AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.1007

3D printing of costal cartilage models with fine fidelity and biomimetic mechanical performance for ear reconstruction simulation

Senmao Wang1 Di Wang1 Liya Jia2 Yuanzhi Yue2 Genli Wu2 Yuyun Chu2 Qian Wang1 Bo Pan1 Haiyue Jiang1* Lin Lin1*
Show Less
1 Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
2 3D Printing Laboratory, Elkem Silicones Shanghai Co Ltd, No. 515 Shennan Road, Minhang District, Shanghai 201108, China
IJB 2024, 10(1), 1007
Submitted: 27 May 2023 | Accepted: 4 July 2023 | Published: 3 August 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

Patient-based training is difficult in ear reconstruction surgery; therefore, costal cartilage models are required for surgical education and pre-operative simulation. Here, we aimed to fabricate personalized models with mechanical and structural similarity to native costal cartilage to simulate ear reconstruction in microtia patients. To achieve this, the stiffness, hardness, and suture retention ability of both native costal cartilage and printed silicone were experimentally examined in vitro. Rheological tests and three-dimensional (3D) comparison methods were used to evaluate the printing ability and outcomes. The printed silicone models were used by residents to practice ear framework handcrafting during ear reconstruction surgery, and the residents’ learning curves were analyzed. In addition, the models were used for pre-operative simulation to study and optimize the surgical plan. The results showed that the consistency of mechanical properties within cartilage and silicone was verified. Printable silicone had good shear-thinning properties, and the printed structures had almost perfect printing fidelity. Residents who used printed silicone models enjoyed great progress and confidence after training. The pre-operative simulation optimized the carving scheme, reduced trauma in the operative site, and avoided wasting necessary cartilage tissue. Overall, fine-fidelity models created in this study were intended for surgical education and pre-operative simulation by applying 3D-printable (3DP) silicone, facilitating the optimization of surgical plans. Surgeons were satisfied with this kind of model and recognized the efficacy and great application value of 3D-printed silicone models for clinical practice.

3D printing
Biomimetic model
Surgical simulation
Costal cartilage
This work was supported by the National Major Disease Multidisciplinary Diagnosis and Treatment Cooperation Project [21025] and Beijing Municipal Science & Technology Commission [Z221100007422084].
  1. Pan B, Jiang H, Guo D, Huang C, Hu S, Zhuang H. Microtia: Ear reconstruction using tissue expander and autogenous costal cartilage. J Plast Reconstr Aesthet Surg. 2008;61(Suppl 1): S98–S103. doi: 10.1016/j.bjps.2007.07.012
  2. Zhang Y, Jiang H, Yang Q, et al. Microtia in a Chinese specialty clinic population: clinical heterogeneity and associated congenital anomalies. Plast Reconstr Surg. 2018;142(6):892e–903e. doi: 10.1097/prs.0000000000005066
  3. Jiang H, Pan B, Lin L, Zhao Y, Guo D, Zhuang H. Fabrication of three-dimensional cartilaginous framework in auricular reconstruction. J Plast Reconstr Aesthet Surg. 2008;61 (Suppl 1):S77–S85. doi: 10.1016/j.bjps.2008.07.007
  4. Tanzer RC. Total reconstruction of the external ear. Plast Reconstr Surg Transplant Bull. 1959;23(1):1–15. doi: 10.1097/00006534-195901000-00001
  5. Smith RM, Byrne PJ. Reconstruction of the ear. Facial Plast Surg Clin North Am. 2019;27(1):95–104. doi: 10.1016/j.fsc.2018.08.010
  6. Kneebone R. Simulation in surgical training: Educational issues and practical implications. Med Educ. 2003;37(3):267– 277. doi: 10.1046/j.1365-2923.2003.01440.x
  7. Wilkes GH. Learning to perform ear reconstruction. Facial Plast Surg. 2009;25(3):158–163. doi: 10.1055/s-0029-1239452
  8. Agrawal K. Bovine cartilage: A near perfect training tool for carving ear cartilage framework. Cleft Palate Craniofac J. 2015;52(6):758–760. doi: 10.1597/14-079r
  9. Vadodaria S, Mowatt D, Giblin V, Gault D. Mastering ear cartilage sculpture: The vegetarian option. Plast Reconstr Surg. 2005;116(7):2043–2044. doi: 10.1097/01.prs.0000192399.15346.23
  10. Shin HS, Hong SC. A porcine rib cartilage model for practicing ear-framework fabrication. J Craniofac Surg. 2013;24(5):1756–1757. doi: 10.1097/SCS.0b013e3182902548
  11. Erdogan B, Morioka D, Hamada T, Kusano T, Win KM. Use of a plastic eraser for ear reconstruction training. Indian J Plast Surg. 2018;51(1):66–69. doi: 10.4103/ijps.IJPS_18_18
  12. Wu G, Lu L, Ci Z, et al. Three-dimensional cartilage regeneration using engineered cartilage gel with a 3D-printed polycaprolactone framework. Front Bioeng Biotechnol. 2022;10:871508. doi: 10.3389/fbioe.2022.871508
  13. Berens AM, Newman S, Bhrany AD, Murakami C, Sie KC, Zopf DA. Computer-aided design and 3D printing to produce a costal cartilage model for simulation of auricular reconstruction. Otolaryngol Head Neck Surg. 2016;155(2):356–359. doi: 10.1177/0194599816639586
  14. Miyamoto J, Miyamoto S, Nagasao T, Kasai S, Kishi K. Preoperative modeling of costal cartilage for the auricular reconstruction of microtia. Plast Reconstr Surg. 2011;128(1):23e–24e. doi: 10.1097/PRS.0b013e31821744eb
  15. Yamada A, Imai K, Fujimoto T, Morimoto K, Niitsuma K, Matsumoto H. New training method of creating ear framework by using precise copy of costal cartilage. J Craniofac Surg. 2009;20(3):899–902. doi: 10.1097/scs.0b013e3181a2ef97
  16. Wang D, Lin L, Yang Q, et al. Structure and mechanical performance biomimetic costal cartilage models for ear framework handcraft simulation. Plast Reconstr Surg. 2023. doi: 10.1097/prs.0000000000010431
  17. Gabrysz-Forget F, Rubin Samuel, Nepomnayshy D, Dolan R, Yarlagadda B. Development and validation of a novel surgical simulation for parotidectomy and facial nerve dissection. Otolaryngol Head Neck Surg. 2020;163(2): 344–347. doi: 10.1177/0194599820913587
  18. Lee M, Ang C, Andreadis K, Shin J, Rameau A. An open-source three-dimensionally printed laryngeal model for injection laryngoplasty training. Laryngoscope. 2021;131(3):E890–E895. doi: 10.1002/lary.28952
  19. Riedle H, Burkhardt AE, Seitz V, et al. Design and fabrication of a generic 3D-printed silicone unilateral cleft lip and palate model. J Plast Reconstr Aesthet Surg. 2019;72(10):1669–1674. doi: 10.1016/j.bjps.2019.06.030
  20. Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol. 2016;13(12):701–718. doi: 10.1038/nrcardio.2016.170
  21. Lim KH, Loo ZY, Goldie SJ, Adams JW, McMenamin PG. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ. 2016;9(3):213–221. doi: 10.1002/ase.1573
  22. Little SH, Vukicevic M, Avenatti E, Ramchandani M, Barker CM. 3D printed modeling for patient-specific mitral valve intervention: Repair with a clip and a plug. JACC Cardiovasc Interv. 2016;9(9):973–975. doi: 10.1016/j.jcin.2016.02.027
  23. Liravi F, Toyserkani E. Additive manufacturing of silicone structures: A review and prospective. Addit Manuf. 2018;24:232–242. doi: 10.1016/j.addma.2018.10.002
  24. Jindal SK, Sherriff M, Waters MG, Coward TJ. Development of a 3D printable maxillofacial silicone: Part I. Optimization of polydimethylsiloxane chains and cross-linker concentration. J Prosthet Dent. 2016;116(4):617–622. doi: 10.1016/j.prosdent.2016.02.020
  25. Jindal SK, Sherriff M, Waters MG, Coward TJ. Development of a 3D printable maxillofacial silicone: Part II. Optimization of moderator and thixotropic agent. J Prosthet Dent. 2018;119(2):299–304. doi: 10.1016/j.prosdent.2017.04.028
  26. Herzberger J, Sirrine JM, Williams CB, Long TE. Polymer design for 3D printing elastomers: Recent advances in structure, properties, and printing. Prog Polym Sci. 2019;97:101144. doi: 10.1016/j.progpolymsci.2019.101144
  27. Cevik P, Kocacikli M. Three-dimensional printing technologies in the fabrication of maxillofacial prosthesis: A case report. Int J Artif Organs. 2020;43(5):343–347. doi: 10.1177/0391398819887401
  28. Cevik P, Akca G, Asar NV, et al. Antimicrobial effects of nano titanium dioxide and disinfectants on maxillofacial silicones. J Prosthet Dent. 2023;S0022-3913(23):00135-X. doi: 10.1016/j.prosdent.2023.03.001
  29. Mannoor MS, Jiang Z, James T, et al. 3D printed bionic ears. Nano Lett. 2013;13(6):2634–2639. doi: 10.1021/nl4007744
  30. Duoss EB, Weisgraber TH, Hearon K, et al. Three-dimensional printing of elastomeric, cellular architectures with negative stiffness. Adv Funct Mater. 2014;24(31):4905–4913. doi: 10.1002/adfm.201400451
  31. Mohammed MG, Kramer R. All-printed flexible and stretchable electronics. Adv Mater. 2017;29(19):1604965. doi: 10.1002/adma.201604965
  32. Sun Y, Wang L, Ni Y, et al. 3D printing of thermosets with diverse rheological and functional applicabilities. Nat Commun. 2023;14(1):245. doi: 10.1038/s41467-023-35929-y
  33. Femmer T, Kuehne AJ, Wessling M. Print your own membrane: direct rapid prototyping of polydimethylsiloxane. Lab Chip. 2014;14(15):2610–2613. doi: 10.1039/c4lc00320a
  34. Bhattacharjee N, Parra-Cabrera C, Kim YT, Kuo AP, Folch A. Desktop-stereolithography 3D-printing of a poly(dimethylsiloxane)-based material with sylgard-184 properties. Adv Mater. 2018;30(22):e1800001. doi: 10.1002/adma.201800001
  35. McCoul D, Rosset S, Schlatter S, Shea H. Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators. Smart Mater Struct. 2017;26(12):125022. doi: 10.1088/1361-665X/aa9695
  36. Liravi F, Vlasea M. Powder bed binder jetting additive manufacturing of silicone structures. Addit Manuf. 2018; 21: 112–124. doi: 10.1016/j.addma.2018.02.017
  37. Liravi F, Toyserkani E. Additive manufacturing of silicone structures: A review and prospective. Addit Manuf. 2018; 24:232–242. doi: 10.1016/j.addma.2018.10.002
  38. Zhang Y, Huang F, Zhang E, Zhang L. Effect of the support bath on embedded 3D printing of soft elastomeric composites. Mater Lett. 2023;331:133475. doi: 10.1016/j.matlet.2022.133475
  39. Chen S, Tan WS, Bin Juhari MA, et al. Freeform 3D printing of soft matters: Recent advances in technology for biomedical engineering. Biomed Eng Lett. 2020;10(4):453–479. doi: 10.1007/s13534-020-00171-8
  40. Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv Mater. 2011;23(24): H178–H183. doi: 10.1002/adma.201004625
  41. O’Bryan CS, Bhattacharjee T, Hart S, et al. Self-assembled micro-organogels for 3D printing silicone structures. Sci Adv. 2017;3(5):e1602800. doi: 10.1126/sciadv.1602800
  42. Landers R, Mülhaupt R. Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng. 2000;282(1):17–21. doi: 10.1002/1439-2054(20001001)282:1%3C17::AID-MAME17%3E3.0.CO;2-8
  43. Zhao J, Hussain M, Wang M, Li Z. Embedded 3D printing of multi-internal surfaces of hydrogels. Addit Manuf. 2020;32:101097. doi: 10.1016/j.addma.2020.101097
  44. Truby RL, Wehner M, Grosskopf AK, et al. Soft somatosensitive actuators via embedded 3D printing. Adv Mater. 2018;30(15):e1706383. doi: 10.1002/adma.201706383
  45. Calais T, Sanandiya ND, Jain S, et al. Freeform liquid 3D printing of soft functional components for soft robotics, ACS Appl Mater Interfaces. 2022;14(1):2301–2315. doi: 10.1021/acsami.1c20209
  46. Karyappa R, Ching T, Hashimoto M. Embedded ink writing (EIW) of polysiloxane inks. ACS Appl Mater Interfaces. 2020;12(20):23565–23575. doi: 10.1021/acsami.0c03011
  47. Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater. 2014;26(36):6307–6312. doi: 10.1002/adma.201400334
  48. Szarko M, Muldrew K, Bertram JE. Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage. BMC Musculoskelet Disord. 2010;11:231. doi: 10.1186/1471-2474-11-231
  49. Griffin MF, O’Toole G, Sabbagh W, Szarko M, Butler PE. Comparison of the compressive mechanical properties of auricular and costal cartilage from patients with microtia. J Biomech. 2020;103:109688. doi: 10.1016/j.jbiomech.2020.109688
  50. Pensalfini M, Meneghello S, Lintas V, Bircher K, Ehret AE, Mazza E. The suture retention test, revisited and revised. J Mech Behav Biomed Mater. 2018;77:711–717. doi: 10.1016/j.jmbbm.2017.08.021
  51. Sheckter CC, Kane JT, Minneti M, et al. Incorporation of fresh tissue surgical simulation into plastic surgery education: maximizing extraclinical surgical experience. J Surg Educ. 2013;70(4):466–474. doi: 10.1016/j.jsurg.2013.02.008
  52. Howard GS. Response-shift bias: A problem in evaluating interventions with pre/post self-reports. Eval Rev. 1980;4(1):93–106. doi: 10.1177/0193841X8000400105
  53. Jiang H, Pan B, Zhao Y, Lin L, Liu L, Zhuang H. A 2-stage ear reconstruction for microtia. Arch Facial Plast Surg. 2011;13(3):162–166. doi: 10.1001/archfacial.2011.30
  54. Grellmann W, Berghaus A, Haberland EJ, et al. Determination of strength and deformation behavior of human cartilage for the definition of significant parameters. J Biomed Mater Res A. 2006;78(1):168–174. doi: 10.1002/jbm.a.30625
  55. Wang X, Dong W, Wang H, et al. Mechanical properties of extensive calcified costal cartilage: An experimental study. Heliyon. 2023;9(2):e13656. doi: 10.1016/j.heliyon.2023.e13656
  56. Weber M, Rothschild MA, Niehoff A. Anisotropic and age-dependent elastic material behavior of the human costal cartilage. Sci Rep. 2021;11(1):13618. doi: 10.1038/s41598-021-93176-x
  57. Levental I, Georges PC, Janmey PA. Soft biological materials and their impact on cell function. Soft Matter. 2007;3(3):299– 306. doi: 10.1039/b610522j
  58. Lau AG, Kindig MW, Salzar RS, Richard Kent W. Micromechanical modeling of calcifying human costal cartilage using the generalized method of cells. Acta Biomater. 2015;18:226–235. doi: 10.1016/j.actbio.2015.02.012
  59. Sunwoo WS, Choi HG, Kim DW, Jin HR. Characteristics of rib cartilage calcification in Asian patients. JAMA Facial Plast Surg. 2014;16(2):102–106. doi: 10.1001/jamafacial.2013.2031
  60. Baumgart E. Stiffness--an unknown world of mechanical science?, Injury. 2000;31(Suppl 2):S–B14–23. doi: 10.1016/S0020-1383(00)80040-6
  61. Zhang Y, Liu W, Zhou Q, et al. Effects of vinyl functionalized silica particles on thermal and mechanical properties of liquid silicone rubber nanocomposites. Polymers. 2023; 15(5): 1224. doi: 10.3390/polym15051224
  62. In E, Walker E, Naguib HE. Novel development of 3D printable UV-curable silicone for multimodal imaging phantom. Bioprinting. 2017;7:19–26. doi: 10.1016/j.bprint.2017.05.003
  63. Porter D, Cohen A, Krueger P, Son DY. Additive manufacturing with ultraviolet curable silicones containing carbon black. 3D Print Addit Manuf. 2018;5:73–86. doi: 10.1089/3dp.2017.0019
  64. Sim JY, Jang Y, Kim WC, Kim HY, Lee DH, Kim JH. Comparing the accuracy (trueness and precision) of models of fixed dental prostheses fabricated by digital and conventional workflows. J Prosthodont Res. 2019;63(1):25–30. doi: 10.1016/j.jpor.2018.02.002
  65. Jin SJ, Kim DY, Kim JH, Kim WC. Accuracy of dental replica models using photopolymer materials in additive manufacturing: in vitro three-dimensional evaluation. J Prosthodont. 2019;28(2):e557–e562. doi: 10.1111/jopr.12928
  66. Durban MM, Lenhardt JM, Wu AS, et al. Custom 3D printable silicones with tunable stiffness. Macromol Rapid Commun. 2018;39(4):1700563. doi: 10.1002/marc.201700563
  67. Yoo SJ, Hussein N, Barron DJ. Congenital heart surgery skill training using simulation models: Not an option but a necessity. J Korean Med Sci. 2022;37(38):e293. doi: 10.3346/jkms.2022.37.e293
  68. Chiulan I, Panaitescu DM, Radu ER, et al. Comprehensive characterization of silica-modified silicon rubbers. J Mech Behav Biomed Mater. 2020;101:103427. doi: 10.1016/j.jmbbm.2019.103427
  69. Lonergan AR, Scott AR. Autologous costochondral graft harvest in children. Int J Pediatr Otorhinolaryngol. 2020;135:110111. doi: 10.1016/j.ijporl.2020.110111
  70. Tanzer RC. Microtia--a long-term follow-up of 44 reconstructed auricles. Plast Reconstr Surg. 1978;61(2):161– 166. doi: 10.1097/00006534-197802000-00001
  71. Kawanabe Y, Nagata S. A new method of costal cartilage harvest for total auricular reconstruction: Part I. Avoidance and prevention of intraoperative and postoperative complications and problems. Plast Reconstr Surg. 2006;117(6):2011–2018. doi: 10.1097/01.prs.0000210015.28620.1c
  72. Dong W, Song Y, Jiang H, He L, Pan B, Yang Q. Method of reducing thoracic deformity in auricular reconstruction. J Craniofac Surg. 2020;31(2):520–521. doi: 10.1097/scs.0000000000006172
  73. Thomson HG, Kim TY, Ein SH. Residual problems in chest donor sites after microtia reconstruction: A long-term study. Plast Reconstr Surg. 1995;95(6):961–968. doi: 10.1097/00006534-199505000-00002
  74. Cornejo J, Cornejo-Aguilar JA, Vargas M, et al. Anatomical engineering and 3D printing for surgery and medical devices: International review and future exponential innovations. Biomed Res Int. 2022; 6797745. doi: 10.1155/2022/6797745
  75. Yue X, Jiang H, Pan B, He L, Dong W, Yang Q. Secondary surgery for the unsatisfactory auricle after auricular reconstruction. Int J Pediatr Otorhinolaryngol. 2022;154:111043. doi: 10.1016/j.ijporl.2022.111043
  76. Wang Q, Wang Y, Zhou X, Zhang Q. Three-dimensional auricular subunit models for cartilage framework fabrication: Our preliminary experience. J Craniofac Surg. 2022;33(4):1111–1115. doi: 10.1097/scs.0000000000008163
  77. Cai T, Rybicki FJ, Giannopoulos AA, et al. The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images. 3D Print Med. 2015;1(1):2. doi: 10.1186/s41205-015-0003-3
Conflict of interest
The authors declare no conflicts of interest.
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing