Machine-learned molecular modeling of ruthenium: A Kolmogorov-Arnold Network approach

Developing refractory high-entropy superalloys (RSAs) with performance advantages over nickel-based alloys is a critical frontier in materials science. Body-centered cubic (bcc)-based RSAs have attracted significant attention, with ruthenium (Ru) playing a key role in forming two-phase regions of A2 (disordered bcc) + B2 (ordered bcc), which could lead to superalloy-like microstructures. This study introduces the application of the Kolmogorov-Arnold Network (KAN) model to predict the mechanical and thermodynamic properties of Ru while comparing its performance against other commonly used machine-learned models. Utilizing density functional theory calculations as training data, the KAN model demonstrates superior accuracy and computational efficiency compared to conventional methods, while reducing descriptor complexity. The model accurately predicts a range of properties, including elastic constants, thermal expansion coefficients, and various moduli, with discrepancies within 6% of experimental reference data. Molecular dynamics simulations further validate the model’s efficacy, accurately capturing Ru’s phase transitions from hexagonal close-packed (hcp) to face-centered cubic structure and the melting point. This work presents the first application of KAN in materials science, demonstrating how its balanced performance and efficiency provide a new pathway for designing advanced materials, with unique advantages over conventional machine learning approaches in predicting material properties.

- Naka S, Khan T. Designing novel multiconstituent intermetallics: Contribution of modern alloy theory in developing engineered materials. J Phase Equilibria. 1997;18(6):635-649. doi: 10.1007/BF02665823
- Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299-303. doi: 10.1002/adem.200300567
- Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375-377:213-218. doi: 10.1016/j.msea.2003.10.257
- Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448-511. doi: 10.1016/j.actamat.2016.08.081
- Soni V, Gwalani B, Senkov O, et al. Phase stability as a function of temperature in a refractory high-entropy alloy. J Mater Res. 2018;33:1-12. doi: 10.1557/jmr.2018.223
- Senkov ON, Crossman B, Rao SI, et al. Mechanical properties of an Al10Nb20Ta15Ti30V5Zr20 A2/B2 refractory superalloy and its constituent phases. Acta Mater. 2023;254:119017.doi: 10.1016/j.actamat.2023.119017
- Miracle DB, Tsai MH, Senkov ON, Soni V, Banerjee R. Refractory high entropy superalloys (RSAs). Scr Mater. 2020;187:445-452. doi: 10.1016/j.scriptamat.2020.06.048
- Prins SN, Cornish LA, Stumpf WE, Sundman B. Thermodynamic assessment of the alru system. Calphad. 2003;27(1):79-90. doi: 10.1016/S0364-5916(03)00033-6
- Haynes WM, editor. CRC Handbook of Chemistry and Physics. 95th ed. Boca Raton, FL: CRC Press/Taylor and Francis; 2015.
- Hulm JK, Goodman BB. Superconducting properties of rhenium, ruthenium, and osmium. Phys Rev. 1957;106(4):659-671. doi: 10.1103/PhysRev.106.659
- Anzellini S, Errandonea D, Cazorla C, et al. Thermal equation of state of ruthenium characterized by resistively heated diamond anvil cell. Sci Rep. 2019;9(1):14459. doi: 10.1038/s41598-019-51037-8
- Güler E, Uğur Ş, Güler M, Uğur G. Molecular dynamics exploration of the temperature-dependent elastic, mechanical, and anisotropic properties of Hcp ruthenium. Eur Phys J Plus. 2024;139(5):372. doi: 10.1140/epjp/s13360-024-05177-0
- Zhi-Peng LU, Wen-Jun Z, Tie-Cheng L, Chuan-Min M, Liang X, Xu-Hai L. Structural phase transition of ru at high pressure and temperature. Acta Phys Sin. 2013;62(17):176402-176402. doi: 10.7498/aps.62.176402
- Jain A, Ong SP, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 2013;1(1):011002. doi: 10.1063/1.4812323
- Mobarak MH, Mimona MA, Islam MA, et al. Scope of machine learning in materials research-a review. Appl Surf Sci Adv. 2023;18:100523. doi: 10.1016/j.apsadv.2023.100523
- Mannodi-Kanakkithodi A, Pilania G, Huan TD, Lookman T, Ramprasad R. Machine learning strategy for accelerated design of polymer dielectrics. Sci Rep. 2016;6:20952. doi: 10.1038/srep20952
- Stanev V, Oses C, Kusne AG, et al. Machine learning modeling of superconducting critical temperature. NPJ Comput Mater. 2018;4(1):29. doi: 10.1038/s41524-018-0085-8
- Faber FA, Lindmaa A, Von Lilienfeld O.A, Armiento, R. Machine learning energies of 2 million elpasolite $(AB{C}_ {2}{D}_{6})$ crystals. Phys Rev Lett. 2016;117(13):135502. doi: 10.1103/PhysRevLett.117.135502
- Pilania G, Balachandran PV, Kim C, Lookman T. Finding new perovskite halides via machine learning. Front Mater. 2016;3:19. doi: 10.3389/fmats.2016.00019
- Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H. Plasmonic nanostructure design and characterization via deep learning. Light Sci Appl. 2018;7(1):60. doi: 10.1038/s41377-018-0060-7
- De Jong M, Chen W, Notestine R, et al. A statistical learning framework for materials science: Application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci Rep. 2016;6(1):34256. doi: 10.1038/srep34256
- Song K, Zhao R, Liu J, et al. General-purpose machine-learned potential for 16 elemental metals and their alloys. Nat Commun. 2024;15(1):10208. doi: 10.1038/s41467-024-54554-x
- Liyanage M, Turlo V, Curtin WA. Machine learning potential for the Cu-W system. Phys Rev Mater. 2024;8(11):113804. doi: 10.1103/physrevmaterials.8.113804
- Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design using machine learning. High Throughput Exp Model Res Adv Batter. 2017;3(3):159-177. doi: 10.1016/j.jmat.2017.08.002
- Anstine DM, Isayev O. Machine learning interatomic potentials and long-range physics. J Phys Chem A. 2023;127(11):2417-2431. doi: 10.1021/acs.jpca.2c06778
- Kolmogorov A. On the representation of continuous functions of several variables as superpositions of continuous functions of a smaller number of variables. Dokl Akad Nauk. 1956;108(2):25-46.
- Liu Z, Wang Y, Vaidya S, et al. KAN: Kolmogorov- Arnold Networks; 2024. Available from: https://arxiv.org/ abs/2404.19756 [Last accessed on 2025 Jan 26].
- Anderson PW. Absence of diffusion in certain random lattices. Phys Rev. 1958;109(5):1492-1505. doi: 10.1103/PhysRev.109.1492
- Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175(4023):720-731. doi: 10.1126/science.175.4023.720
- Li Y, Zhang JH, Mei F, Ma J, Xiao L, Jia S. Generalized Aubry-André-Harper models in optical superlattices. Chin Phys Lett. 2022;39(6):063701. doi: 10.1088/0256-307x/39/6/063701
- Giannozzi P, Andreussi O, Brumme T, et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J Phys Condens Matter. 2017;29(46):465901. doi: 10.1088/1361-648X/aa8f79
- Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21(39):395502. doi: 10.1088/0953-8984/21/39/395502
- Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865
- Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953-17979. doi: 10.1103/PhysRevB.50.17953
- Ong SP, Richards WD, Jain A, et al. Python materials genomics (Pymatgen): A robust, open-source python library for materials analysis. Comput Mater Sci. 2013;68:314-319. doi: 10.1016/j.commatsci.2012.10.028
- Chen X, Wang LF, Gao XY, et al. Machine learning enhanced empirical potentials for metals and alloys. Comput Phys Commun. 2021;269:108132. doi: 10.1016/j.cpc.2021.108132
- Thompson AP, Aktulga HM, Berger R, et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171. doi: 10.1016/j.cpc.2021.108171
- Villars P, Cenzual K. Ru Hcp (Ru) Crystal Structure: Datasheet from “PAULING FILE Multinaries Edition. Springer Materials; 2022. Available from: https://materials. springer.com/isp/crystallographic/docs/sd_1244358 [Last accessed on 2025 Jan 26].
- De Jong M, Chen W, Angsten T, et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci Data. 2015;2(1):150009. doi: 10.1038/sdata.2015.9
- Himanen L, Jäger MOJ, Morooka EV, et al. DScribe: Library of descriptors for machine learning in materials science. Comput Phys Commun. 2020;247:106949. doi: 10.1016/j.cpc.2019.106949
- D’Agostino D, Serani A, Campana EF, Diez M. Nonlinear methods for design-space dimensionality reduction in shape optimization. In: Nicosia G, Pardalos P, Giuffrida G, Umeton R, editors. Machine Learning, Optimization, and Big Data. Cham: Springer International Publishing; 2018. p. 121-132.
- Kingma DP, Jimmy B. Adam: A Method for Stochastic Optimization. In: 3rd International Conference for Learning Representationsy, CoRR; 2015
- Cortes C, Mohri M, Rostamizadeh A. L2 Regularization for Learning Kernels. In: Twenty-Fifth Twenty-Fifth Conference on Uncertainty in Artificial Intelligence; 2004. p. 109-16.
- Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32: 8024-8035.
- Agarap AF. Deep Learning Using Rectified Linear Units (Relu). [Preprint]; 2018.
- Smith JS, Isayev O, Roitberg AE. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci. 2017;8(4):3192-3203. doi: 10.1039/C6SC05720A
- Najm HN, Yang Y. AEVmod-Atomic Environment Vector Module Documentation; United States. California: Sandia National Laboratories; 2021. doi: 10.2172/1817835.
- Zhang G, Haopeng, L. Effectiveness of Scaled Exponentially- Regularized Linear Units (SERLUs) [Preprint]; 2018.
- Schütt KT, Sauced HE, Kindermans PJ, Tkatchenko A, Müller KR. SchNet-a deep learning architecture for molecules and materials. J Chem Phys. 2018;148(24):241722. doi: 10.1063/1.5019779
- Elfwing S, Uchibe E, Doya K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 2018;107:3-11. doi: 10.1016/j.neunet.2017.12.012
- Fast L, Wills JM, Johansson B, Eriksson O. Elastic constants of hexagonal transition metals: Theory. Phys Rev B. 1995;51(24):17431-17438. doi: 10.1103/PhysRevB.51.17431
- Fortini A, Mendelev MI, Buldyrev S, Srolovitz D. Asperity contacts at the nanoscale: Comparison of Ru and Au. J Appl Phys. 2008;104(7):074320. doi: 10.1063/1.2991301
- Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small lennard-jones clusters. J Phys Chem. 1987;91(19):4950-4963. doi: 10.1021/j100303a014
- Abbaspour M, Jorabchi MN, Akbarzadeh H, Ebrahimnejad A. Investigation of the thermal properties of phase change materials encapsulated in capped carbon nanotubes Metallurgiia. Moscow: USSR; 1984.
- Dammak H, Hayoun M, Brieuc F, Geneste G. Nuclear quantum effects in molecular dynamics simulations. J Phys Conf Ser. 2018;1136:012014.
- Piana S, Lindorff-Larsen K, Dirks RM, Salmon JK, Dror RO, Shaw DE. Evaluating the effects of cutoffs and treatment of long-range electrostatics in protein folding simulations. PLoS One. 2012;7(6):e39918. doi: 10.1371/journal.pone.0039918
- Hoyt JJ, Trautt ZT, Upmanyu M. Fluctuations in molecular dynamics simulations. Multiscale Model Mov Interfaces Mater. 2010;80(7):1382-1392. doi: 10.1016/j.matcom.2009.03.012