AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.1285
Cite this article
186
Download
449
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Improving the transdermal delivery of vitamin C by 3D-printed microneedle particles for alleviating skin photodamage

Li Zhang1† Haofan Liu1† Linghong Guo2,3,4† Xuebing Jiang1 Siyi Wang1,5 Run Tian1,2 Yiting Huang1 Xian Jiang2,3* Maling Gou1*
Show Less
1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
2 Department of Dermatology, West China Hospital, Sichuan University, 610041 Chengdu, China
3 Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, China
4 Tianfu Jincheng Laboratory & Institute of Future Medical Innovation, City of Future Medicine, 641400 Chengdu, China
5 Huahang Microcreate Technology Co., Ltd, 610042 Chengdu, China
IJB 2024, 10(1), 1285 https://doi.org/10.36922/ijb.1285
Submitted: 11 July 2023 | Accepted: 15 August 2023 | Published: 8 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Skin photodamage is a common disease that can cause various skin problems, and vitamin C is frequently used as an antioxidant to protect the skin from photodamage. However, vitamin C is a charged and hydrophilic molecule, which decreases skin permeability. In this study, we developed a type of microneedle particles (MNPs) to enhance topical vitamin C delivery. The MNPs are millimeter-sized particles with micron-sized needle-like structures that can be rapidly and accurately fabricated through a digital light processing (DLP)-based micro-printing process. The mechanical properties of these MNPs are reliable for forming micropores across the stratum corneum in a painless manner. Following a topical application to the dorsal skin of mice, the MNPs increased the permeability of medications. The effectiveness of vitamin C in mitigating skin photodamage is significantly improved. In conclusion, this study presents micro-printing of MNPs for transdermal vitamin C delivery, which has potential applications in future treatment of skin photodamage.

Keywords
Microneedle particles
Micro-printing
Vitamin C delivery
Skin photodamage
Funding
This work was supported by National Key Research and Development Program of China (2021YFF1200800), Sichuan Science and Technology Program (2021JDTD0001, 2022YFQ0004), Fundamental Research Funds for the Central Universities (2022SCU12046), and National Natural Science Foundation of China (82073473).
References
  1. Wei L, Christensen SR, Fitzgerald ME, et al. Ultradeep sequencing differentiates patterns of skin clonal mutations associated with sun-exposure status and skin cancer burden. Sci Adv. 2021;7(1):eabd7703. doi: 10.1126/sciadv.abd7703
  2. Yoon J-H, McArthur MJ, Park J, et al. Error-prone replication through UV lesions by DNA polymerase θ protects against skin cancers. Cell. 2019;176(6):1295-1309.e15. doi: 10.1016/j.cell.2019.01.023
  3. Vicente ALSA, Novoloaca A, Cahais V, et al. Cutaneous and acral melanoma cross-OMICs reveals prognostic cancer drivers associated with pathobiology and ultraviolet exposure. Nat Commun. 2022;13(1):4115. doi: 10.1038/s41467-022-31488-w
  4. Yin S, Wang Y, Liu N, et al. Potential skin protective effects after UVB irradiation afforded by an antioxidant peptide from Odorrana Andersonii. Biomed Pharmacother. 2019;120:109535. doi: 10.1016/j.biopha.2019.109535
  5. Zhang X, Feng C, Wang S, et al. A novel amphibian-derived peptide alleviated ultraviolet B-induced photodamage in mice. Biomed Pharmacother. 2021;136:111258. doi: 10.1016/j.biopha.2021.111258
  6. Xu P, Zhang M, Wang X, et al. Antioxidative effect of quetiapine on acute ultraviolet-B-induced skin and HaCaT cell damage. Int J Mol Sci. 2018;19(4):953. doi: 10.3390/ijms19040953
  7. Pullar JM, Carr AC, Vissers MCM. The roles of vitamin C in skin health. Nutrients. 2017;9(8):866. doi: 10.3390/nu9080866
  8. Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: A review. Biomater Res. 2021;25(1):24. doi: 10.1186/s40824-021-00226-6
  9. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261-1268. doi: 10.1038/nbt.1504
  10. Roberts MS, Mohammed Y, Pastore MN, et al. Topical and cutaneous delivery using nanosystems. J Control Release Soc. 2017;247:86-105. doi: 10.1016/j.jconrel.2016.12.022
  11. Yang Y, Liu L, Wu X, Wang X, Lu Q, Zhang Z. CO2 fractional laser-assisted transdermal delivery of silk nanofiber carriers in a rabbit ear hypertrophic scar model. Burns Trauma. 2022;10:tkac040. doi: 10.1093/burnst/tkac040
  12. Zhou Y, Jia X, Pang D, et al. An integrated Mg battery-powered iontophoresis patch for efficient and controllable transdermal drug delivery. Nat Commun. 2023;14(1):297. doi: 10.1038/s41467-023-35990-7
  13. Azagury A, Khoury L, Enden G, Kost J. Ultrasound mediated transdermal drug delivery. Adv Drug Deliv Rev. 2014;72: 127-143. doi: 10.1016/j.addr.2014.01.007
  14. Zeng Z, Jiang G, Liu T, et al. Fabrication of gelatin methacryloyl hydrogel microneedles for transdermal delivery of metformin in diabetic rats. Bio-Des Manuf. 2021;4(4):902-911. doi: 10.1007/s42242-021-00140-9
  15. Xiang Y, Lu J, Mao C, et al. Ultrasound-triggered interfacial engineering-based microneedle for bacterial infection acne treatment. Sci Adv. 2023;9(10):eadf0854. doi: 10.1126/sciadv.adf0854
  16. Blagus T, Markelc B, Cemazar M, et al. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery. J Control Release. 2013;172(3):862-871. doi: 10.1016/j.jconrel.2013.09.030
  17. Serrano-Castañeda P, Escobar-Chavez JJ, Rodriguez-cruz IM, Melgoza LM, Martinez-Hernandez J. Microneedles as enhancer of drug absorption through the skin and applications in medicine and cosmetology. J Pharm Sci. 2018;21:73-93. doi: 10.18433/jpps29610
  18. Chen Y-H, Lai K-Y, Chiu Y-H, Wu Y-W, Shiau A-L, Chen M-C. Implantable microneedles with an immune-boosting function for effective intradermal influenza vaccination. Acta Biomater. 2019;97:230-238. doi: 10.1016/j.actbio.2019.07.048
  19. Zhai H, Zhang C, Ou H, Chen M. Transdermal delivery of heparin using low-frequency sonophoresis in combination with sponge spicules for venous thrombosis treatment. Biomater Sci. 2021;9(16):5612-5625. doi: 10.1039/D1BM00703C
  20. Raphael AP, Primiero CA, Lin LL, et al. High aspect ratio elongated microparticles for enhanced topical drug delivery in human volunteers. Adv Healthc Mater. 2014;3(6): 860-866. doi: 10.1002/adhm.201300517
  21. Shin CI, Kim M, Kim Y-C. Delivery of niacinamide to the skin using microneedle-like particles. Pharmaceutics. 2019;11(7):326. doi: 10.3390/pharmaceutics11070326
  22. Tadros AR, Romanyuk A, Miller IC, et al. STAR particles for enhanced topical drug and vaccine delivery. Nat Med. 2020;26(3):341-347. doi: 10.1038/s41591-020-0787-6
  23. Zhao X, Li X, Zhang P, Wang Y. Research of polymeric microneedles for transdermal drug delivery. Prog Chem. 2017;29(12):1518-1525. doi: 10.7536/PC170804
  24. Jung JH, Jin SG. Microneedle for transdermal drug delivery: Current trends and fabrication. J Pharm Investig. 2021;51(5):503-517. doi: 10.1007/s40005-021-00512-4
  25. Liu X, Li R, Yuan X, et al. Fast customization of microneedle arrays by static optical projection lithography. ACS Appl Mater Interfaces. 2021;13(50):60522-60530. doi: 10.1021/acsami.1c21489
  26. Li R, Liu X, Yuan X, et al. Fast customization of hollow microneedle patches for insulin delivery. Int J Bioprint. 2022;8(2):553. doi: 10.18063/ijb.v8i2.553
  27. Economidou SN, Douroumis D. 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential. Adv Drug Deliv Rev. 2021;173:60-69. doi: 10.1016/j.addr.2021.03.007
  28. Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst Nanoeng. 2019;5(1):42. doi: 10.1038/s41378-019-0088-8
  29. Almadi FS, Mallah SI. STAR particles in context: A novel contender in the search for optimized drug-delivery systems. Ther Deliv. 2021;12(3):175-181. doi: 10.4155/tde-2020-0111
  30. Zhang D, Das DB, Rielly CD. Microneedle assisted micro-particle delivery from gene guns: Experiments using skin-mimicking agarose gel. J Pharm Sci. 2014;103(2):613-627. doi: 10.1002/jps.23835
  31. Lim SH, Tiew WJ, Zhang J, Kachouie NN, Kang L. Geometrical optimisation of a personalised microneedle eye patch for transdermal delivery of anti-wrinkle small peptide. Biofabrication. 2020;12(3):035003. doi: 10.1088/1758-5090/ab6d37
  32. Economidou SN, Pissinato Pere CP, Okereke M, Douroumis D. Optimisation of design and manufacturing parameters of 3D printed solid microneedles for improved strength, sharpness, and drug delivery. Micromachines. 2021;12(2):117. doi: 10.3390/mi12020117
  33. Lee JD, Kim J, Jang HJ, Lee B-M, Kim K-B. Percutaneous permeability of 1-phenoxy-2-propanol, a preservative in cosmetics. Regul Toxicol Pharmacol. 2019;103:56-62. doi: 10.1016/j.yrtph.2019.01.002
  34. Si Y, Liu W, McClements DJ, Chen X, Hu Z, Zou Liqiang. Ameliorative effects of snake (Deinagkistrodon Acutus) oil and its main fatty acids against UVB-induced skin photodamage in mice. J Photochem Photobiol B. 2019;197:111538. doi: 10.1016/j.jphotobiol.2019.111538
  35. Lee C-W, Ko H-H, Lin C-C, Chai C-Y, Chen W-T, Yen F-L. Artocarpin attenuates ultraviolet B-induced skin damage in hairless mice by antioxidant and anti-inflammatory effect. Food Chem Toxicol. 2013;60:123-129. doi: 10.1016/j.fct.2013.07.029
  36. Zhou W, Liu W, Zou L, et al. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids Surf B Biointerfaces. 2014;117:330–337. doi: 10.1016/j.colsurfb.2014.02.036
  37. Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D bioprinting. Sci Adv. 2020;6(23):eaba7406. doi: 10.1126/sciadv.aba7406
  38. Wang P, Sun Y, Shi X, Shen H, Ning H, Liu H. 3D printing of tissue engineering scaffolds: A focus on vascular regeneration. Bio-Des Manuf. 2021;4(2):344-378. doi: 10.1007/s42242-020-00109-0
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing