AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.0965
REVIEW

3D (bio)printing of magnetic hydrogels: Formulation and applications in tissue engineering

Duarte Almeida1 Paola Sanjuan-Alberte1,2* João C. Silva1,2* Frederico Castelo Ferreira1,2
Show Less
1 Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
2 Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
IJB 2024, 10(1), 0965 https://doi.org/10.36922/ijb.0965
Submitted: 20 May 2023 | Accepted: 20 June 2023 | Published: 23 August 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hydrogels have been widely explored in tissue engineering due to their versatile and customizable properties in terms of their mechanical, biological, and chemical features. These properties allow them to recreate the physiological structures of the extracellular matrix in a highly hydrated state. Particularly, magnetic hydrogels have shown great promise due to their biocompatibility, mechanical attributes, and possibility to be controlled remotely. Three-dimensional (3D) (bio)printing has emerged as an efficient method to fabricate 3D complex scaffolds from hydrogels with a defined structure and porous microarchitecture, which is crucial for cell proliferation, migration, and differentiation. Therefore, combining magnetic-responsive biomaterials with bioprinting strategies offers numerous advantages for tissue engineering applications. Despite the large number of reviews on magnetic hydrogels available in the literature, they lack a clear focus on the fabrication of hydrogels through a 3D (bio)printing process. Thus, this review highlights not only the main characteristics and fabrication methods of magnetic nanoparticles (MNPs), but also the strategies for their incorporation into hydrogels. Furthermore, we also provide an overview of the current state of the art in injectable magnetic hydrogels, which have the potential to be used as bioinks for 3D (bio)printing, envisaging several applications in the regenerative medicine and biomedical engineering fields.

Keywords
Magnetic hydrogels
Magnetic stimulation
Tissue engineering
3D (bio)printing
Magnetic nanoparticles
Funding
The authors acknowledge funding from FCT—Portuguese Foundation for Science and Technology (FCT/MCTES), with dedicated funding from the projects InSilico4OCReg (PTDC/EME-SIS/0838/2021), OptiBioScaffold (PTDC/ EME-SIS/4446/2020) and eOnco (2022.07252.PTDC) and also through institutional funds to iBB (UIDB/04565/2020 and UIDP/04565/2020) and Associate Laboratory i4HB (LA/P/0140/2020). This project also received financial support from “la Caixa” Foundation (ID 100010434) LCF/ BQ/PI22/11910025.
References
  1. Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6(1): 426. doi: 10.1038/s41392-021-00830-x
  2. Wang W, Narain R, Zeng H. Hydrogels, in Polymer Science and Nanotechnology. 2020;Elsevier, 203–244.
  3. Choi Y, Kim C, Kim HS, Moon C, Lee KY. 3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel. Colloids Surf B Biointerfaces. 2021;208: 112108. doi: 10.1016/j.colsurfb.2021.112108
  4. Chen M, Tan H, Xu W, et al. A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair. Acta Biomater. 2022;153: 159–177. doi: 10.1016/j.actbio.2022.09.036
  5. Wang L, Li T, Wang Z, et al. Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Biomaterials. 2022;285: 121537. doi: 10.1016/j.biomaterials.2022.121537
  6. Tognato R, Armiento AR, Bonfrate V, et al. A stimuli‐responsive nanocomposite for 3D anisotropic cell‐guidance and magnetic soft robotics. Adv Funct Mater. 2019;29(9): 1804647. doi: 10.1002/adfm.201804647
  7. Ghaderinejad P, Najmoddin N, Bagher Z, et al. An injectable anisotropic alginate hydrogel containing oriented fibers for nerve tissue engineering. Chem Eng J. 2021;420: 130465. doi: 10.1016/j.cej.2021.130465
  8. Li Y, Huang L, Tai G, et al. Graphene oxide-loaded magnetic nanoparticles within 3D hydrogel form high-performance scaffolds for bone regeneration and tumour treatment. Compos Part Appl Sci Manuf. 2022;152: 106672.

doi: 10.1016/j.compositesa.2021.106672

  1. Qian K-Y, Song Y, Yan X, et al. Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials. 2020;259: 120299. doi: 10.1016/j.biomaterials.2020.120299
  2. Gang F, Jiang L, Xiao Y, Zhang J, Sun X. Multi‐functional magnetic hydrogel: Design strategies and applications. Nano Sel. 2021;2(12): 2291–2307. doi: 10.1002/nano.202100139
  3. Manjua AC, Cabral JMS, Portugal CAM. Magnetic field dynamic strategies for the improved control of the angiogenic effect of mesenchymal stromal cells. Polymers. 2021;13(11): 1883. doi: 10.3390/polym13111883
  4. Ishii M, Shibata R, Numaguchi Y, et al. Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arterioscler Thromb Vasc Biol. 2011;31(10): 2210–2215. doi: 10.1161/ATVBAHA.111.231100
  5. Gerdesmeyer L, Zielhardt P, Klüter T, et al. Stimulation of human bone marrow mesenchymal stem cells by electromagnetic transduction therapy - EMTT. Electromagn Biol Med. 2022;41(3): 304–314. doi: 10.1080/15368378.2022.2079672
  6. Betsch M, Cristian C, Lin Y-Y, et al. Incorporating 4D into bioprinting: Real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues. Adv Healthc Mater. 2018;7(21): 1800894. doi: 10.1002/adhm.201800894
  7. Zhao Q, Xie P, Li X, Wang Y. Magnetic mesoporous silica nanoparticles mediated redox and pH dual-responsive target drug delivery for combined magnetothermal therapy and chemotherapy. Colloids Surf Physicochem Eng Asp. 2022;648: 129359. doi: 10.1016/j.colsurfa.2022.129359
  8. Morfin-Gutierrez A, Sánchez-Orozco JL, García-Cerda LA, Puente-Urbina B. Preparation and characterization of nanocomposites based on poly(N-vinycaprolactam) and magnetic nanoparticles for using as drug delivery system. J Drug Deliv Sci Technol. 2020;60: 102028. doi: 10.1016/j.jddst.2020.102028
  9. Huang J, Shu Q, Wang L, Wu H, Wang AY, Mao H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials. 2015;39: 105–113. doi: 10.1016/j.biomaterials.2014.10.059
  10. Soleymani M, Velashjerdi M, Shaterabadi Z, Barati A. One-pot preparation of hyaluronic acid‐coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Carbohydr Polym. 2020;237: 116130. doi: 10.1016/j.carbpol.2020.116130
  11. Zuvin M, Koçak M, Ünal Ö, et al. Nanoparticle based induction heating at low magnitudes of magnetic field strengths for breast cancer therapy. J Magn Magn Mater. 2019;483: 169–177. doi: 10.1016/j.jmmm.2019.03.117
  12. Ali A, Shah T, Ullah R, et al. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Front Chem. 2021;9: 629054. doi: 10.3389/fchem.2021.629054
  13. Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater. 2018;7(5): 1700845. doi: 10.1002/adhm.201700845
  14. Podstawczyk D, Nizioł M, Szymczyk P, Wiśniewski P, Guiseppi-Elie A. 3D printed stimuli-responsive magnetic nanoparticle embedded alginate-methylcellulose hydrogel actuators. Addit Manuf. 2020;34: 101275. doi: 10.1016/j.addma.2020.101275
  15. Simińska-Stanny J, Nizioł M, Szymczyk-Ziółkowska P, et al. 4D printing of patterned multimaterial magnetic hydrogel actuators. Addit Manuf. 2022;49: 102506. doi: 10.1016/j.addma.2021.102506
  16. Chandekar KV, Shkir Mohd, Alshahrani T, et al. One-spot fabrication and in-vivo toxicity evaluation of core-shell magnetic nanoparticles. Mater Sci Eng C. 2021;122: 111898. doi: 10.1016/j.msec.2021.111898
  17. Farzaneh S, Hosseinzadeh S, Samanipour R, Hatamie S. Fabrication and characterization of cobalt ferrite magnetic hydrogel combined with static magnetic field as a potential bio-composite for bone tissue engineering. J Drug Deliv Sci Technol. 2021;64: 102525. doi: 10.1016/j.jddst.2021.102525
  18. Manjua AC, Cabral JMS, Portugal CAM, Ferreira FC. Magnetic stimulation of the angiogenic potential of mesenchymal stromal cells in vascular tissue engineering. Sci Technol Adv Mater. 2021;22(1): 461–480. doi: 10.1080/14686996.2021.1927834
  19. Zhang T, Li G, Miao Y, et al. Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. Biomaterials. 2021;276: 121021. doi: 10.1016/j.biomaterials.2021.121021
  20. Bonhome-Espinosa AB, Campos F, Durand-Herrera D, et al. In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering. J Mech Behav Biomed Mater. 2020;104: 103619. doi: 10.1016/j.jmbbm.2020.103619
  21. Schneider-Futschik EK, Reyes-Ortega F. Advantages and disadvantages of using magnetic nanoparticles for the treatment of complicated ocular disorders. Pharmaceutics. 2021;13(8): 1157. doi: 10.3390/pharmaceutics13081157
  22. Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci. 2000;30(1): 545–610. doi: 10.1146/annurev.matsci.30.1.545
  23. Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Sel. 2021;2(6): 1146–1186. doi: 10.1002/nano.202000162
  24. Jolivet J-P, Chanéac C, Tronc E. Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun. 2004;(5): 477–483. doi: 10.1039/B304532N
  25. Bohara RA, Thorat ND, Pawar SH. Role of functionalization: Strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv. 2016;6(50): 43989–44012. doi: 10.1039/C6RA02129H
  26. Tang J, Qiao Y, Chu Y, et al. Magnetic double-network hydrogels for tissue hyperthermia and drug release. J Mater Chem B. 2019;7: 1311–1321. doi: 10.1039/c8tb03301c
  27. Miyazaki T, Iwanaga A, Shirosaki Y, Kawashita M. In situ synthesis of magnetic iron oxide nanoparticles in chitosan hydrogels as a reaction field: Effect of cross-linking density. Colloids Surf B Biointerfaces. 2019;179: 334–339. doi: 10.1016/j.colsurfb.2019.04.004
  28. Gul S, Khan SB, Rehman IU, Khan MA, Khan MI. A comprehensive review of magnetic nanomaterials modern day theranostics. Front Mater. 2019;6: 179. doi: 10.3389/fmats.2019.00179
  29. Labusca L, Herea D-D, Emanuela Minuti A, et al. Magnetic nanoparticles and magnetic field exposure enhances chondrogenesis of human adipose derived mesenchymal stem cells but not of Wharton jelly mesenchymal stem cells. Front Bioeng Biotechnol. 2021;9: 737132. doi: 10.3389/fbioe.2021.737132
  30. Lu A-H, Salabas EL, Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46(8): 1222–1244. doi: 10.1002/anie.200602866
  31. Frey NA, Peng S, Cheng K, Sun S. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev. 2009;38(9): 2532. doi: 10.1039/b815548h
  32. Ansari S, Ficiarà E, Ruffinatti F, et al. Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials. 2019;12(3): 465. doi: 10.3390/ma12030465
  33. Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging fabrication strategies of hydrogels and its applications. Gels. 2022;8(4): 205. doi: 10.3390/gels8040205
  34. Mañas-Torres MC, Gila-Vilchez C, Durán JDG, Modesto T. LopezLopez, Cienfuegos LÁ de. Biomedical applications, in Biomedical Applications of Magnetic Hydrogels. 2021;253-271 doi: 10.1016/B978-0-12-823688-8.00020-X
  35. Materón EM, Miyazaki CM, Carr O, et al. Magnetic nanoparticles in biomedical applications: A review. Appl Surf Sci Adv. 2021;6: 100163. doi: 10.1016/j.apsadv.2021.100163
  36. Gutiérrez L, De La Cueva L, Moros M, et al. Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology.2019;30(11): 112001. doi: 10.1088/1361-6528/aafbff
  37. Nardecchia S, Jiménez A, Morillas JR, et al. Synthesis and rheological properties of 3D structured self-healing magnetic hydrogels. Polymer. 2021;218: 123489. doi: 10.1016/j.polymer.2021.123489
  38. Hu X, Nian G, Liang X, et al. Adhesive tough magnetic hydrogels with high Fe3O4 content. ACS Appl Mater Interfaces. 2019;11(10): 10292–10300. doi: 10.1021/acsami.8b20937
  39. Liu Z, Liu J, Cui X, Wang X, Zhang L, Tang P. Recent advances on magnetic sensitive hydrogels in tissue engineering. Front Chem. 2020;8: 124. doi: 10.3389/fchem.2020.00124
  40. Koons GL, Mikos AG. Progress in three-dimensional printing with growth factors. J Controlled Release. 2019;295: 50–59. doi: 10.1016/j.jconrel.2018.12.035
  41. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8): 773–785. doi: 10.1038/nbt.2958
  42. Beg S, Almalki WH, Malik A, et al. 3D printing for drug delivery and biomedical applications. Drug Discov Today. 2020;25(9): 1668–1681. doi: 10.1016/j.drudis.2020.07.007
  43. Yi H-G, Lee H, Cho D-W. 3D printing of organs-on-chips. Bioengineering. 2017;4(4): 10. doi: 10.3390/bioengineering4010010
  44. Duffy GL, Liang H, Williams RL, Wellings DA, Black K. 3D reactive inkjet printing of poly-ε-lysine/gellan gum hydrogels for potential corneal constructs. Mater Sci Eng C. 2021;131: 112476. doi: 10.1016/j.msec.2021.112476
  45. Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171: 57–71. doi: 10.1016/j.biomaterials.2018.04.034
  46. Tortorella S, Greco P, Valle F, et al. Laser assisted bioprinting of laminin on biodegradable PLGA substrates: Effect on neural stem cell adhesion and differentiation. Bioprinting. 2022;26: e00194. doi: 10.1016/j.bprint.2022.e00194
  47. Gungor-Ozkerim PS, Inci I, Zhang YS, et al. Bioinks for 3D bioprinting: An overview. Biomater Sci. 2018;6(5): 915–946. doi: 10.1039/C7BM00765E
  48. Gusmão A, Marques DMC, Torres-Garcia R, Ferreira FC, Alberte P, Leite M. Designing and prototyping a 3D printer for multi-extrusion of thermo- and photocurable hydrogels: Enabling affordable and wider access to bioprinting. engrxiv. 2023. doi: 10.31224/2916
  49. Hölzl K, Lin S, Tytgat L, Vlierberghe SV, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3): 032002. doi: 10.1088/1758-5090/8/3/032002
  50. Theus AS, Ning L, Kabboul G, et al. 3D bioprinting of nanoparticle-laden hydrogel scaffolds with enhanced antibacterial and imaging properties. iScience. 2022;25(9): 104947. doi: 10.1016/j.isci.2022.104947
  51. Bartolo P, Malshe A, Ferraris E, Bahattin K. 3D bioprinting: Materials, processes, and applications. CIRP Ann. 2022;71(2): 577–597. doi: 10.1016/j.cirp.2022.06.001
  52. Babaniamansour P, Salimi M, Dorkoosh F, Mohammadi M. Magnetic hydrogel for cartilage tissue regeneration as well as a review on advantages and disadvantages of different cartilage repair strategies. BioMed Res Int.2022;2022: 1–12. doi: 10.1155/2022/7230354
  53. Han X, Chang S, Zhang M, Bian X, Li C, Li D. Advances of hydrogel-based bioprinting for cartilage tissue engineering. Front Bioeng Biotechnol. 2021;9: 746564. doi: 10.3389/fbioe.2021.746564
  54. Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Barbeck M. Bioprinting of tissue engineering scaffolds. J Tissue Eng. 2018;9: 204173141880209. doi: 10.1177/2041731418802090
  55. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19): 10793–10833. doi: 10.1021/acs.chemrev.0c00008
  56. Spangenberg J, Kilian D, Czichy C, et al. Bioprinting of magnetically deformable scaffolds. ACS Biomater Sci Eng. 2021;7(2): 648–662. doi: 10.1021/acsbiomaterials.0c01371
  57. Kabir W, Di Bella C, Choong PFM, O’Connell CD. Assessment of native human articular cartilage: A biomechanical protocol. Cartilage. 2021;13(2_suppl): 427S–437S. doi: 10.1177/1947603520973240
  58. Chang S, Wang S, Liu Z, Wang X. Advances of stimulus-responsive hydrogels for bone defects repair in tissue engineering. Gels. 2022;8(6): 389. doi: 10.3390/gels8060389
  59. Pardo A, Gómez-Florit M, Barbosa S, Taboada P, Domingues RMA, Gomes ME. Magnetic nanocomposite hydrogels for tissue engineering: Design concepts and remote actuation strategies to control cell fate. ACS Nano. 2021;15(1): 175–209. doi: 10.1021/acsnano.0c08253
  60. Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D bioprinted scaffolds for bone tissue engineering: State-of-the-art and emerging technologies. Front Bioeng Biotechnol. 2022;10: 824156. doi: 10.3389/fbioe.2022.824156
  61. Jana S, Levengood SKL, Zhang M. Anisotropic materials for skeletal-muscle-tissue engineering. Adv Mater. 2016;28(48): 10588–10612. doi: 10.1002/adma.201600240
  62. Hwangbo H, Lee H, Jin E-J, et al. Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration. Bioact Mater. 2022;8: 57–70. doi: 10.1016/j.bioactmat.2021.06.031
  63. Ajiteru O, Choi KY, Lim TH, et al. A digital light processing 3D printed magnetic bioreactor system using silk magnetic bioink. Biofabrication. 2021;13(3): 034102. doi: 10.1088/1758-5090/abfaee
  64. Mertz D, Harlepp S, Goetz J, et al. Nanocomposite polymer scaffolds responding under external stimuli for drug delivery and tissue engineering applications. Adv Ther. 2020;3(2): 1900143. doi: 10.1002/adtp.201900143
  65. Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting in skeletal muscle tissue engineering. Smal. 2019;15(24): 1805530. doi: 10.1002/smll.201805530
  66. Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue engineering. Theranostics. 2021;11(16): 7948–7969. doi: 10.7150/thno.61621
  67. Allafchian A, Hosseini SS. Antibacterial magnetic nanoparticles for therapeutics: A review. IET Nanobiotechnol. 2019;13(8): 786–799. doi: 10.1049/iet-nbt.2019.0146
  68. Franco D, Calabrese G, Guglielmino SPP, Conoci S. Metal-based nanoparticles: Antibacterial mechanisms and biomedical application. Microorganisms.2022;10(9): 1778. doi: 10.3390/microorganisms10091778
  69. Xu C, Akakuru OU, Zheng J, et al. Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections. Front Bioeng Biotechnol. 2019;7: 141. doi: 10.3389/fbioe.2019.00141
  70. Lee Y, Song WJ, Sun J-Y. Hydrogel soft robotics. Mater Today Phys. 2020;15: 100258. doi: 10.1016/j.mtphys.2020.100258
  71. Janarthanan G, Noh I. Overview of Injectable Hydrogels for 3D Bioprinting and Tissue Regeneration in Injectable Hydrogels for 3D Bioprinting, ed I, The Royal Society of Chemistry. 2021;1–20. doi: 10.1039/9781839163975-00001
  72. Devi VKA, Shyam R, Palaniappan A, Jaiswal AK, Oh T-H, Nathanael AJ. Self-healing hydrogels: Preparation, mechanism and advancement in biomedical applications. Polymers. 2021;13(21): 3782. doi: 10.3390/polym13213782
  73. Raczuk E, Dmochowska B, Samaszko-Fiertek J, Madaj J. Different schiff bases — structure, importance and classification. Molecules. 2022;27(3): 787. doi: 10.3390/molecules27030787
  74. Janarthanan G, Tran HN, Cha E, Lee C, Das D, Noh I. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Mater Sci Eng C. 2020;113: 111008. doi: 10.1016/j.msec.2020.111008
  75. Puertas-Bartolomé M, Włodarczyk-Biegun MK, del Campo A, Vázquez-Lasa B, Román JS. 3D printing of a reactive hydrogel bio-ink using a static mixing tool. Polymers. 2020;12(9): 1986. doi: 10.3390/polym12091986
  76. Banerjee A, Arha M, Choudhary S, et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials. 2009;30(27): 4695–4699. doi: 10.1016/j.biomaterials.2009.05.050
  77. Ganguly S, Margel S. 3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation. Prog Polym Sci. 2022;131: 101574. doi: 10.1016/j.progpolymsci.2022.101574
  78. Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery. Adv Healthc Mater. 2021;10(1): 2001341. doi: 10.1002/adhm.202001341
  79. Almawash S, Osman SK, Mustafa G, El Hamd MA. Current and future prospective of injectable hydrogels—design challenges and limitations. Pharmaceuticals. 2022;15(3): 371. doi: 10.3390/ph15030371
  80. Gao F, Jiao C, Yu B, Cong H, Shen Y. Preparation and biomedical application of injectable hydrogels. Mater Chem Front. 2021;5: 4912–4936. doi: 10.1039/D1QM00489A
  81. Pavón JJ, Allain JP, Verma D, et al. In situ study unravels bio‐nanomechanical behavior in a magnetic bacterial nano‐cellulose (MBNC) hydrogel for neuro‐endovascular reconstruction. Macromol Biosci. 2019;19(2): 1800225. doi: 10.1002/mabi.201800225
  82. Flood-Garibay JA, Méndez-Rojas MA. Synthesis and characterization of magnetic wrinkled mesoporous silica nanocomposites containing Fe3O4 or CoFe2O4 nanoparticles for potential biomedical applications. Colloids Surf Physicochem Eng Asp. 2021;615: 126236. doi: 10.1016/j.colsurfa.2021.126236
  83. Fernández I, Carinelli S, González-Mora JL, Villalonga R, Lecuona M, Salazar P. Electrochemical bioassay based on l-lysine-modified magnetic nanoparticles for Escherichia coli detection: Descriptive results and comparison with other commercial magnetic beads. Food Control. 2023;145: 109492. doi: 10.1016/j.foodcont.2022.109492
  84. Sartori K, Choueikani F, Gloter A, Begin-Colin S, Taverna D, Pichon BP. Room temperature blocked magnetic nanoparticles based on ferrite promoted by a three-step thermal decomposition process. J Am Chem Soc. 2019;141(25): 9783–9787. doi: 10.1021/jacs.9b03965
  85. Tomar D, Jeevanandam P. Synthesis of cobalt ferrite nanoparticles with different morphologies via thermal decomposition approach and studies on their magnetic properties. J Alloys Compd. 2020;843: 155815. doi: 10.1016/j.jallcom.2020.155815
  86. Kim D, Lee N, Park M, Kim BH, An K, Hyeon T. Synthesis of uniform ferrimagnetic magnetite nanocubes. J Am Chem Soc. 2009;131(2): 454–455. doi: 10.1021/ja8086906
  87. Shibaev A, Smirnova M, Kessel D, Bedin SA, Razumovskaya IV, Philippova OE. Remotely self-healable, shapeable and pH-sensitive dual cross-linked polysaccharide hydrogels with fast response to magnetic field. Nanomaterials. 2021;11(5): 1271. doi: 10.3390/nano11051271
Conflict of interest
The authors declare no conflict of interests.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing