):664-669. doi: 10.4103/1673-5374.180755
  6. Allgood JE, Roballo KCS, Sparks BB, Bushman JS. The effects of graft source and orientation on outcomes after ablation of a branched peripheral nerve. Front Cell Neurosci. 2022;16:1055490. doi: 10.3389/fncel.2022.1055490
  7. Bengur FB, Stoy C, Binko MA, et al. Facial nerve repair: Bioengineering approaches in preclinical models. Tissue Eng Part B Rev. 2022;28(2):364-378. doi: 10.1089/ten.TEB.2020.0381
  8. Haller JR, Shelton C. Medial antebrachial cutaneous nerve: A new donor graft for repair of facial nerve defects at the skull base. Laryngoscope. 1997;107(8):1048-1052. doi: 10.1097/00005537-199708000-00008
  9. White WM, McKenna MJ, Deschler DG. Use of the thoracodorsal nerve for facial nerve grafting in the setting of pedicled latissimus dorsi reconstruction. Otolaryngol Head Neck Surg. 2006;135(6):962-964. doi: 10.1016/j.otohns.2005.09.017
  10. McKee D, Osemwengie B, Cox C. Distal digital nerve repair using nerve allograft with a dermal substitute: A case report. Hand (N Y). 2020;15(4):Np47-np50. doi: 10.1177/1558944719854169
  11. Leechavengvongs S, Witoonchart K, Uerpairojkit C. Penetrating injury to the terminal branches of the posterior interosseous nerve with nerve grafting. J Hand Surg. 2001;26(6):593-595. doi: 10.1054/jhsb.2001.0609
  12. Terzis JK, Kostas I. Vein grafts used as nerve conduits for obstetrical brachial plexus palsy reconstruction. Plast Reconstr Surg. 2007;120(7):1930-1941. doi: 10.1097/01.prs.0000287391.12943.00
  13. Stocco E, Barbon S, Emmi A, et al. Bridging gaps in peripheral nerves: From current strategies to future perspectives in conduit design. Int J Mol Sci. 2023;24(11). doi: 10.3390/ijms24119170
  14. Wu S, Shen W, Ge X, et al. Advances in large gap peripheral nerve injury repair and regeneration with bridging nerve guidance conduits. Macromol Biosci. 2023:e2300078. doi: 10.1002/mabi.202300078
  15. de Ruiter GC, Spinner RJ, Verhaagen J, Malessy MJ. Misdirection and guidance of regenerating axons after experimental nerve injury and repair. J Neurosurg. 2014;120(2):493-501. doi: 10.3171/2013.8.JNS122300
  16. Fang Y, Wang C, Liu Z, et al. 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration. Adv Sci (Weinh). 2023;10(12):e2205744. doi: 10.1002/advs.202205744
  17. Semmler L, Naghilou A, Millesi F, et al. Silk-in-silk nerve guidance conduits enhance regeneration in a rat sciatic nerve injury model. Adv Healthc Mater. 2023;12(11):e2203237. doi: 10.1002/adhm.202203237
  18. Hasiba-Pappas S, Kamolz LP, Luze H, et al. Does electrical stimulation through nerve conduits improve peripheral nerve regeneration?-A systematic review. J Pers Med. 2023;13(3). doi: 10.3390/jpm13030414
  19. Jin B, Yu Y, Chen X, et al. Microtubes with gradient decellularized porcine sciatic nerve matrix from microfluidics for sciatic nerve regeneration. Bioact Mater. 2023;21:511-519. doi: 10.1016/j.bioactmat.2022.08.027
  20. Lin Y, Yu J, Zhang Y, et al. 4D printed tri-segment nerve conduit using zein gel as the ink for repair of rat sciatic nerve large defect. Biomater Adv. 2023;151:213473. doi: 10.1016/j.bioadv.2023.213473
  21. Zhang D, Yao Y, Duan Y, et al. Surface-anchored graphene oxide nanosheets on cell-scale micropatterned poly(d,l-lactide-co-caprolactone) conduits promote peripheral nerve regeneration. ACS Appl Mater Interfaces. 2020;12(7):7915- 7930. doi: 10.1021/acsami.9b20321
  22. Zhang DM, Suo HR, Qian J, Yin J, Fu JZ, Huang Y. Physical understanding of axonal growth patterns on grooved substrates: Groove ridge crossing versus longitudinal alignment. Biodes Manuf. 2020;3(4):348-360. doi: 10.1007/s42242-020-00089-1
  23. Allgood JE, Bittner GD, Bushman JS. Repair and regeneration of peripheral nerve injuries that ablate branch points. Neural Regen Res. 2023;18(12):2564-2568. doi: 10.4103/1673-5374.373679
  24. Zhang J, Tao J, Cheng H, et al. Nerve transfer with 3D-printed branch nerve conduits. Burns Trauma. 2022;10:tkac010. doi: 10.1093/burnst/tkac010
  25. Yao L, de Ruiter GC, Wang H, et al. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials. 2010;31(22):5789-5797. doi: 10.1016/j.biomaterials.2010.03.081
  26. Zhu W, Tringale KR, Woller SA, et al. Rapid continuous 3D printing of customizable peripheral nerve guidance conduits. Mater Today (Kidlington). 2018;21(9):951-959. doi: 10.1016/j.mattod.2018.04.001
  27. Isaacs J, Mallu S, Yan W, Little B. Consequences of oversizing: Nerve-to-nerve tube diameter mismatch. J Bone Joint Surg Am. 2014;96(17):1461-1467. doi: 10.2106/JBJS.M.01420
  28. Ma Y, Gao H, Wang H, Cao X. Engineering topography: Effects on nerve cell behaviors and applications in peripheral nerve repair. J Mater Chem B. 2021;9(32):6310-6325. doi: 10.1039/d1tb00782c
  29. Moore AM, Kasukurthi R, Magill CK, Farhadi HF, Borschel GH, Mackinnon SE. Limitations of conduits in peripheral nerve repairs. Hand (N Y). 2009;4(2):180-186. doi: 10.1007/s11552-008-9158-3
  30. Giusti G, Shin RH, Lee JY, Mattar TG, Bishop AT, Shin AY. The influence of nerve conduits diameter in motor nerve recovery after segmental nerve repair. Microsurgery. 2014;34(8):646-652. doi: 10.1002/micr.22312
  31. Hoffman-Kim D, Mitchel JA, Bellamkonda RV. Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng. 2010;12:203-231. doi: 10.1146/annurev-bioeng-070909-105351
  32. Petcu EB, Midha R, McColl E, Popa-Wagner A, Chirila TV, Dalton PD. 3D printing strategies for peripheral nerve regeneration. Biofabrication. 2018;10(3):032001. doi: 10.1088/1758-5090/aaaf50
  33. Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen XB. Strategic design and fabrication of nerve guidance conduits for peripheral nerve regeneration. Biotechnol J. 2018;13(7):1700635. doi: 10.1002/biot.201700635
  34. Vijayavenkataraman S, Zhang S, Thaharah S, Sriram G, Lu WF, Fuh JYH. Electrohydrodynamic jet 3D printed nerve guide conduits (NGCs) for peripheral nerve injury repair. Polymers. 2018;10(7):753. doi: 10.3390/polym10070753
  35. Kim JH, Kim I, Seol YJ, et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun. 2020;11(1):1025. doi: 10.1038/s41467-020-14930-9
  36. Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital light processing based three-dimensional printing for medical applications. Int J Bioprint. 2020;6(1):242. doi: 10.18063/ijb.v6i1.242
  37. Akbari M, Khademhosseini A. Tissue bioprinting for biology and medicine. Cell. 2022;185(15):2644-2648. doi: 10.1016/j.cell.2022.06.015
  38. Johnson BN, Lancaster KZ, Zhen G, et al. 3D printed anatomical nerve regeneration pathways. Adv Funct Mater. 2015;25(39):6205-6217. doi: 10.1002/adfm.201501760
  39. Johnson BN, Jia X. 3D printed nerve guidance channels: computer-aided control of geometry, physical cues, biological supplements and gradients. Neural Regen Res. 2016;11(10):1568-1569. doi: 10.4103/1673-5374.193230
  40. Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639. doi: 10.1016/j.biomaterials.2022.121639
  41. Suri S, Han LH, Zhang W, Singh A, Chen S, Schmidt CE. Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed Microdevices. 2011;13(6):983-993. doi: 10.1007/s10544-011-9568-9
  42. Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: Polymerization rate and cytocompatibility. Biomaterials. 2009;30(35):6702-6707. doi: 10.1016/j.biomaterials.2009.08.055
  43. Shirahama H, Lee BH, Tan LP, Cho NJ. Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Sci Rep. 2016;6:31036. doi: 10.1038/srep31036
  44. Liu X, Tao J, Liu J, et al. 3D printing enabled customization of functional microgels. ACS Appl Mater Interfaces. 2019;11(13):12209-12215. doi: 10.1021/acsami.8b18701
  45. Tao J, Zhang J, Du T, et al. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater. 2019;90:49-59. doi: 10.1016/j.actbio.2019.03.047
  46. Xu X, Tao J, Wang S, et al. 3D printing of nerve conduits with nanoparticle-encapsulated RGFP966. Appl Mater Today. 2019;16:247-256. doi: 10.1016/j.apmt.2019.05.014
  47. Gu Y, Ji Y, Zhao Y, et al. The influence of substrate stiffness on the behavior and functions of Schwann cells in culture. Biomaterials. 2012;33(28): 6672-6681. doi: 10.1016/j.biomaterials.2012.06.006
  48. Dalamagkas K, Tsintou M, Seifalian A. Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. Mater Sci Eng C Mater Biol Appl. 2016;65:425-432. doi: 10.1016/j.msec.2016.04.048
  49. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-112. doi: 10.1016/j.copbio.2016.03.014
  50. Wu W, Dong Y, Liu H, et al. 3D printed elastic hydrogel conduits with 7,8-dihydroxyflavone release for peripheral nerve repair. Mater Today Bio. 2023;20:100652. doi: 10.1016/j.mtbio.2023.100652
  51. Tao J, Liu H, Wu W, et al. 3D‐printed nerve conduits with live platelets for effective peripheral nerve repair. Adv Funct Mater. 2020;30(42):2004272. doi: 10.1002/adfm.202004272
  52. Politis MJ. Specificity in mammalian peripheral nerve regeneration at the level of the nerve trunk. Brain Res. 1985;328(2):271-276. doi: 10.1016/0006-8993(85)91038-8
  53. Brushart TM, Seiler WAt. Selective reinnervation of distal motor stumps by peripheral motor axons. Exp Neurol. 1987;97(2):289-300. doi: 10.1016/0014-4886(87)90090-2
  54. Robinson GA, Madison RD. Motor neurons can preferentially reinnervate cutaneous pathways. Exp Neurol. 2004;190(2):407-413. doi: 10.1016/j.expneurol.2004.08.007
  55. Brushart TM, Gerber J, Kessens P, Chen YG, Royall RM. Contributions of pathway and neuron to preferential motor reinnervation. J Neurosci. 1998;18(21):8674-8681. doi: 10.1523/jneurosci.18-21-08674.1998
  56. Lacomis D. Electrophysiology of neuromuscular disorders in critical illness. Muscle Nerve. 2013;47(3):452-463. doi: 10.1002/mus.23615
  57. Wolthers M, Moldovan M, Binderup T, Schmalbruch H, Krarup C. Comparative electrophysiological, functional, and histological studies of nerve lesions in rats. Microsurgery. 2005;25(6):508-519. doi: 10.1002/micr.20156
  58. Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater. 2020;106:54-69. doi: 10.1016/j.actbio.2020.02.003
  59. Conforti L, Gilley J, Coleman MP. Wallerian degeneration: An emerging axon death pathway linking injury and disease. Nat Rev Neurosci. 2014;15(6):394-409. doi: 10.1038/nrn3680
  60. Evangelista MS, Perez M, Salibian AA, et al. Single-lumen and multi-lumen poly(ethylene glycol) nerve conduits fabricated by stereolithography for peripheral nerve regeneration in vivo. J Reconstr Microsurg. 2015;31(5):327-335. doi: 10.1055/s-0034-1395415
  61. Zhai QK, Wang XK, Tan XX, Li L. Reconstruction for facial nerve defects of zygomatic or marginal mandibular branches using upper buccal or cervical branches. J Craniofac Surg. 2015;26(1):245-247. doi: 10.1097/scs.0000000000001196
  62. Chowdhry S, Yoder EM, Cooperman RD, Yoder VR, Wilhelmi BJ. Locating the cervical motor branch of the facial nerve: Anatomy and clinical application. Plast Reconstr Surg. 2010;126(3):875-879. doi: 10.1097/PRS.0b013e3181e3b374
  63. Tao J, Hu Y, Wang S, et al. A 3D-engineered porous conduit for peripheral nerve repair. Sci Rep. 2017;7:46038. doi: 10.1038/srep46038
  64. Yao Z, Yan L-W, Qiu S, et al. Customized scaffold design based on natural peripheral nerve fascicle characteristics for biofabrication in tissue regeneration. Biomed Res Int. 2019;20193845780. doi: 10.1155/2019/3845780
  65. Park JH, Jang J, Lee JS, Cho DW. Three-dimensional printing of tissue/organ analogues containing living cells. Ann Biomed Eng. 2017;45(1):180-194. doi: 10.1007/s10439-016-1611-9
  66. You S, Xiang Y, Hwang HH, et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci Adv. 2023;9(8):eade7923. doi: 10.1126/sciadv.ade7923
  67. Huang Y, Wu W, Liu H, et al. 3D printing of functional nerve guide conduits. Burns Trauma. 2021;9:tkab011. doi: 10.1093/burnst/tkab011
  68. Maki Y, Yoshizu T, Tsubokawa N. Selective regeneration of motor and sensory axons in an experimental peripheral nerve model without endorgans. Scand J Plast Reconstr Surg Hand Surg. 2005;39(5):257-260. doi: 10.1080/0284431051006510
  69. Bolleboom A, de Ruiter GCW, Coert JH, Tuk B, Holstege JC, van Neck JW. Novel experimental surgical strategy to prevent traumatic neuroma formation by combining a 3D-printed Y-tube with an autograft. J Neurosurg. 2019;130(1):184-196. doi: 10.3171/2017.8.Jns17276
  70. Shahriari D, Loke G, Tafel I, et al. Scalable fabrication of porous microchannel nerve guidance scaffolds with complex geometries. Adv Mater. 2019;31(30):e1902021. doi: 10.1002/adma.201902021
  71. Chiu DT, Smahel J, Chen L, Meyer V. Neurotropism revisited. Neurol Res. 2004;26(4):381-387. doi: 10.1179/016164104225013815
  72. Abernethy DA, Thomas PK, Rud A, King RH. Mutual attraction between emigrant cells from transected denervated nerve. J Anat. 1994;184(Pt 2):239-249.
  73. Hu M, Xiao H, Niu Y, Liu H, Zhang L. Long-term follow-up of the repair of the multiple-branch facial nerve defect using acellular nerve allograft. J Oral Maxillofac Surg. 2016;74(1):218.e1-11. doi: 10.1016/j.joms.2015.08.005
  74. Cheesborough JE, Smith LH, Kuiken TA, Dumanian GA. Targeted muscle reinnervation and advanced prosthetic arms. Semin Plast Surg. 2015;29(1):62-72. doi: 10.1055/s-0035-1544166
  75. Szwedowski D, Ambrozy J, Grabowski R, Dallo I, Mobasheri A. Diagnosis and treatment of the most common neuropathies following knee injuries and reconstructive surgery - A narrative review. Heliyon. 2021;7(9):e08032. doi: 10.1016/j.heliyon.2021.e08032
  76. Liu Q, Li S, Zhang Y, et al. Anatomic basis and clinical effect of selective dorsal neurectomy for patients with lifelong premature ejaculation: A randomized controlled trial. J Sex Med. 2019;16(4):522-530. doi: 10.1016/j.jsxm.2019.01.319
  77. Moon du G. Is there a place for surgical treatment of premature ejaculation? Transl Androl Urol. 2016;5(4):502-507. doi: 10.21037/tau.2016.05.06
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing