AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.1263
Cite this article
187
Download
479
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Design of biomedical gradient porous scaffold via a minimal surface dual-unit continuous transition connection strategy

Yuting Lv1,2 Zheng Shi1 Binghao Wang3,4* Miao Luo3 Xing Ouyang1 Jia Liu3,4* Hao Dong1 Yanlei Sun1 Liqiang Wang2,5*
Show Less
1 College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
2 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
3 Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
4 Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Baise, Guangxi, China
5 National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
IJB 2024, 10(1), 1263 https://doi.org/10.36922/ijb.1263
Submitted: 6 July 2023 | Accepted: 11 September 2023 | Published: 8 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In this work, a series of new gradient porous scaffolds were innovatively designed via a dual-unit continuous transition connection strategy based on the minimal surface structures (primitive [P], diamond [D], and gyroid [G]). The scaffolds were successfully prepared through selective laser melting technology. The results showed that the dual-unit continuous transition connection strategy significantly improved the mechanical properties of the connected scaffolds. The compression strength of the scaffolds was found to be (P-G)>(P-D)>(G-P)>(G-D)>(D-G)>(D-P), with the P-G structure exhibiting a compression strength of 167.7 MPa and an elastic modulus of 3.3 GPa. The mechanical properties of the porous scaffolds were primarily influenced by the outer unit type, the connection condition between different units, the unit size, and the porosity. Scaffolds with the outer P unit demonstrated better mechanical properties due to the higher mechanical strength of the P structure. The connection performance between different units varied, with P and G units forming a good continuous transition connection, while the connection performance between P and D units was the weakest. The dual-unit continuous transition connection strategy offers a promising approach to optimize the connection performance of different units, providing new insights into the design of medical porous scaffolds.

Keywords
Biomedical porous scaffold
Selective laser melting
Minimal surface
Mechanical property
Funding
Not applicable.
References
  1. Moiduddin K, Darwish S, Al-Ahmari A, Elwatidy S, Mohammad A, Ameen W. Structural and mechanical characterization of custom design cranial implant created using additive manufacturing. Electron J Biotechnol. 2017;29:22–31. doi: 10.1016/j.ejbt.2017.06.005
  2. Gómez S, Vlad MD, López J, Fernández E. Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater. 2016;42:341–350. doi: 10.1016/j.actbio.2016.06.032
  3. Henkel J, Woodruff MA, Epari DR, et al. Bone regeneration based on tissue engineering conceptions — A 21st century perspective. Bone Res. 2013;1(1):216–248. doi: 10.4248/BR201303002
  4. Park S, Park M, Lee B-T. Autologous stromal vascular fraction-loaded hyaluronic acid/gelatin-biphasic calcium phosphate scaffold for bone tissue regeneration. Mater Sci Eng C. 2022;132:112533. doi: 10.1016/j.msec.2021.112533
  5. Kamal M, Ziyab AH, Bartella A, et al. Volumetric comparison of autogenous bone and tissue-engineered bone replacement materials in alveolar cleft repair: A systematic review and meta-analysis. Br J Oral Maxillofac Surg. 2018;56(6): 453–462. doi: 10.1016/j.bjoms.2018.05.007
  6. Cui Y-W, Chen L-Y, Chu Y-H, et al. Metastable pitting corrosion behavior and characteristics of passive film of laser powder bed fusion produced Ti–6Al–4V in NaCl solutions with different concentrations. Corros Sci. 2023;215:111017. doi: 10.1016/j.corsci.2023.111017
  7. Wang L, Xie L, Lv Y, et al. Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing. Acta Materialia. 2017;131:499– 510. doi: 10.1016/j.actamat.2017.03.079
  8. Wang L, Lu W, Qin J, Zhang F, Zhang D. Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical β titanium alloy. Mater Sci Eng A. 2008;490:421–426. doi: 10.1016/j.msea.2008.03.003
  9. Guo L, Ataollah Naghavi S, Wang Z, et al. On the design evolution of hip implants: A review. Mater Des. 2022;216:110552. doi: 10.1016/j.matdes.2022.110552
  10. Barba D, Alabort E, Reed RC. Synthetic bone: Design by additive manufacturing. Acta Biomater. 2019;97:637–656. doi: 10.1016/j.actbio.2019.07.049
  11. Zadpoor AA. Meta-biomaterials. Biomater Sci. 2019;8(1): 18–38. doi: 10.1039/C9BM01247H
  12. Xiao R, Feng X, Fan R, et al. 3D printing of titanium-coated gradient composite lattices for lightweight mandibular prosthesis. Composites Part B. 2020;193:108057. doi: 10.1016/j.compositesb.2020.108057
  1. Liu C, Wang C-Y, Liu H, Wang Z-H, Lin GY. Mechanical properties and biocompatibility of 3D printing Ti6Al4V titanium alloy scaffolds. Chin J Nonferrous Met. 2018;28: 758–765. doi: 10.19476/j.ysxb.1004.0609.2018.04.14
  2. Song C, Liu L, Deng Z, et al. Research progress on the design and performance of porous titanium alloy bone implants. J Mater Res Technol. 2023;23:2626–2641. doi: 10.1016/j.jmrt.2023.01.155
  3. Kelly CN, Francovich J, Julmi S, et al. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Acta Biomater. 2019;94:610–626. doi: 10.1016/j.actbio.2019.05.046
  4. Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR Permeability versus design in TPMS scaffolds. Materials. 2019;12(8):1313. doi: 10.3390/ma12081313
  5. Zhao B, Gain AK, Ding W, Zhang L, Li X, Fu Yucan. A review on metallic porous materials: pore formation, mechanical properties, and their applications. Int J Adv Manuf Technol. 2018;95(5–8):2641–2659. doi: 10.1007/s00170-017-1415-6
  6. Chen SY, Kuo CN, Su YL, et al. Microstructure and fracture properties of open-cell porous Ti-6Al-4V with high porosity fabricated by electron beam melting. Mater Charact. 2018;138:255–262. doi: 10.1016/j.matchar.2018.02.016
  7. Li J, Cui X, Hooper GJ, Lim KS, Woodfield TBF. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. J Mech Behav Biomed Mater. 2020;105:103671. doi: 10.1016/j.jmbbm.2020.103671
  8. Yang N, Quan Z, Zhang D, Yanling T. Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering. Comput Aided Des. 2014;56:11–21. doi: 10.1016/j.cad.2014.06.006
  9. Van Bael S, Kerckhofs G, Pyka MMG, Schrooten J, Kruth JP. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A. 2011;528(24):7423–7431. doi: 10.1016/j.msea.2011.06.045
  10. Lei H-Y, Li J-R, Xu Z-J, Wang Q-H. Parametric design of Voronoi-based lattice porous structures. Mater Des. 2020;191:108607. doi: 10.1016/j.matdes.2020.108607
  11. Wang G, Shen L, Zhao J, et al. Design and compressive behavior of controllable irregular porous scaffolds: Based on voronoi-tessellation and for additive manufacturing. ACS Biomater Sci Eng. 2018;4(2):719–727. doi: 10.1021/acsbiomaterials.7b00916
  12. McGregor M, Patel S, McLachlin S, Vlasea M. Architectural bone parameters and the relationship to titanium lattice design for powder bed fusion additive manufacturing. Addit Manuf. 2021;47:102273. doi: 10.1016/j.addma.2021.102273
  13. Giannitelli SM, Accoto D, Trombetta M, Rainer A. Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 2014;10(2):580–594. doi: 10.1016/j.actbio.2013.10.024
  14. Rajagopalan S, Robb RA. Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med Image Anal. 2006;10(5):693–712. doi: 10.1016/j.media.2006.06.001
  15. Feng J, Fu J, Yao X, He Y. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extrem Manuf. 2022;4(2):022001. doi: 10.1088/2631-7990/ac5be6
  16. Feng J, Wei D, Zhang P, et al. Preparation of TiNbTaZrMo high-entropy alloy with tunable Young’s modulus by selective laser melting. J Manuf Process. 2023;85: 160–165. doi: 10.1016/j.jmapro.2022.11.046
  17. Zhao M, Liu F, Fu G, Zhang DZ, Zhang T, Zhou H. Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM. Materials. 2018;11(12):2411. doi: 10.3390/ma11122411
  18. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27): 5474–5491. doi: 10.1016/j.biomaterials.2005.02.002
  19. Han C, Li Y, Wang Q, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. J Mech Behav Biomed Mater. 2018;80:119–127. doi: 10.1016/j.jmbbm.2018.01.013
  20. Wang S, Liu L, Li K, Zhu L, Chen J, Hao Y. Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application. Mater Des. 2019;168:107643. doi: 10.1016/j.matdes.2019.107643
  21. Lv Y, Guo J, Zhang Q, et al. Design of low elastic modulus and high strength TC4 porous scaffolds via new variable gradient strategies. Mater Lett. 2022;325:132616. doi: 10.1016/j.matlet.2022.132616
  22. Lv Y, Wang B, Liu G, et al. Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: A review. Front Bioeng Biotechnol. 2021;9:641130. doi: 10.3389/fbioe.2021.641130
  23. Wang S, Shi Z, Liu L, Zhou X, Zhu L, Hao Yongqiang. The design of Ti6Al4V primitive surface structure with symmetrical gradient of pore size in biomimetic bone scaffold. Mater Des. 2020;193:108830. doi: 10.1016/j.matdes.2020.108830
  24. Ma S, Song K, Lan J, Ma L. Biological and mechanical property analysis for designed heterogeneous porous scaffolds based on the refined TPMS. J Mech Behav Biomed Mater. 2020;107:103727. doi: 10.1016/j.jmbbm.2020.103727
  25. Yánez A, Cuadrado A, Martel O, joão Afonso H, Monopoli D. Gyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect reconstruction. Mater Des. 2018;140:21–29. doi: 10.1016/j.matdes.2017.11.050
  26. Yoo D-J. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int J Precis Eng Manuf. 2011;12(1):61–71. doi: 10.1007/s12541-011-0008-9
  27. Fan Z, Fu Y, Gao R, Liu S. Investigation on heat transfer enhancement of phase change material for battery thermal energy storage system based on composite triply periodic minimal surface. J Energy Storage. 2023;57:106222. doi: 10.1016/j.est.2022.106222
  28. Yan C, Hao L, Hussein A, Young P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J Mech Behav Biomed Mater. 2015;51:61–73. doi: 10.1016/j.jmbbm.2015.06.024
  29. Craeghs T, Clijsters S, Yasa E, Bechmann F, Berumen S, Kruth J-P. Determination of geometrical factors in layerwise laser melting using optical process monitoring. Opt Lasers Eng. 2011;49(12):1440–1446. doi: 10.1016/j.optlaseng.2011.06.016
  30. Li X, Xiong Y-Z, Zhang H, Gao R-N. Development of functionally graded porous titanium/silk fibroin composite scaffold for bone repair. Mater Lett. 2021;282:128670. doi: 10.1016/j.matlet.2020.128670
  31. Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: Properties, performance, applications and challenges, Mater Des. 2019;183:108137. doi: 10.1016/j.matdes.2019.108137
  32. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater Today. 2018;21:22–37. doi: 10.1016/j.mattod.2017.07.001
  33. Lv Y, Wang B, Liu G, et al. Design of bone-like continuous gradient porous scaffold based on triply periodic minimal surfaces. J Mater Res Technol. 2022;21:3650–3665. doi: 10.1016/j.jmrt.2022.10.160
  34. Montazerian H, Davoodi E, Asadi-Eydivand M, Kadkhodapour J, Solati-Hashjin M. Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties. Mater Des. 2017;126:98–114. doi: 10.1016/j.matdes.2017.04.009
  35. Liu F, Mao Z, Zhang P, Zhang DZ, Jiang J, Ma Z. Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties. Mater Des. 2018;160:849–860. doi: 10.1016/j.matdes.2018.09.053
  36. Yu G, Li Z, Li S, et al. The select of internal architecture for porous Ti alloy scaffold: A compromise between mechanical properties and permeability. Mater Des. 2020;192:108754. doi: 10.1016/j.matdes.2020.108754
  37. Cuadrado A, Yánez A, Martel O, Deviaene S, Monopoli D. Influence of load orientation and of types of loads on the mechanical properties of porous Ti6Al4V biomaterials. Mater Des. 2017;135:309–318. doi: 10.1016/j.matdes.2017.09.045
  38. Zhao S, Li SJ, Hou WT, Hao YL, Yang R, Misra RDK. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting. J Mech Behav Biomed Mater. 2016;59: 251–264. doi: 10.1016/j.jmbbm.2016.01.034
  39. Shi X, Yan C, Feng W, Zhang Y, Leng Z. Effect of high layer thickness on surface quality and defect behavior of Ti-6Al- 4V fabricated by selective laser melting. Opt Laser Technol. 2020;132:106471. doi: 10.1016/j.optlastec.2020.106471
  40. Ataee A, Li Y, Fraser D, Wen C, Song G. Anisotropic Ti- 6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater Des. 2018;137:345–354. doi: 10.1016/j.matdes.2017.10.040
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing