DNA-functionalized hyaluronic acid bioink in cartilage engineering: a perspective
Degenerative osteoarthritis, a common sequela of articular cartilage defect, significantly impacts the quality of life of millions of individuals worldwide. Three-dimensional (3D) bioprinting has emerged as an advanced tissue engineering strategy, offering precise spatial arrangements of cells, hydrogels, and bioactive cues. Hyaluronic acid (HA) is a crucial component of bioink designed for fabricating cartilage tissue. However, creating a bioink that closely mimics the cartilaginous extracellular matrix (ECM) still remains a challenge. HA hydrogels have limitations in recapitulating tunable mechanical properties, stimuli responsiveness, and flexibility in ligands’ adhesion akin to those of native tissues. In recent years, DNA has emerged as a smart biomaterial that endows hydrogels with tunable properties and allows for precise structural customization of the hydrogels due to its unique programmability. Integrating reversible DNA linkages, reconfigurable DNA architectures, DNA plasmid, and targeted DNA aptamers into HA hydrogels allows them to respond to the extracellular environment and express desired molecules, making them ideal artificial ECMs for 3D bioprinting of cartilage tissue. This review targets this challenge by highlighting the characteristics of DNA moieties designed as reversible crosslinkers, responsive units, and adhesion ligands to functionalize HA hydrogels. Furthermore, we offer perspectives on how DNA-functionalized HA hydrogels can be harnessed to create dynamic and biomimetic bioink capable of recapitulating the more complex functions required for cartilage tissue engineering.
- Costantini M, Idaszek J, Szöke K, et al. 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation. Biofabrication. 2016;8(3):035002. doi: 10.1088/1758-5090/8/3/035002
- Kesti M, Müller M, Becher J, et al. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater. 2015;11:162-172. doi: 10.1016/j.actbio.2014.09.033
- Laomeephol C, Ferreira H, Kanokpanont S, Luckanagul JA, Neves NM, Damrongsakkul S. Osteogenic differentiation of encapsulated cells in dexamethasone-loaded phospholipid-induced silk fibroin hydrogels. Biomater Transl. 2022;3(3):213. doi: 10.12336/biomatertransl.2022.03.005
- Choi JR, Yong KW, Choi JY. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. J Cell Physiol. 2018;233(3):1913-1928. doi: 10.1002/jcp.26018
- Zhang H, Wu S, Chen W, Hu Y, Geng Z, Su J. Bone/cartilage targeted hydrogel: strategies and applications. Bioact Mater. 2023;23:156-169. doi: 10.1016/j.bioactmat.2022.10.028
- Hu Y, Zhang H, Wang S, et al. Bone/cartilage organoid on-chip: construction strategy and application. Bioact Mater. 2023;25:29-41. doi: 10.1016/j.bioactmat.2023.01.016
- Armstrong JP, Burke M, Carter BM, Davis SA, Perriman AW. 3D bioprinting using a templated porous bioink. Adv Healthc Mater. 2016;5(14):1724-1730. doi: 10.1002/adhm.201600022
- Xue X, Zhang H, Liu H, et al. Rational design of multifunctional CuS nanoparticle‐PEG composite soft hydrogel‐coated 3D hard polycaprolactone scaffolds for efficient bone regeneration. Adv Funct Mater. 2022;32(33):2202470. doi: 10.1002/adfm.202202470
- Sahranavard M, Sarkari S, Safavi S, Ghorbani F. Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review. Biomater Transl. 2022;3(2):105. doi: 10.12336/biomatertransl.2022.02.004
- Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication. 2010;2(1):014110. doi: 10.1088/1758-5082/2/1/014110
- Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 2022;12:327-339. doi: 10.1016/j.bioactmat.2021.10.029
- Chen W, Zhang H, Zhou Q, Zhou F, Zhang Q, Su J. Smart hydrogels for bone reconstruction via modulating the microenvironment. Research. 2023;6:0089. doi: 10.34133/research.0089
- Tamayol A, Najafabadi AH, Aliakbarian B, et al. Hydrogel templates for rapid manufacturing of bioactive fibers and 3D constructs. Adv Healthc Mater. 2015;4(14):2146-2153. doi: 10.1002/adhm.201500492
- Zhou Z, Cui J, Wu S, Geng Z, Su J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics. 2022;12(11):5103. doi: 10.7150/thno.74548
- Liu H, Su J. Organoid and organoid extracellular vesicles for osteoporotic fractures therapy: current status and future perspectives. Interdiscip Med. 2023;1(3):e20230011. doi: 10.1002/INMD.20230011
- Maturavongsadit P, Wu W, Fan J, Roninson IB, Cui T, Wang Q. Graphene-incorporated hyaluronic acid-based hydrogel as a controlled Senexin A delivery system. Biomater Transl. 2022;3(2):152. doi: 10.12336/biomatertransl.2022.02.007
- Yuan J, Maturavongsadit P, Zhou Z, et al. Hyaluronic acid-based hydrogels with tobacco mosaic virus containing cell adhesive peptide induce bone repair in normal and osteoporotic rats. Biomater Transl. 2020;1(1):89-98. doi: 10.3877/cma.j.issn.2096-112X.2020.01.009
- Galarraga JH, Zlotnick HM, Locke RC, et al. Evaluation of surgical fixation methods for the implantation of melt electrowriting-reinforced hyaluronic acid hydrogel composites in porcine cartilage defects. Int J Bioprinting. 2023;9(5):493-509. doi: 10.18063/ijb.775
- Ghorbani F, Ghalandari B, Khajehmohammadi M, et al. Photo-cross-linkable hyaluronic acid bioinks for bone and cartilage tissue engineering applications. Int Mater Rev. 2023;68(7):901-942. doi: 10.1080/09506608.2023.2167559
- Hauptstein J, Böck T, Bartolf‐Kopp M, et al. Hyaluronic acid‐based bioink composition enabling 3D bioprinting and improving quality of deposited cartilaginous extracellular matrix. Adv Healthc Mater. 2020;9(15):2000737. doi: 10.1002/adhm.202000737
- Xue X, Hu Y, Deng Y, Su J. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv Funct Mater. 2021;31(19):2009432. doi: 10.1002/adfm.202009432
- Wu S, Zhang H, Wang S, et al. Ultrasound-triggered in situ gelation with ROS-controlled drug release for cartilage repair. Mater Horiz. 2023;10:3507–3522. doi: 10.1039/D3MH00042G
- Chen S, Chen X, Geng Z, Su J. The horizon of bone organoid: a perspective on construction and application. Bioact Mater. 2022;18:15-25. doi: 10.1016/j.bioactmat.2022.01.048
- Jiang Y, Li J, Xue X, Yin Z, Xu K, Su J. Engineered extracellular vesicles for bone therapy. Nano Today. 2022;44:101487. doi: 10.1016/j.nantod.2022.101487
- Wu S, Wu X, Wang X, Su J. Hydrogels for bone organoid construction: from a materiobiological perspective. J Mater Sci Technol. 2023;136:21-31. doi: 10.1016/j.jmst.2022.07.008
- Li F, Tang J, Geng J, Luo D, Yang D. Polymeric DNA hydrogel: design, synthesis and applications. Prog Polym Sci. 2019;98:101163. doi: 10.1016/j.progpolymsci.2019.101163
- Han Y, Cao L, Li G, Zhou F, Bai L, Su J. Harnessing nucleic acids nanotechnology for bone/cartilage regeneration. Small. 2023;19(37):2301996. doi: 10.1002/smll.202301996
- Cangialosi A, Yoon C, Liu J, et al. DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling. Science. 2017;357(6356):1126-1130. doi: 10.1126/science.aan3925
- Tang J, Yao C, Gu Z, Jung S, Luo D, Yang D. Super‐soft and super‐elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angew Chem Int Ed Engl. 2020;59(6):2490-2495. doi: 10.1002/anie.201913549
- Wang S, Yue L, Shpilt Z, et al. Controlling the catalytic functions of DNAzymes within constitutional dynamic networks of DNA nanostructures. J Am Chem Soc. 2017;139(28):9662-9671. doi: 10.1021/jacs.7b04531
- Bai L, Li M, Su J. A perspective on light-based bioprinting of DNA hydrogels for advanced bone regeneration: implication for bone organoids. Int J Bioprinting. 2023; 9(2):688. doi: 10.18063/ijb.688
- Li C, Li H, Ge J, Jie G. Versatile fluorescence detection of microRNA based on novel DNA hydrogel-amplified signal probes coupled with DNA walker amplification. Chem Commun. 2019;55(27):3919-3922. doi: 10.1039/C9CC00565J
- Sun S, Liu H, Hu Y, et al. Selection and identification of a novel ssDNA aptamer targeting human skeletal muscle. Bioact Mater. 2023;20:166-178. doi: 10.1016/j.bioactmat.2022.05.016
- Lu S, Shen J, Fan C, Li Q, Yang X. DNA assembly‐ based stimuli‐responsive systems. Adv Sci. 2021;8(13): 2100328. doi: 10.1002/advs.202100328
- Li M, Yu B, Wang S, Zhou F, Cui J, Su J. Microenvironment-responsive nanocarriers for targeted bone disease therapy. Nano Today. 2023;50:101838. doi: 10.1016/j.nantod.2023.101838
- Wei Y, Wang K, Luo S, et al. Programmable DNA hydrogels as artificial extracellular matrix. Small. 2022;18(36):2107640. doi: 10.1002/smll.202107640
- Nagahara S, Matsuda T. Hydrogel formation via oligonucleotide hybridization in water-soluble vinyl polymers. Polym Gels Netw. 1996;4(2):111-127. doi: 10.1016/0966-7822(96)00001-9
- Morgan FL, Moroni L, Baker MB. Dynamic bioinks to advance bioprinting. Adv Healthc Mater. 2020;9(15):1901798. doi: 10.1002/adhm.201901798
- Lu CH, Guo W, Qi XJ, Neubauer A, Paltiel Y, Willner I. Hemin– G-quadruplex-crosslinked poly-N-isopropylacrylamide hydrogel: a catalytic matrix for the deposition of conductive polyaniline. Chem Sci. 2015;6(11):6659-6664. doi: 10.1039/C5SC02203G
- Tang J, Jia X, Li Q, et al. A DNA-based hydrogel for exosome separation and biomedical applications. Proc Natl Acad Sci USA. 2023;120(28):e2303822120. doi: 10.1073/pnas.2303822120
- Peng YH, Hsiao SK, Gupta K, et al. Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture. Nat Nanotechnol. 2023;18:1463-1473.doi: 10.1038/s41565-023-01483-3
- Yang D, Hartman MR, Derrien TL, et al. DNA materials: bridging nanotechnology and biotechnology. Acc Chem Res. 2014;47(6):1902-1911. doi: 10.1021/ar5001082
- Roh YH, Ruiz RC, Peng S, Lee, JB, Luo D. Engineering DNA-based functional materials. Chem Soc Rev. 2011;40(12): 5730-5744. doi: 10.1039/C1CS15162B
- Nöll T, Schönherr H, Wesner D, Schopferer M, Paululat T, Nöll G. Construction of three‐dimensional DNA hydrogels from linear building blocks. Angew Chem Int Ed Engl. 2014;126(32):8468-8472. doi: 10.1002/ange.201402497
- Cheng E, Xing Y, Chen P, et al. A pH‐triggered, fast‐responding DNA hydrogel. Angew Chem Int Ed Engl. 2009;48(41):7660-7663. doi: 10.1002/anie.200902538
- Xing Y, Cheng E, Yang Y, et al. Self‐assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv Mater. 2011;23(9):1117-1121. doi: 10.1002/adma.201003343
- Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Enzyme-catalysed assembly of DNA hydrogel. Nat Mater. 2006;5(10):797-801. doi: 10.1038/nmat1741
- Hartman MR, Yang D, Tran TN, et al. Thermostable branched DNA nanostructures as modular primers for polymerase chain reaction. Angew Chem Int Ed Engl. 2013;125(33):8861-8864. doi: 10.1002/ange.201302175
- Wang J, Chao J, Liu H, et al. Clamped hybridization chain reactions for the self‐assembly of patterned DNA hydrogels. Angew Chem Int Ed Engl. 2017;56(8):2171-2175. doi: 10.1002/anie.201610125
- Ren J, Hu Y, Lu CH, et al. pH-responsive and switchable triplex- based DNA hydrogels. Chem Sci. 2015;6(7): 4190-4195. doi: 10.1039/C5SC00594A
- Song P, Ye D, Zuo X, et al. DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis. Nano Lett. 2017;17(9):5193-5198. doi: 10.1021/acs.nanolett.7b01006
- Chu B, Zhang D, Paukstelis PJ. A DNA G-quadruplex/i-motif hybrid. Nucleic Acids Res. 2019;47(22):11921-11930. doi: 10.1093/nar/gkz1008
- Zhou X, Li C, Shao Y, Chen C, Yanga Z, Liu D. Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor. Chem Commun. 2016;52(70): 10668-10671. doi: 10.1039/C6CC04724F
- Lu S, Wang S, Zhao J, Sun J, Yang X. A pH-controlled bidirectionally pure DNA hydrogel: reversible self-assembly and fluorescence monitoring. Chem Commun. 2018;54(36):4621-4624. doi: 10.1039/C8CC01603H
- Wang L, Sun L, Gu Z, et al. N-carboxymethyl chitosan/ sodium alginate composite hydrogel loading plasmid DNA as a promising gene activated matrix for in-situ burn wound treatment. Bioact Mater. 2022;15:330-342. doi: 10.1016/j.bioactmat.2021.12.012
- Kim IG, Park MR, Choi YH, et al. Regeneration of paralyzed vocal fold by the injection of plasmid DNA complex-loaded hydrogel bulking agent. ACS Biomater Sci Eng. 2019;5(3):1497-1508. doi: 10.1021/acsbiomaterials.8b01541
- Liu H, Cao T, Xu Y, Dong Y, Liu D. Tuning the mechanical properties of a DNA hydrogel in three phases based on ATP aptamer. Int J Mol Sci. 2018;19(6):1633. doi: 10.3390/ijms19061633
- Sekar MP, Suresh S, Zennifer A, Sethuraman S, Sundaramurthi D. Hyaluronic acid as bioink and hydrogel scaffolds for tissue engineering applications. ACS Biomater Sci Eng. 2023;9(6):3134-3159. doi: 10.1021/acsbiomaterials.3c00299
- Wang C, Zhang J. Recent advances in stimuli-responsive DNA-based hydrogels. ACS Appl Bio Mater. 2022;5(5): 1934-1953. doi: 10.1021/acsabm.1c01197
- Kahn JS, Trifonov A, Cecconello A, Guo W, Fan C, Willner I. Integration of switchable DNA-based hydrogels with surfaces by the hybridization chain reaction. Nano Lett. 2015;15(11):7773-7778. doi: 10.1021/acs.nanolett.5b04101
- Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23(12):H41-H56. doi: 10.1002/adma.201003963
- Fujita S, Hara S, Hosono A, Sugihara S, Uematsu H, Suye SI. Hyaluronic acid hydrogel crosslinked with complementary DNAs. Adv Polym Technol. 2020;2020:1470819. doi: 10.1155/2020/1470819
- Sun Y, Qi S, Dong X, Qin M, Zhang Y, Wang Z. Colorimetric aptasensor targeting zearalenone developed based on the hyaluronic acid-DNA hydrogel and bimetallic MOFzyme. Biosens Bioelectron. 2022;212: 114366. doi: 10.1016/j.bios.2022.114366
- Liedl T, Dietz H, Yurke B, Simmel F. Controlled trapping and release of quantum dots in a DNA‐switchable hydrogel. Small. 2007;3(10):1688-1693. doi: 10.1002/smll.200700366
- Lin DC, Yurke B, Langrana NA. Inducing reversible stiffness changes in DNA-crosslinked gels. J Mater Res. 2005;20(6):1456-1464. doi: 10.1557/JMR.2005.0186
- English MA, Soenksen LR, Gayet RV, et al. Programmable CRISPR-responsive smart materials. Science. 2019;365(6455):780-785. doi: 10.1126/science.aaw5122
- Liao WC, Lilienthal S, Kahn JS, et al. pH-and ligand-induced release of loads from DNA–acrylamide hydrogel microcapsules. Chem Sci. 2017;8(5):3362-3373. doi: 10.1039/C6SC04770J
- Du X, Bi Y, He P, Wang C, Guo W. Hierarchically structured DNA‐based hydrogels exhibiting enhanced enzyme‐responsive and mechanical properties. Adv Funct Mater. 2020;30(51):2006305. doi: 10.1002/adfm.202006305
- Gu Y, Distler ME, Cheng HF, Huang C, Mirkin CA. A general DNA-gated hydrogel strategy for selective transport of chemical and biological cargos. J Am Chem Soc. 2021;143(41):17200-17208. doi: 10.1021/jacs.1c08114
- Huang F, Chen M, Zhou Z, Duan R, Xia F, Willner I. Spatiotemporal patterning of photoresponsive DNA-based hydrogels to tune local cell responses. Nat Commun. 2021;12(1):2364. doi: 10.1038/s41467-021-22645-8
- Yan X, Yang B, Chen Y, et al. Anti‐friction MSCs delivery system improves the therapy for severe osteoarthritis. Adv Mater. 2021;33(52):2104758. doi: 10.1002/adma.202104758
- Ge Z, Li W, Zhao R, et al. Programmable DNA hydrogel provides suitable microenvironment for enhancing TSPCS therapy in healing of tendinopathy. Small. 2023;19(32):2207231. doi: 10.1002/smll.202207231
- Jin J, Xing Y, Xi Y, et al. A triggered DNA hydrogel cover to envelop and release single cells. Adv Mater. 2013;25(34):4714-4717. doi: 10.1002/adma.201301175
- Zhou B, Yang B, Liu Q, et al. Effects of univariate stiffness and degradation of DNA hydrogels on the transcriptomics of neural progenitor cells. J Am Chem Soc. 2023;145(16): 8954-8964. doi: 10.1021/jacs.2c13373
- Yang B, Zhou B, Li C, et al. A biostable l‐DNA hydrogel with improved stability for biomedical applications. Angew Chem Int Ed. 2023;134(30):e202202520. doi: 10.1002/ange.202202520
- Chen F, He Y, Li Z, et al. A novel tunable, highly biocompatible and injectable DNA-chitosan hybrid hydrogel fabricated by electrostatic interaction between chitosan and DNA backbone. Int J Pharm. 2021;606:120938. doi: 10.1016/j.ijpharm.2021.120938
- Li W, Wang C, Wang Z, et al. Physically cross-linked DNA hydrogel-based sustained cytokine delivery for in situ diabetic alveolar bone rebuilding. ACS Appl Mater Interfaces. 2022;14(22):25173-25182. doi: 10.1021/acsami.2c04769
- Borum RM, Moore C, Mantri, Y, Xu M, Jokerst JV. Supramolecular loading of DNA hydrogels with dye–drug conjugates for real‐time photoacoustic monitoring of chemotherapy. Adv Sci. 2023;10(1):2204330. doi: 10.1002/advs.202204330
- Yao C, Zhu C, Tang J, Ou J, Zhang R, Yang D. T lymphocyte-captured DNA network for localized immunotherapy. J Am Chem Soc. 2021;143(46):19330-19340. doi: 10.1021/jacs.1c07036
- Yao C, Tang H, Wu W, et al. Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J Am Chem Soc. 2020;142(7): 3422-3429. doi: 10.1021/jacs.9b11001
- Hu X, Wang Y, Tan Y, et al. A difunctional regeneration scaffold for knee repair based on aptamer‐directed cell recruitment. Adv Mater. 2017;29(15):1605235. doi: 10.1002/adma.201605235
- Yang Z, Zhao T, Gao C, et al. 3D-bioprinted difunctional scaffold for in situ cartilage regeneration based on aptamer-directed cell recruitment and growth factor-enhanced cell chondrogenesis. ACS Appl Mater Interfaces. 2021;13(20):23369-23383. doi: 10.1021/acsami.1c01844
- Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124-1128. doi: 10.1126/science.1214804
- Li C, Faulkner‐Jones A, Dun AR, et al. Rapid formation of a supramolecular polypeptide–DNA hydrogel for in situ three‐dimensional multilayer bioprinting. Angew Chem Int Ed. 2015;54(13):3957-3961. doi: 10.1002/anie.201411383
- Lewns FK, Tsigkou O, Cox LR, Wildman RD, Grover LM. Hydrogels and bioprinting in bone tissue engineering: creating artificial stem‐cell niches for in vitro models. Adv Mater. 2023;35(52):2301670. doi: 10.1002/adma.202301670