Predicting effective thermal conductivity of sintered nano-Ag with artificial neural networks

Due to the demand for high reliability and thermal conductivity of high-power modules operating at high temperatures, sintered nano-silver (Ag) has garnered significant attention as an excellent interconnect and heat transfer layer, particularly for its thermal conductivity and other reliability research. Since the mechanical behavior and heat conduction capacity of sintered Ag is generally regulated by changes in temperature, its microstructure will change accordingly, affecting its performance. In this study, a machine learning model was used to evaluate and predict the thermal conductivity of sintered Ag, providing an effective method to analyze the influence of microstructural characteristics on its heat transfer properties. Image processing and model simulation of scanning electron microscopy images of sintered nano-Ag nanostructures were performed using MATLAB and Ansys software. A batch calculation of the thermal conductivity of 2D images of sintered nano-Ag nanostructures was performed to obtain sufficient data sets. Based on the artificial neural network model of Bayesian optimization, the equivalent thermal conductivity of different sintered nano-Ag microstructures was predicted with high accuracy using the microstructure image and characteristic parameters of sintered nano-Ag. The proposed method enables rapid, effective, and accurate evaluation and prediction of the thermal conductivity of sintered nano-Ag, contributing significantly to the reliability of power modules.

- Herboth T, Guenther M, Fix A, Wilde J. Failure Mechanisms of Sintered Silver Interconnections for Power Electronic Applications. In: IEEE 63rd Electronic Components and Technology Conference. Las Vegas, NV, USA; 2013. p. 1621-1627. doi: 10.1109/ECTC.2013.6575789
- Ordonez-Miranda J, Hermens M, Nikitin I, Kouznetsova VG, van der Sluis O, Ras MA, Volz S. Measurement and modeling of the effective thermal conductivity of sintered silver pastes. Int J Therm Sci. 2016;108:185-194. doi: 10.1016/j.ijthermalsci.2016.05.014
- Signor L, Kumar P, Tressou B, et al. Evolution of the thermal conductivity of Sintered silver joints with their porosity predicted by the finite element analysis of real 3D microstructures. J Electron Mater. 2018;47:4170-4176. doi: 10.1007/s11664-018-6253-2.
- Sghuri A, Billaud Y, Signor L, Saury D, Milhet X. Experimental investigation of thermal conductivity during aging of nanoporous sintered silver. Acta Mater. 2023;257:119109. doi: 10.1016/j.actamat.2023.119109
- Hu X, Martin HA, Poelma R, et al. Exploring the process-microstructure-thermal properties relationship of resin-reinforced Ag sintering material for high-power applications via 3D FIB-SEM nanotomography. Mater Des. 2024;244:113185. doi: 10.1016/j.matdes.2024.113185
- Zhao Z, Zhang H, Zou G, et al. A predictive model for thermal conductivity of nano-Ag sintered interconnect for a SiC die. J Electron Mater. 2019;48:2811-2825. doi: 10.1007/s11664-019-06984-3
- Qin F, Hu Y, Dai Y, An T, Chen P. Evaluation of thermal conductivity for sintered silver considering aging effect with microstructure based model. Microelectron Reliab. 2020;108:113633. doi: 10.1016/j.microrel.2020.113633
- Qin F, Hu Y, Dai Y, et al. Crack effect on the equivalent thermal conductivity of porously sintered silver. J Electron Mater. 2020;49:5994-6008. doi: 10.1007/s11664-020-08325-1
- Qin F., Zhao S, Dai Y, Hu Y, An T, Gong Y. Mud-cracking effect of sintered silver layer on quantifying heat transfer behavior of SiC devices under power cycling: Voronoi tessellation model. IEEE Trans Compon Packag Manuf Technol. 2022;12(6):964-972. doi: 10.1109/TCPMT.2022.3178226
- Kim YJ, Park BH, Hyun SK, Nishikawa H. The influence of porosity and pore shape on the thermal conductivity of silver sintered joint for die attach. Mater Today Commun. 2021;29:102772. doi: 10.1016/j.mtcomm.2021.102772
- Chen H, Du Z, Li X, Zhou H, Liu Z. Identification of pipe inner surface in heat conduction problems by deep learning and effective thermal conductivity transform. Eng Comput. 2020;37(9):3505-3523. doi: 10.1108/EC-01-2020-0012
- Huang Q, Hong D, Niu B, Long D, Zhang Y. An interpretable deep learning strategy for effective thermal conductivity prediction of porous materials. Int J Heat Mass Transfer. 2024;221:125064. doi: 10.1016/j.ijheatmasstransfer.2023.125064
- Qin G, Wei Y, Yu L, et al. Predicting lattice thermal conductivity from fundamental material properties using machine learning techniques. J Mater Chem A. 2023;11(11):5801-5810. doi: 10.1039/D2TA08721A
- Li RY, Lee E, Luo TF. A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases. Mater Today Phys. 2020;12:100181. doi: 10.1016/j.mtphys.2020.100181
- Yang ZH, Wu XX, He XD, Guan XF. A multiscale analysis-assisted two-stage reduced-order deep learning approach for effective thermal conductivity of arbitrary contrast heterogeneous materials. Eng Appl Artif Intell. 2024;136:108916. doi: 10.1016/j.engappai. 2024.108916
- Kim TH, Park JH, Jung KW, Kim J, Lee EH. Application of convolutional neural network to predict anisotropic effective thermal conductivity of semiconductor package. IEEE Access. 2022;10:51995-52007. doi: 10.1109/ACCESS.2022.3174882
- Du CJ, Zou GS, Zhanwen A, et al. Highly accurate and efficient prediction of effective thermal conductivity of sintered silver based on deep learning method. Int J Heat Mass Transfer. 2023;201:123654. doi: 10.1016/j.ijheatmasstransfer.2022.123654
- Du CJ, Zou G, Feng B, et al. Predicting effective thermal conductivity of sintered silver by microstructural-simulation-based machine learning. J Electron Mater. 2023;52(4):2347-2358. doi: 10.1007/s11664-022-10172-1
- Long X, Mao MH, Su TX, Su YT, Tian MK. Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates, Def Technol. 2023;23:100-111. doi: 10.1016/j.dt.2022.02.003
- Mao M, Wang W, Lu C, Jia F, Long X. Machine learning for board-level drop response of BGA packaging structure. Microelectron Reliab. 2022;134:114553. doi: 10.1016/j.microrel. 2022.114553
- Sezer A, Altan A. Detection of solder paste defects with an optimization‐based deep learning model using image processing techniques. Soldering Surf Mount Technol. 2021;33(5):291-298. doi: 10.1108/SSMT-04-2021-0013
- Long X, Lu CH, Su YT, Dai YH. Machine learning framework for predicting the low cycle fatigue life of lead-free solders. Eng Failure Anal. 2023;148:107228. doi: 10.1016/j.engfailanal.2023.107228
- Prisacaru A, Gromala P, Han B, Zhang GQ. Degradation estimation and prediction of electronic packages using data-driven approach. IEEE Trans Ind Electron. 2021;69(3):2996-3006. doi: 10.1109/TIE.2021.3068681
- Samavatian V, Fotuhi-Firuzabad M, Samavatian M, Dehghanian P, Blaabjerg F. Iterative machine learning-aided framework bridges between fatigue and creep damages in solder interconnections. IEEE Trans Compon Packag Manuf Technol. 2021;12(2):349-358. doi: 10.1109/TCPMT.2021.3136751
- Long X, Lu CH, Shen ZY, Su YT. Identification of mechanical properties of thin-film elastoplastic materials by machine learning. Acta Mech Sol Sin. 2023;36:13-21. doi: 10.1007/s10338-022-00340-5
- Kuo HC, Chang CY, Yuan C, Chiang KN. Wafer-level packaging solder joint reliability lifecycle prediction using SVR-based machine learning algorithm. J Mech. 2023;39:183-190. doi: 10.1093/jom/ufad016
- Samavatian V, Fotuhi-Firuzabad M, Samavatian M, Dehghanian P, Blaabjerg F. Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics. Sci Rep. 2020;10(1):14821. doi: 10.1038/s41598-020-71926-7
- Wei H, Zhao SS, Rong QY, Bao H. Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods. Int J Heat Mass Transfer. 2018;127:908-916. doi: 10.1016/j.ijheatmasstransfer.2018.08.082
- Rong QY, Wei H, Huang XY, Bao H. Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods. Compos Sci Technol. 2019;184:107861. doi: 10.1016/j.compscitech.2019.107861
- Fei W, Narsilio GA, Disfani MM. Predicting effective thermal conductivity in sands using an artificial neural network with multiscale microstructural parameters. Int J Heat Mass Transfer. 2021;170:120997. doi: 10.1016/j.ijheatmasstransfer.2021.120997
- Carslaw HS, Jaeger JC. Conduction of Heat in Solids. London: Clarendon Press; 1992. doi: 10.1007/978-1-4939-2565-0_2
- Märtens M, Izzo D, Krzic A, Krzic A, Cox D. Super-resolution of PROBA-V images using convolutional neural networks. Astrodynamics. 2019;3:387-402. doi: 10.1007/s42064-019-0059-8
- Manan A, Zhang P, Ahmad S, Ahmad J. Optimizing hybrid fibre-reinforced polymer bars design: A machine learning approach. J Polym Mater. 2024;41(1):15-44. doi: 10.32604/jpm.2024.053859
- Suryawanshi A, Behera N. Application of machine learning for prediction dental material wear. J Polym Mater. 2023;40(3-4):305-316. doi: 10.32381/JPM.2023.40.3-4.11
- Krishnamoorthy K, Prabhu N. Tensile failure characterization of glass/epoxy composites using acoustic emission RMS data. J Polym Mater. 2023;40(3-4):215-226. doi: 10.32381/JPM.2023.40.3-4.7
- Peng H, Bai X. Comparative evaluation of three machine learning algorithms on improving orbit prediction accuracy. Astrodynamics. 2019;3(4):325-343. doi: 10.1007/s42064-018-0055-4
- Li WB, Song Y, Cheng L, Gong SP. Closed-loop deep neural network optimal control algorithm and error analysis for powered landing under uncertainties. Astrodynamics. 2023;7(2):211-228. doi: 10.1007/s42064-022-0153-1
- Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine learning algorithms. Adv Neural Inf Process Syst. 2012;25:2951-2959. doi: 10.5555/2999325.2999464
- Kaiser J, Xu CR, Eichler A, et al. Reinforcement learning-trained optimisers and bayesian optimisation for online particle accelerator tuning. Sci Rep. 2024;14(1):15733. doi: 10.1038/s41598-024-66263-y
- Shahriari B, Swersky K, Wang ZY, Adams RP, Freitas N. Taking the human out of the loop: A review of bayesian optimization. Proc IEEE. 2015;104(1):148-175. doi: 10.1109/JPROC. 2015.2494218