AccScience Publishing / IJB / Volume 10 / Issue 2 / DOI: 10.36922/ijb.1725
Cite this article
190
Download
1425
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

2D/3D-printed PEDOT/PSS conductive hydrogel for biomedical sensors

Bin Huang1 Zengjie Zhao1 Yayu Zheng1 Kaidi Xu1 Dan Wang1 Qingyuan Yang1 Tingting Yang1 Xiaojie Yang2* Huangqin Chen1*
Show Less
1 School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning City, Hubei Province, China
2 School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning City, Hubei Province, China
IJB 2024, 10(2), 1725 https://doi.org/10.36922/ijb.1725
Submitted: 31 August 2023 | Accepted: 26 October 2023 | Published: 16 January 2024
(This article belongs to the Special Issue Advances in 3D printing of hydrogels)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The integration of conductive hydrogels and advanced three-dimensional (3D) printing is a trigger of the development of biomedical sensors for healthcare diagnostics and personalized treatment. Poly(3,4-ethylenedioxythiophene):poly(styr ene sulfonate) (PEDOT:PSS) is a versatile conductive hydrogel materials renowned for its exceptional conductivity and hydrophilicity, and 3D printing technology allows for precise and customized fabrication of electronic components and devices. In this review, we aim to explore the potential of 3D-printed PEDOT/PSS conductive hydrogel in the fabrication of biomedical sensors, with a focus on their distinct characteristics, application potential, and systematic classification. We also discuss the methods for fabricating PEDOT:PSS hydrogel electronic devices by employing 3D printing techniques, including extrusion-based 3D printing technology (fused deposition modeling, direct ink writing, and inkjet printing), powder-based 3D printing technology (selective laser sintering and selective laser melting), and photopolymerization-based 3D printing technology (stereolithography and digital light processing). The applications of 2D/3D-printed PEDOT:PSS hydrogels in biomedical sensors, such as strain sensors, pressure sensors, stretchable sensors, electrochemical sensors, temperature sensors, humidity sensors, and electrocardiogram sensor, are also summarized in this review. Finally, we provide insights into the development of 3D-printed PEDOT:PSS-based biomedical sensors and the innovative techniques for biomedical sensor integration.

Keywords
PEDOT:PSS
3D printing
Conductive hydrogel
Biomedical sensor
Funding
This work was supported by the Xianning City Program of Science & Technology (No. 2022ZRKX051), Science Development Foundation of Hubei University of Science & Technology (No. BK202217, 2021F005, 2021ZX14), Special Fund for Medical Research of Hubei University of Science and Technology (2022YKY14), and Special Fund of School of Stomatology and Ophthalmology of Hubei University of Science and Technology (2020WG01).
References
  1. Zhang X, Wang Y, Wu X, et al. A universal post-treatment strategy for biomimetic composite hydrogel with anisotropic topological structure and wide range of adjustable mechanical properties. Biomater Adv. 2022;133:112654. doi: 10.1016/j.msec.2022.112654
  2. Han IK, Chung T, Han J, Kim YS. Nanocomposite hydrogel actuators hybridized with various dimensional nanomaterials for stimuli responsiveness enhancement. Nano Converg. 2019;6(1):18. doi: 10.1186/s40580-019-0188-z
  3. Yumin A, Liguo D, Yi Y, Yongna J. Mechanical properties of an interpenetrating network poly(vinyl alcohol)/alginate hydrogel with hierarchical fibrous structures. RSC Adv. 2022;12(19):11632-11639. doi: 10.1039/d1ra07368k
  4. Zhou T, Qiao Z, Yang M, et al. Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics. Biosens Bioelectron. 2023;231:115288. doi: 10.1016/j.bios.2023.115288
  5. Chen ZY, Zhou RB, Wang RD, Su SL, Zhou F. Dual-crosslinked network of polyacrylamide-carboxymethylcellulose hydrogel promotes osteogenic differentiation in vitro. Inj J Biol Macromol. 2023;234:123788. doi: 10.1016/j.ijbiomac.2023.123788
  6. Jiang Y, Wang Y, Li Q, Yu C, Chu W. Natural polymer-based stimuli-responsive hydrogels. Curr Med Chem. 2020;27(16):2631-2657. doi: 10.2174/0929867326666191122144916
  7. Tang L, Wu S, Qu J, Gong L, Tang J. A review of conductive hydrogel used in flexible strain sensor. Materials (Basel). 2020;13(18):3947. doi: 10.3390/ma13183947
  8. Walker BW, Lara RP, Mogadam E, Yu CH, Kimball W, Annabi N. Rational design of microfabricated electroconductive hydrogels for biomedical applications. Prog Polym Sci. 2019;92:135-157. doi: 10.1016/j.progpolymsci.2019.02.007
  9. Chen Z, Chen Y, Hedenqvist MS, et al. Multifunctional conductive hydrogels and their applications as smart wearable devices. J Mater Chem B. 2021;9(11):2561-2583. doi: 10.1039/D0TB02929G
  10. Zhang W, Feng P, Chen J, Sun Z, Zhao B. Electrically conductive hydrogels for flexible energy storage systems. Prog Polym Sci. 2019;88:220-240. doi: 10.1016/j.progpolymsci.2018.09.001
  11. Xu J, Chen TY, Tai CH, Hsu SH. Bioactive self-healing hydrogel based on tannic acid modified gold nano-crosslinker as an injectable brain implant for treating Parkinson’s disease. Biomater Res. 2023;27(1):8. doi: 10.1186/s40824-023-00347-0
  12. Liu X, Miller AL, Park S, et al. Functionalized carbon nanotube and graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation. ACS Appl Mater Inter. 2017;9(17):14677-14690. doi: 10.1021/acsami.7b02072
  13. Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev. 2019;119(1):478-598. doi: 10.1021/acs.chemrev.8b00311
  14. Gan D, Shuai T, Wang X, et al. Mussel-inspired redox-active and hydrophilic conductive polymer nanoparticles for adhesive hydrogel bioelectronics. Nano-Micro Lett. 2020;12(1):169. doi: 10.1007/s40820-020-00507-0
  15. Lu B, Yuk H, Lin S, et al. Pure PEDOT:PSS hydrogels. Nat Commun. 2019;10(1):1043. doi: 10.1038/s41467-019-09003-5
  16. Yun C, Han JW, Kim S, et al. Generating semi-metallic conductivity in polymers by laser-driven nanostructural reorganization. Mater Horiz. 2019;6(10):2143-2151. doi: 10.1039/C9MH00959K
  17. Won D, Kim J, Choi J, et al. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci Adv. 2022;8(23):eabo3209. doi: 10.1126/sciadv.abo3209
  18. Zhang XS, Yang WT Zhang HN, Xie MG. PEDOT:PSS: From conductive polymers to sensors. Nanotechnol Precis Eng, 2021;4(4):045004. doi: 10.1063/10.0006866
  19. Tseghai GB, Mengistie DA, Malengier B, Fante KA, Langenhove LV. PEDOT:PSS-based conductive textiles and their applications. Sensors. 2020;20(7):1881. doi: 10.3390/s20071881
  20. Zhang WY, Su Z, Zhang XC, Wang WT, Li ZF. Recent progress on PEDOT-based wearable bioelectronics. View. 2022;3(5):20220030. doi: 10.1002/VIW.20220030
  21. Falco A, Petrelli M, Bezzeccheri E,Abdelhalim A, Lugli P. Towards 3D-printed organic electronics: Planarization and spray-deposition of functional layers onto 3D-printed objects. Org Electron. 2016;39:340-347. doi: 10.1016/j.orgel.2016.10.027
  22. Lee JH, So HY. 3D-printing-assisted flexible pressure sensor with a concentric circle pattern and high sensitivity for health monitoring. Microsyst Nanoeng. 2023;9:44. doi: 10.1038/s41378-023-00509-z
  23. Da Silva TA, Braunger ML, Countinho MAN. 3D-printed graphene electrodes applied in an impedimetric electronic tongue for soil analysis. Chemosensors. 2019;7(4):50. doi: 10.3390/chemosensors7040050
  24. Wu KB, Kim KW, Kwon JH, Kim JK, Kim SH, Moon HC. Direct ink writing of PEDOT:PSS inks for flexible micro-supercapacitors. J Ind Eng Chem. 2023;123:272-277. doi: 10.1016/j.jiec.2023.03.042
  25. Li L, Meng J, Bao XR, Huang Y. Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv Energy Mater. 2023;13 (9):2203683. doi: 10.1002/aenm.202203683
  26. Dominguez-Alfaro A, Gabirondo E, Alegret N. 3D printable conducting and biocompatible PEDOT-graft-PLA copolymers by direct ink writing. Macromol Rapid Comm. 2021;42 (12):2100100. doi: 10.1002/marc.202100100
  27. Thaibunnak A, Pakdee U. Pen-based writing of functionalized MWCNT-PEDOT:PSS ink on flexible substrate for application in ammonia gas sensor. Suranaree J Sci Tech. 2022;29(2).
  28. Ovhal MM, Kumar N, Kang JW. 3D direct ink writing fabrication of high-performance all-solid-state micro-supercapacitors. Mol Cryst Liq Cryst. 2020;705(1):105-111. doi: 10.1080/15421406.2020.1743426
  29. Zheng Y, Wang YD, Zhang F, et al. Coagulation bath-assisted 3D printing of PEDOT:PSS with high resolution and strong substrate adhesion for bioelectronic devices. Adv Mater Technol-US. 2022;7(7):2101514. doi: 10.1002/admt.202101514
  30. Hou SY, Chen HQ, Lv D, et al. Highly conductive inkjet-printed PEDOT:PSS film under cyclic stretching. ACS Appl Mater Interfaces. 2023;15(23):28503-28515. doi: 10.1021/acsami.3c03378
  31. Rivers G, Austin JS, He YF, et al. Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents. Addit Manuf. 2023;66:103452. doi: 10.1016/j.addma.2023.103452
  32. Cinquino M, Prontera CT, Zizzari A, et al. Effect of surface tension and drying time on inkjet-printed PEDOT:PSS for ITO-free OLED devices. J Sci-Adv Mater Dev. 2022;7(1):100394. doi: 10.1016/j.jsamd.2021.09.001
  33. Doering OM, Vetter C, Alhawwash A, Horn MR, Yoshida K. Durable scalable 3D SLA-printed cuff electrodes with high performance carbon plus PEDOT:PSS-based contacts. Artif Organs. 2022;46(10):2085-2096. doi: 10.1111/aor.14387
  34. Bertana V, Scordo G, Parmeggiani M, et al. Rapid prototyping of 3D organic electrochemical transistors by composite photocurable resin. Sci Rep. 2020; 10(1):13335. doi: 10.1038/s41598-020-70365-8
  35. Lopez-Larrea N, Gallastegui A, Lezama L, Criado-Gonzalez M, Casado N, Mecerreyes D. Fast visible-light 3D printing of conductive PEDOT:PSS hydrogels. Macromol Rapid Comm. 2023;26:2300229. doi: 10.1002/marc.202300229
  36. Ye XL, Wang C, Wang L, Lu BH, Gao FL, Shao D. DLP printing of a flexible micropattern Si/PEDOT:PSS/ PEG electrode for lithium-ion batteries. Chem Comm. 2022;58(55):7642-7645. doi: 10.1039/D2CC01626E
  37. Park D, Lee S, Kim J. Thermoelectric and mechanical properties of PEDOT:PSS-coated Ag2Se nanowire composite fabricated via digital light processing based 3D printing. Compos Commun. 2022;30:101084. doi: 10.1016/j.coco.2022.101084
  38. Hill IM, Hernandez V, Xu BH. Imparting high conductivity to 3D printed PEDOT:PSS. ACS Appl Polym Mater. 2023;5(6):3989-3998. doi: 10.1021/acsapm.3c00232
  39. Aguzin A, Dominguez-Alfaro A, Criado-Gonzalez M, et al. Direct ink writing of PEDOT eutectogels as substrate-free dry electrodes for electromyography. Mater Horiz. 2023;10(7):2516-2524. doi: 10.1039/D3MH00310H
  40. Greco G, Giuri A, Bagheri S, et al. Pedot:PSS/graphene oxide (GO) ternary nanocomposites for electrochemical applications. Molecules. 2023;28(7):2963. doi: 10.3390/molecules28072963
  41. Bao P, Lu Y, Tao P, Liu B, Li J, Cui X. 3D printing PEDOT-CMC-based high areal capacity electrodes for Li-ion batteries. Ionics. 2021;27(7):2857-2865. doi: 10.1007/s11581-021-04063-4
  42. Yu JW, Tian FJ, Wang W, et al. Design of highly conductive, intrinsically stretchable, and 3D printable PEDOT:PSS hydrogels via PSS-chain engineering for bioelectronics. Chem Mater. 2023;35(15):5936-5944. doi: 10.1021/acs.chemmater.3c00844
  43. Kye MJ, Cho J, Yu HC, et al. “Drop-on-textile” patternable aqueous PEDOT composite ink providing highly stretchable and wash-resistant electrodes for electronic textiles. Dyes Pigments. 2018;155:150-158. doi: 10.1016/j.dyepig.2018.03.024
  44. Liu J, Garcia J, Leahy LM, et al. 3D printing of multifunctional conductive polymer composite hydrogels. Adv Funct Mater. 2023;2214196. doi: 10.1002/adfm.202214196
  45. Fan JX, Montemagno C, Gupta M. 3D printed high transconductance organic electrochemical transistors on flexible substrates. Org Electron. 2019;73:122-129. doi: 10.1016/j.orgel.2019.06.012
  46. Buga C, Viana JC. Optimization of print quality of inkjet printed PEDOT:PSS patterns. Flex Print Electron. 2022;7(4):045004. doi: 10.1088/2058-8585/ac931e
  47. Khalaf AM, Issa HH, Ramírez JL, Mohamed SA. All inkjet-printed temperature sensors based on PEDOT:PSS. IEEE Access. 2022;10:61094-61100. doi: 10.1109/ACCESS.2022.3176822
  48. Wang XP, Mu BY, Zhang LW, Zhang X. Drift characteristic analysis of additive manufactured Ag NPs-PEDOT:PSS flexible temperature sensor. Results Eng. 2022;13:100384. doi: 10.1016/j.rineng.2022.100384
  49. Khalaf AM, Ramirez JL, Mohamed SA, Issa H. Highly sensitive interdigitated thermistor based on PEDOT:PSS for human body temperature monitoring. Flex Print Electron. 2022;7(4):045012. doi: 10.1088/2058-8585/acaabc
  50. Jung EM, Lee SW, Kim SH. Printed ion-gel transistor using electrohydrodynamic (EHD) jet printing process. Org Electron. 2018;52:123-129. doi: 10.1016/j.orgel.2017.10.013
  51. Tang X, Kwon HJ, Ye HQ, et al. Enhanced solvent resistance and electrical performance of electrohydrodynamic jet printed PEDOT:PSS composite patterns: Effects of hardeners on the performance of organic thin-film transistors. Phys Chem Chem Phys. 2019;21(46):25690-25699. doi: 10.1039/C9CP04864B
  52. Park SH, Kim J, Lee SY, et al. Organic thin-film transistors with sub-10-micrometer channel length with printed polymer/carbon nanotube electrodes. Org Electron. 2018;52:165-171. doi: 10.1016/j.orgel.2017.10.023
  53. Lim S, Park SH, An TK, Lee HS, Kim SH. Electrohydrodynamic printing of poly(3,4-ethylenedioxythiophene):poly(4- styrenesulfonate) electrodes with ratio-optimized surfactant. Rsc Adv. 2016;6(3):2004-2010. doi: 10.1039/C5RA19462H
  54. Park SH, Kim J, Park CE. Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors. Org Electron. 2016;38:48-54. doi: 10.1016/j.orgel.2016.07.040
  55. Chen J, Wu T, Zhang L, Tang C, Yang X. Flexible conductive patterns using electrohydrodynamic jet printing method based on high-voltage electrostatic focusing lens. Int J Adv Manuf Technol. 2023;127:4321-4329. doi: 10.1007/s00170-023-11833-z
  56. Chang JK, He JK, Lei Q, Li D. Electrohydrodynamic printing of microscale PEDOT:PSS-PEO features with tunable conductive/thermal properties. ACS Appl Mater Interfaces. 2018;10(22):19116-19122. doi: 10.1021/acsami.8b04051
  57. Balasankar A, Anbazhakan K, Arul V, et al. Recent advances in the production of pharmaceuticals using selective laser sintering. Biomimetics. 2023;8(4):330. doi: 10.3390/biomimetics8040330
  58. Gao BW, Zhao HJ, Peng LQ, Sun Z. A review of research progress in selective laser melting (SLM). Micromachines. 2023;14(1):57. doi: 10.3390/mi14010057
  59. Heo DN, Lee SJ, Timsina R, Qiu X, Castro NJ, Zhang LG. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Mater Sci Eng: C. 2019;99:582-590. doi: 10.1016/j.msec.2019.02.008
  60. Scordo G, Bertana V, Scaltrito L, et al. A novel highly electrically conductive composite resin for stereolithography. Mater Today Commun. 2019;19:12-17. doi: 10.1016/j.mtcomm.2018.12.017
  61. Zhu H, Hu XC, Liu BH, Chen Z, Qu S. 3D printing of conductive hydrogel-elastomer hybrids for stretchable electronics. ACS Appl Mater Interfaces. 2021;13(49):59243-59251. doi: 10.1021/acsami.1c17526
  62. Borghetti M, Serpelloni M, Sardini E. Mechanical behavior of strain sensors based on PEDOT:PSS and silver nanoparticles inks deposited on polymer substrate by inkjet printing. Sensor Actuat A-Phys. 2016;243:71-80. doi: 10.1016/j.sna.2016.03.021
  63. Wuhao Z, Zhou P, Sun L, Liu L, Zhao MS, Yu H. Flexible wearable sensor based on graphene/PEDOT:PSS composite material. Scientia Sinica Technologica. 2019;49(7):851-860.
  64. Saidina DS, Mariatti M, Zubir, SA, Fontana S, Hérold C. Performance of graphene hybrid-based ink for flexibleelectronics. J Mater Sci: Mater Electron. 2019;30(22): 19906-19916. doi: 10.1007/s10854-019-02357-y
  65. Cruz S, Rocha LA, Viana JC. Piezo-resistive behaviour at high strain levels of PEDOT:PSS printed on a flexible polymeric substrate by a novel surface treatment. J Mater Sci: Mater Electron. 2017;28(3):2563-2573. doi: 10.1007/s10854-016-5832-3
  66. Tetsu Y, Yamagishi K, Kato A, et al. Ultrathin epidermal strain sensor based on an elastomer nanosheet with an inkjet-printed conductive polymer. Appl Phys Express. 2017;10(8):087201. doi: 10.7567/APEX.10.087201
  67. Kang TK. Inkjet printing of highly sensitive, transparent, flexible linear piezoresistive strain sensors. Coatings. 2021;11(1):51. doi: 10.3390/coatings11010051
  68. Li Z, Li YR, Wang ZW, et al. 3D-printable and multifunctional conductive nanocomposite with tunable mechanics inspired by sesame candy. Nano Energy. 2023;108:108116. doi: 10.1016/j.nanoen.2023.108166
  69. Lu Y, Yang HR, Diao YF, et al. Solution-processable PEDOT particles for coatings of untreated 3D-printed thermoplastics. ACS Appl Mater Interfaces. 2023;15(2):3433-3441. doi: 10.1021/acsami.2c18328
  70. Jabbar F, Soomro AM, Lee JW, et al. Robust fluidic biocompatible strain sensor based on PEDOT:PSS/CNT composite for human-wearable and high-end robotic applications. Sens Mater. 2020;32(12):4077-4093. doi: 10.18494/SAM.2020.3085
  71. Mirza F, Sahasrabuddhe RR, Baptist JR, Wijesundara MBJ, Lee WH, Popa D. Piezoresistive pressure sensor array for robotic skin. In: Proceedings of the Sensors for Next- Generation Robotics III, 98590K; 2016. doi: 10.1117/12.2225411
  72. Das SK, Baptist JR, Sahasrabuddhe R, Le WHH, Popa D. Package analysis of 3D-printed piezo-resistive strain gauge sensors. In: Proceedings of the Sensors for Next-Generation Robotics III, 985905; 2016. doi: 10.1117/12.2224352
  73. Shao YW, Zhang Q, Zhao Y, et al. Flexible pressure sensor with micro-structure arrays based on PDMS and PEDOT:PSS/PUD&CNTs composite film with 3D printing. Materials. 2021;14(21):6499. doi: 10.3390/ma14216499
  74. Karagiorgis X, Ntagios M, Skabara P, Dahiya R. Elastomeric foam-based soft capacitive pressure sensors using direct ink writing. IEEE J Flex Electron. 2023;2(2):175-182. doi: 10.1109/JFLEX.2023.3264190
  75. Khan S, Ali S, Khan A, Bermak A. Developing pressure sensors from impregnated textile sandwiched in inkjet-printed electrodes. J Mater Sci: Mater Electron. 2021;33(1):541-553. doi: 10.1007/s10854-021-07325-z
  76. Kraft U, Molina-Lopez F, Son D, Bao Z, Murmann B. Ink development and printing of conducting polymers for intrinsically stretchable interconnects and circuits. Adv Electron Mater. 2020;6(1):1900681. doi: 10.1002/aelm.201900681
  77. Cheng XY, Peng SQ, Wu LX, Sun QF. 3D-printed stretchable sensor based on double network PHI/PEDOT:PSS hydrogel annealed with cosolvent of H2O and DMSO. Chem Eng J. 2023;470:144058. doi: 10.1016/j.cej.2023.144058
  78. Lo LW, Zhao JY, Wan HC, Wang Y, Chakrabartty S, Wang C. An inkjet-printed PEDOT:PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl Mater Interfaces. 2021;13(18):21693-21702. doi: 10.1021/acsami.1c00537
  79. Basak I, Nowicki G, Ruttens B, et al. Inkjet printing of PEDOT:PSS based conductive patterns for 3D forming applications. Polymers. 2020;12(12):2915. doi: 10.3390/polym12122915
  80. Shen ZQ, Zhang ZL, Zhang NB, et al. 2022. High- Stretchability, Ultralow-Hysteresis Conducting Polymer Hydrogel Strain Sensors for Soft Machines. Adv Mater, 34 (32):2203650. doi: 10.1002/adma.202203650
  81. Mousavi S, Thai MT, Amjadi M, et al. Unidirectional, highly linear strain sensors with thickness-engineered conductive films for precision control of soft machines. J Mater Chem A. 2022;10(26):13673-13684. doi: 10.1039/D2TA02064E
  82. Kim T, Kim D, Joo Y, Park J, Yoon J, Hong Y. Crack propagation design in transparent polymeric conductive films via carbon nanotube fiber-reinforcement and its application for highly sensitive and mechanically durable strain sensors. Smart Mater Struct. 2019;28(2):025008. doi: 10.1088/1361-665X/aaf0e9
  83. Shao YW, Zhao YL, Liu J, et al. Flexible force sensor with micro-pyramid arrays based on 3D printing. IEEE Sens. 2018;1-4. doi: 10.1109/ICSENS.2018.8589555
  84. Nair RR. Glucose sensing and hybrid instrumentation based on printed organic electrochemical transistors. Flex Print Electron. 2020;5(1):015001. doi: 10.1088/2058-8585/ab63a0
  85. Ramli NI, Abd-Wahab MF, Salim WWAW. Characterization of enzymatic glucose biosensor in buffer solution, in artificial saliva, and in potassium ferricyanide by linear sweep voltammetry. AIP Conf Proc. 2018;2031(1):020037. doi: 10.1063/1.5066993
  86. Bihar E, Wustoni S, Pappa AM, Salama KN, Baran D, Inal S. A fully inkjet-printed disposable glucose sensor on paper. npj Flex Electron. 2018;2(1):30. doi: 10.1038/s41528-018-0044-y
  87. Khan S, Ali S, Khan A, Wang B, Bermak A. Printing sensors on biocompatible substrates for selective detection of glucose. IEEE Sens J. 2021;21(4):4167-4175. doi: 10.1109/JSEN.2020.3032539
  88. Nolan JK, Nguyen TNH, Le KVH, DeLong LE, Lee H. Simple fabrication of flexible biosensor arrays using direct writing for multianalyte measurement from human astrocytes. SLAS Technol. 2019;25(1):33-46. doi: 10.1177/2472630319888442
  89. Majak D, Fan JX, Gupta M. Fully 3D printed OECT based logic gate for detection of cation type and concentration. Sensor Actuat B-Chem. 2019:286:111-118. doi: 10.1016/j.snb.2019.01.120
  90. Nair RR. Organic electrochemical transistor on paper for the detection of halide anions in biological analytes. Flex Print Electron. 2020;5(4):045004. doi: 10.1088/2058-8585/abc9c9
  91. Cavallo A, Losi P, Buscemi M, et al. Biocompatible organic electrochemical transistor on polymeric scaffold for wound healing monitoring. Flex Print Electron. 2022;7(3):035009. doi: 10.1088/2058-8585/ac84ec
  92. Setti L, Fraleoni-Morgera A, Mencarelli I, Filippini A, Ballarin B, Di Biase M. An HRP-based amperometric biosensor fabricated by thermal inkjet printing. Sensor Actuat B-Chem. 2007;126(1):252-257. doi: 10.1016/j.snb.2006.12.015
  93. Uzuncar S, Kac H, Ak M. Electro-templating of prussian blue nanoparticles in PEDOT:PSS and soluble silkworm protein for hydrogen peroxide sensing. Talanta. 2022;252: 123841. doi: 10.1016/j.talanta.2022.123841
  94. Phongphut A, Sriprachuabwong C, Wisitsoraat A, Tuantranont A, Prichanont A, Sritongkham P. A disposable amperometric biosensor based on inkjet-printed Au/ PEDOT-PSS nanocomposite for triglyceride determination. Sensor Actuat B-Chem. 2013;178:501-507. doi: 10.1016/j.snb.2013.01.012
  95. Beduk T, Bihar E, Surya SG, Castillo AN, Inal S, Salama KN. A paper-based inkjet-printed PEDOT:PSS/ ZnO sol-gel hydrazine sensor. Sensor Actuat B-Chem. 2020;306:127539. doi: 10.1016/j.snb.2019.127539
  96. Zeng RJ, Wang WJ, Chen MM, et al. CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor. Nano Energy. 2021;82:105711. doi: 10.1016/j.nanoen.2020.105711
  97. Majak D, Fan JX, Kang S, Gupta M. Delta-9- tetrahydrocannabinol (Delta(9)-THC) sensing using an aerosol jet printed organic electrochemical transistor (OECT). J Mater Chem B. 2021;9(8):2107-2117. doi: 10.1039/D0TB02951C
  98. Amr AGE, Kamel AH, Almehizia AA, Sayed AYA, Elsayed EA, Abd-Rabboh HSM. Paper-based potentiometric sensors for nicotine determination in smokers’ sweat. ACS Omega. 2021;6(17):11340-11347. doi: 10.1021/acsomega.1c00301
  99. Kuzubasoglu BA, Sayar E, Bahadir SK. Inkjet-printed CNT/ PEDOT:PSS temperature sensor on a textile substrate for wearable intelligent systems. IEEE Sens J. 2021;21(12): 13090-13097. doi: 10.1109/JSEN.2021.3070073
  100. Soni M, Bhattacharjee M, Ntagio M, Dahiya R. Printed temperature sensor based on PEDOT: PSS-graphene oxide composite. IEEE Sens J. 2020;20(14):7525-7531. doi: 10.1109/JSEN.2020.2969667
  101. Wang YF, Sekine T, Takeda Y., et al. Fully printed PEDOT:PSS-based temperature sensor with high humidity stability for wireless healthcare monitoring. Sci Rep. 2020;10(1):2467. doi: 10.1038/s41598-020-59432-2
  102. Aidit SN, Rezali FAM, Nor NHM, Yusoff N. Hydrothermal synthesis of zinc oxide/PEDOT:PSS composite for flexible temperature sensor application. Flex Print Electron. 2023;8(2):025008. doi: 10.1088/2058-8585/acd06e
  103. Wang P, Yu W, Li GX, Meng C, Guo S. Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure-temperature sensing application. Chem Eng J. 2022;452:139174. doi: 10.1016/j.cej.2022.139174
  104. Guo H, Song J, Zhang X. Research and fabrication and test of flexible temperature sensor based on fabric substrate. Transduc Microsyst Technol. 2022;41(6):86-89,93.
  105. Lee JW, Choi Y, Jiang J, Yeom SH, Lee W, Ju BK. High sensitivity flexible paper temperature sensor and body-attachable patch for thermometers. Sensor Actuat A-Phys. 2020;313:112205. doi: 10.1016/j.sna.2020.112205
  106. Roy AL, Beaumont C, Leclerc M. Evaluating polythiophenes as temperature sensing materials using combinatorial inkjet printing. Flex Print Electron. 2023;8(1):014002. doi: 10.1088/2058-8585/acc07f
  107. Pradhan S, Yadavalli VK. Photolithographically printed flexible silk/PEDOT:PSS temperature sensors. ACS Appl Electron Mater. 2021;3(1):21-29. doi: 10.1021/acsaelm.0c01017
  108. Bucher T, Huber R, Eschenbaum C, Mertens A, Lemmer U, Amrouch H. Printed temperature sensor array for high-resolution thermal mapping. Sci Rep. 2022;12(1):14231. doi: 10.1038/s41598-022-18321-6
  109. Wang G, Zhang Y, Yang H. Fast-response humidity sensor based on laser printing for respiration monitoring. RSC Adv. 2020;10(15):8910-8916. doi: 10.1039/C9RA10409G
  110. Galliani M, Ferrari LM, Ismailova E. Interdigitated organic sensor in multimodal facemask’s barrier integrity and wearer’s respiration monitoring. Biosensors. 2022;12(5):305. doi: 10.3390/bios12050305
  111. Tekcin M, Sayar E, Yalcin MK. Wearable and flexible humidity sensor integrated to disposable diapers for wetness monitoring and urinary incontinence. Electronics. 2022;11(7):1025. doi: 10.3390/electronics11071025
  112. Hassan G, Sajid M, Choi C. Highly sensitive and full range detectable humidity sensor using PEDOT:PSS, methyl red and graphene oxide materials. Sci Rep. 2019;9: 15227. doi: 10.1038/s41598-019-51712-w
  113. Siddiqui GU, Sajid M, Ali J. Wide range highly sensitive relative humidity sensor based on series combination of MoS2 and PEDOT:PSS sensors array. Sensor Actuat B-Chem. 2018;266:354-363. doi: 10.1016/j.snb.2018.03.134
  114. Conti S, Nepa F, Pascoli SD. Hybrid flexible NFC sensor on paper. IEEE J Flex Electron. 2023;2(1):4-10. doi: 10.1109/JFLEX.2023.3238682
  115. Barmpakos D, Tsamis C, Kaltsas G. Multi-parameter paper sensor fabricated by inkjet-printed silver nanoparticle ink and PEDOT:PSS. Microelectron Eng. 2020;225: 111266. doi: 10.1016/j.mee.2020.111266
  116. Xu SY, Li TY, Ren HX, Mao X, Ye X, Liang B. PEDOT:PSS hydrogel based flexible electrodes for wearable ECG monitoring. IEEE Sensors. 2020;20242466.
  117. Achilli A, Bonfiglio A, Pani D. Design and characterization of screen-printed textile electrodes for ECG monitoring. IEEE Sens J. 2018;18(10):4097-4107.
  118. Sinha SK, Noh Y, Reljin N, et al. Screen-printed PEDOT:PSS electrodes on commercial finished textiles for electrocardiography. ACS Appl Mater Interfaces. 2017;9(43):37524-37528. doi: 10.1021/acsami.7b09954
  119. Zalar P, Saalmink M, Raiteri D, van den Brand J, Smits ECP. Screen-printed dry electrodes: basic characterization and benchmarking. Adv Eng Mater. 2020;22(11):2000714. doi: 10.1002/adem.202000714
  120. Shathi MA, Chen MZ, Khoso NA, Deb H, Ahmed A, Sai WS. All organic graphene oxide and Poly (3, 4-ethylene dioxythiophene) - Poly (styrene sulfonate) coated knitted textile fabrics for wearable electrocardiography (ECG) monitoring. Synth Met. 2020;263:116329. doi: 10.1016/j.synthmet.2020.116329
  121. Li TY, Liang B, Ye ZC, et al. An integrated and conductive hydrogel-paper patch for simultaneous sensing of Chemical-Electrophysiological signals. Biosens Bioelectron. 2021;198:113855. doi: 10.1016/j.bios.2021.113855
  122. Picchio ML, Gallastegui A, Casado N, et al. Mixed ionic and electronic conducting eutectogels for 3D-printable wearable sensors and bioelectrodes. Adv Mater Technol. 2022;7(10):2101680. doi: 10.1002/admt.202101680
  123. Lidon-Roger JV, Prats-Boluda G, Ye-Lin Y, Garcia-Casado J, Garcia-Breijo E. Textile concentric ring electrodes for ECG recording based on screen-printing technology. Sensors. 2018;18(1):300. doi: 10.3390/s18010300
  124. Pless CJ, Nikzad S, Papiano I, et al. Soft electronic block copolymer elastomer composites for multi-material printing of stretchable physiological sensors on textiles. Adv Eng Mater. 2023;9(5):2201173. doi: 10.1002/aelm.202201173
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing