Preparation of tunable hollow composite microfibers assisted by microfluidic spinning and its application in the construction of in vitro neural models
Microfluidic spinning, which has recently emerged as an important approach to processing hydrogels, can handle the flow in the fluid channel and generate microfibers in a controlled and mild manner, and therefore, it is suitable for cell loading, long-term culture, and tissue engineering. In this study, we utilized three-dimensional (3D) printing technology to prepare microfluidic chip templates with different microchannel heights in a one-step manner and obtained microfluidic spinning and microfiber assembly microchips. Hollow calcium alginate (CaA)/gelatin methacrylate (GelMA) composite microfibers were successfully prepared using a microfluidic spinning microchip combined with different fluid-injection strategies. The obtained hollow microfibers had one, two, or three lumens, and different inclusions could be added to the fiber walls. Hollow microfibers with a single lumen were used to load human umbilical vein endothelial cells (HUVECs) and exhibited good cell compatibility and barrier functions. We constructed a neural model based on the HUVEC-loaded hollow microfibers using a customized 3D printer. Using this established neural model, we induced the neural differentiation of rat adrenal medullary pheochromocytoma cells (PC12) using nerve growth factor. Axonal length, tubulin expression, and related gene (GAP-43 and TH) expression in PC12 cells were assessed. The current findings underscore the potential of utilizing microfluidic spinning in in vitro blood–brain barrier simulation, neuropharmaceutical and toxin evaluation, and brain-on-a-chip construction.
- Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater. 2016;28(4):677-684. doi: 10.1002/adma.201503310
- Xiao Y, Yang C, Guo B, et al. Bioinspired strong and tough organic–inorganic hybrid fibers. Small Struct. 2023;4(10):2300080. doi: 10.1002/sstr.202300080
- Shao L, Gao Q, Xie C, Fu J, Xiang M, He Y. Bioprinting of cell-laden microfiber: can it become a standard product? Adv Healthc Mater. 2019;8(9):1900014. doi: 10.1002/adhm.201900014
- Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45-59. doi: 10.1016/j.biomaterials.2016.09.003
- Jiao J, Wang F, Huang J-J, et al. Microfluidic hollow fiber with improved stiffness repairs peripheral nerve injury through non-invasive electromagnetic induction and controlled release of NGF. Chem Eng J. 2021;426:131826. doi: 10.1016/j.cej.2021.131826
- Chen S, Wu C, Liu A, et al. Biofabrication of nerve fibers with mimetic myelin sheath-like structure and aligned fibrous niche. Biofabrication. 2020;12(3):035013. doi: 10.1088/1758-5090/ab860d
- Guo Y, Yan J, Xin JH, et al. Microfluidic-directed biomimetic Bulbine torta-like microfibers based on inhomogeneous viscosity rope-coil effect. Lab Chip. 2021;21(13):2594-2604. doi: 10.1039/d1lc00252j
- Bosch-Rue E, Delgado LM, Gil FJ, Perez RA. Direct extrusion of individually encapsulated endothelial and smooth muscle cells mimicking blood vessel structures and vascular native cell alignment. Biofabrication. 2020;13(1):015003. doi: 10.1088/1758-5090/abbd27
- Yao K, Li W, Li K, et al. Simple fabrication of multicomponent heterogeneous fibers for cell co-culture via microfluidic spinning. Macromol Biosci. 2020;20(3):1900395. doi: 10.1002/mabi.201900395
- Liu Y, Xu P, Liang Z, et al. Hydrogel microfibers with perfusable folded channels for tissue constructs with folded morphology. RSC Adv. 2018;8(42):23475-23480. doi: 10.1039/c8ra04192j
- Tian L, Ma J, Li W, Zhang X, Gao X. Microfiber fabricated via microfluidic spinning toward tissue engineering applications. Macromol Biosci. 2023;23(3):2200429. doi: 10.1002/mabi.202200429
- Song S, Zhou J, Wan J, et al. Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury. Int J Bioprint. 2023;9(3):1-14. doi: 10.18063/ijb.692
- Liu X, Yue T, Kojima M, Huang Q, Arai T. Bio-assembling and bioprinting for engineering microvessels from the bottom up. Int J Bioprint. 2021;7(3):3-17. doi: 10.18063/ijb.v7i3.366
- Xiao Y, Yang C, Zhai X, et al. Bioinspired tough and strong fibers with hierarchical core–shell structure. Adv Mater Interfaces. 2022;10(2):2201962. doi: 10.1002/admi.202201962
- Cheng J, Jun Y, Qin J, Lee S-H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials. 2017;114:121-143. doi: 10.1016/j.biomaterials.2016.10.040
- Nguyen TPT, Tran BM, Lee NY. Microfluidic approach for the fabrication of cell-laden hollow fibers for endothelial barrier research. J Mater Chem B. 2018;6(38):6057-6066. doi: 10.1039/c8tb02031k
- Yu Y, Shang L, Guo J, Wang J, Zhao Y. Design of capillary microfluidics for spinning cell-laden microfibers. Nat Protoc. 2018;13(11):2557-2579. doi: 10.1038/s41596-018-0051-4
- Sun J, Chen J, Liu K, Zeng H. Mechanically strong proteinaceous fibers: engineered fabrication by microfluidics. Engineering. 2021;7(5):615-623. doi: 10.1016/j.eng.2021.02.005
- Yu Y, Wei W, Wang Y, Xu C, Guo Y, Qin J. Simple spinning of heterogeneous hollow microfibers on chip. Adv Mater. 2016;28(31):6649-6655. doi: 10.1002/adma.201601504
- Feng F, He J, Li J, Mao M, Li D. Multicomponent bioprinting of heterogeneous hydrogel constructs based on microfluidic printheads. Int J Bioprint. 2019;5(2):39-48. doi: 10.18063/ijb.v5i2.202
- Abrishamkar A, Nilghaz A, Saadatmand M, Naeimirad M, deMello AJ. Microfluidic-assisted fiber production: potentials, limitations, and prospects. Biomicrofluidics. 2022;16(6):061504. doi: 10.1063/5.0129108
- Du XY, Li Q, Wu G, Chen S. Multifunctional micro/ nanoscale fibers based on microfluidic spinning technology. Adv Mater. 2019;31(52):1903733. doi: 10.1002/adma.201903733
- Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic tissue engineering and bio-actuation. Adv Mater. 2022;34(23):2108427. doi: 10.1002/adma.202108427
- Aykar SS, Reynolds DE, McNamara MC, Hashemi NH. Manufacturing of poly(ethylene glycol diacrylate)- based hollow microvessels using microfluidics. RSC Adv. 2020;10(7):4095-4102. doi: 10.1039/c9ra10264g
- Lee KH, Shin SJ, Park Y, Lee S-H. Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications. Small. 2009;5(11):1264-1268. doi: 10.1002/smll.200801667
- Zhao M, Liu H, Zhang X, Wang H, Tao T, Qin J. A flexible microfluidic strategy to generate grooved microfibers for guiding cell alignment. Biomater Sci. 2021;9(14): 4880-4890. doi: 10.1039/d1bm00549a
- Liu H, Wang Y, Yu Y, Chen W, Jiang L, Qin J. Simple fabrication of inner chitosan-coated alginate hollow microfiber with higher stability. J Biomed Mater Res B Appl Biomater. 2019;107(8):2527-2536. doi: 10.1002/jbm.b.34343
- Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106-126. doi: 10.1016/j.progpolymsci.2011.06.003
- Wu Z, Cai H, Ao Z, Xu J, Heaps S, Guo F. Microfluidic printing of tunable hollow microfibers for vascular tissue engineering. Adv Mater Technol. 2021;6(8):2000683. doi: 10.1002/admt.202000683
- Patil P, Szymanski JM, Feinberg AW. Defined micropatterning of ECM protein adhesive sites on alginate microfibers for engineering highly anisotropic muscle cell bundles. Adv Mater Technol. 2016;1(4):1600003. doi: 10.1002/admt.201600003
- Pei Z, Gao M, Xing J, et al. Experimental study on repair of cartilage defects in the rabbits with GelMA-MSCs scaffold prepared by three-dimensional bioprinting. Int J Bioprint. 2023;9(2):176-196. doi: 10.18063/ijb.v9i2.662
- Chen Z, Lv Z, Zhang Z, Zhang Y, Cui W. Biomaterials for microfluidic technology. Mater Futures. 1(1):012401. doi: 10.1088/2752-5724/ac39ff
- Xie R, Zheng W, Guan L, Ai Y, Liang Q. Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues. Small. 2020;16(15):1902838. doi: 10.1002/smll.201902838
- Volpi M, Paradiso A, Costantini M, Świȩszkowski W. Hydrogel-based fiber biofabrication techniques for skeletal muscle tissue engineering. ACS Biomater Sci Eng. 2022;8(2):379-405. doi: 10.1021/acsbiomaterials.1c01145
- Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014;14(13):2202-2211. doi: 10.1039/c4lc00030g
- Klotz BJ, Gawlitta D, Rosenberg A, Malda J, Melchels FPW. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol. 2016;34(5):394-407. doi: 10.1016/j.tibtech.2016.01.002
- Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials. 2012;33(15):3824-3834. doi: 10.1016/j.biomaterials.2012.01.048
- Wei D, Sun J, Bolderson J, et al. Continuous fabrication and assembly of spatial cell-laden fibers for a tissue-like construct via a photolithographic-based microfluidic chip. ACS Appl Mater Interfaces. 2017;9(17):14606-14617. doi: 10.1021/acsami.7b00078
- Nisbet RM, Gotz J. Amyloid-beta and tau in Alzheimer’s disease: novel pathomechanisms and non-pharmacological treatment strategies. J Alzheimers Dis. 2018;64(s1):S517-S527. doi: 10.3233/JAD-179907
- Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem. 12016;39(Suppl 1):318-324. doi: 10.1111/jnc.13691
- Li W, Yao K, Tian L, Xue C, Zhang X, Gao X. 3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning. J Tissue Eng Regen Med. 2022;16(10):913-922. doi: 10.1002/term.3339
- Tan J, Sun X, Zhang J, et al. Exploratory evaluation of EGFR-targeted anti-tumor drugs for lung cancer based on lung-on-a-chip. Biosensors (Basel). 2022;12(8):618. doi: 10.3390/bios12080618
- Yang X, Li K, Zhang X, et al. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab Chip. 2018;18(3):486-495. doi: 10.1039/c7lc01224a
- Sun X, Li W, Gong X, et al. Investigating the regulation of neural differentiation and injury in PC12 cells using microstructure topographic cues. Biosensors (Basel). 2021;11(10):399. doi: 10.3390/bios11100399
- Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
- Tian Y, Wang J, Wang L. Microfluidic fabrication of bioinspired cavity-microfibers for 3D scaffolds. ACS Appl Mater Interfaces. 2018;10(35):29219-29226. doi: 10.1021/acsami.8b09212
- Tian L, Shi J, Li W, Zhang Y, Gao X. Hollow microfiber assembly-based endocrine pancreas-on-a-chip for sugar substitute evaluation. Adv Healthc Mater. 2023: 2302104. doi: 10.1002/adhm.202302104
- Zuo Y, He X, Yang Y, et al. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Acta Biomater. 2016;38:153-162. doi: 10.1016/j.actbio.2016.04.036
- Shi X, Ostrovidov S, Zhao Y, et al. Microfluidic spinning of cell-responsive grooved microfibers. Adv Funct Mater. 2015;25(15):2250-2259. doi: 10.1002/adfm.201404531