AccScience Publishing / IJAMD / Online First / DOI: 10.36922/ijamd.4696
REVIEW ARTICLE

Role of phase change materials and digital twin technology in thermal energy storage system: A review

Mohammad Waseem1* Mumtaz Ahmad1 G. Sree Lakshmi2† Areti M.S.V. Sushma3 Sanjay Paul4† Mohammad Afazal5
Show Less
1 Department of Mechanical Engineering Section, Faculty of Engineering and Technology, Jamia Millia Islamia, University Polytechnic, New Delhi, Delhi, India
2 Department of Electrical and Electronics Engineering, CVR College of Engineering, Hyderabad, Telangana, India
3 Department of Electrical and Electronics Engineering, SRKR Engineering College, West Godavari, Andhra Pradesh, India
4 Department of Mechanical Engineering, Faculty of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
5 Centre for Biomedical Engineeringn Institute of Technology Delhi, New Delhi, Delhi, India
IJAMD 2024, 1(3), 50–65; https://doi.org/10.36922/ijamd.4696
Submitted: 29 August 2024 | Accepted: 28 October 2024 | Published: 27 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The exponential growth in energy consumption and demand, along with the depletion of natural resources, is exerting a catastrophic impact on global ecosystems. Recent advances in research and development have focused on the distribution of renewable energy sources and the reduction of traditional energy usage as strategies to address pressing environmental concerns, such as climate change and global warming. Moreover, there is an urgent need for appropriate technologies that can enhance the thermal performance of buildings, given the rapid increase in global cooling and heating demands. This study examines the role of phase change materials (PCMs) and digital twin (DT) technology in thermal energy storage (TES), drawing on an analysis of 89 research articles sourced from multiple databases and references. The findings demonstrate that TES systems optimized through meticulous selection of PCMs can effectively meet thermal comfort requirements. Integrating DT technology with building systems allows for the analysis of cooling effects and optimization of energy demand through DT models of smart buildings. The present study provides a comprehensive overview of the different PCMs used in cooling applications and explores the implementation of DT technologies within building systems. In addition, practical applications of DT technologies for TES systems are presented, providing insights into their potential for enhancing energy efficiency in building systems.

Keywords
Phase change material
Thermal energy storage
Digital twin
Intelligent building
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Du K, Calautit J, Wang Z, Wu Y, Liu H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl Energy. 2018;220:242-273. doi: 10.1016/j.apenergy.2018.03.005

 

  1. Husein M, Chung IY. Optimal design and financial feasibility of a university campus microgrid considering renewable energy incentives. Appl Energy. 2018;225:273-289. doi: 10.1016/j.apenergy.2018.05.036

 

  1. 3. Peker M, Kocaman AS, Kara BY. Benefits of transmission switching and energy storage in power systems with high renewable energy penetration. Appl Energy. 2018;228:1182-1197. doi: 10.1016/j.apenergy.2018.07.008

 

  1. Liu J, Mei C, Wang H, Shao W, Xiang C. Powering an island system by renewable energy-a feasibility analysis in the Maldives. Appl Energy. 2018;227:18-27. doi: 10.1016/j.apenergy.2017.10.019

 

  1. Bloess A, Schill WP, Zerrahn A. Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials. Appl Energy. 2018;212:1611-1626. doi: 10.1016/j.apenergy.2017.12.073

 

  1. Devaux P, Farid MM. Benefits of PCM underfloor heating with PCM wallboards for space heating in winter. Appl Energy. 2017;191:593-602. doi: 10.1016/j.apenergy.2017.01.060

 

  1. Akeiber H, Nejat P, Majid MZA, et al. A review on Phase Change Material (PCM) for sustainable passive cooling in building envelopes. Renew Sustain Energy Rev. 2016;60:1470-1497. doi: 10.1016/j.rser.2016.03.036

 

  1. Young BA, Falzone G, Wei Z, Sant G, Pilon L. Reduced-scale experiments to evaluate performance of composite building envelopes containing phase change materials. Constr Build Mater. 2018;162:584-595. doi: 10.1016/j.conbuildmat.2017.11.160

 

  1. Liu C, Zhou Y, Li D, Meng F, Zheng Y, Liu X. Numerical analysis on thermal performance of a PCM-filled double glazing roof. Energy Build. 2016;125:267-275. doi: 10.1016/j.enbuild.2016.05.002

 

  1. De Gracia A, Cabeza LF. Phase change materials and thermal energy storage for buildings. Energy Build. 2015;103:414-419. doi: 10.1016/j.enbuild.2015.06.007

 

  1. Olivieri L, Tenorio JA, Revuelta D, Navarro L, Cabeza LF. Developing a PCM-enhanced mortar for thermally active precast walls. Constr Build Mater. 2018;181:638-649. doi: 10.1016/j.conbuildmat.2018.06.013

 

  1. Maccarini A, Hultmark G, Bergsøe NC, Afshari A. Free cooling potential of a PCM-based heat exchanger coupled with a novel HVAC system for simultaneous heating and cooling of buildings. Sustain Cities Soc. 2018;42:384-395. doi: 10.1016/j.scs.2018.06.016

 

  1. Boussaba L, Foufa A, Makhlouf S, Lefebvre G, Royon L. Elaboration and properties of a composite bio-based PCM for an application in building envelopes. Constr Build Mater. 2018;185:156-165. doi: 10.1016/j.conbuildmat.2018.07.098

 

  1. Kalnæs SE, Jelle BP. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy Build. 2015;94:???. doi: 10.1016/j.enbuild.2015.02.023

 

  1. Cabeza LF, Castell A, Barreneche C, De Gracia A, Fernández AI. Materials used as PCM in thermal energy storage in buildings: A review. Renew Sustain Energy Rev. 2011;15(3):1675-1695. doi: 10.1016/j.rser.2010.11.018

 

  1. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. 2009;13(2):318-345. doi: 10.1016/j.rser.2007.10.005

 

  1. Waqas A, Ji J, Ali M, Alvi JZ. Effectiveness of the phase change material-based thermal energy storage integrated with the conventional cooling systems of the buildings - A review. Proc Inst Mech Eng A J Power Energy. 2018;232(6):735-766. doi: 10.1177/0957650917754033

 

  1. Chen C, Liu W, Wang H, Zhu L. Synthesis and characterization of novel solid-solid phase change materials with a polyurethaneurea copolymer structure for thermal energy storage. RSC Adv. 2016;6(105):102997-103005. doi: 10.1039/C6RA23141A

 

  1. Ferrer G, Solé A, Barreneche C, Martorell I, Cabeza LF. Review on the methodology used in thermal stability characterization of phase change materials. Renew Sustain Energy Rev. 2015;50:665-685. doi: 10.1016/j.rser.2015.04.187

 

  1. Chen K, Yu X, Tian C, Wang J. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage. Energy Convers Manag. 2014;77:13-21. doi: 10.1016/j.enconman.2013.09.015

 

  1. Faraj K, Khaled M, Faraj J, Hachem F, Castelain C. Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renew Sustain Energy Rev. 2020;119:109579. doi: 10.1016/j.rser.2019.109579

 

  1. Oropeza-Perez I, Stergaard PA. Active and passive cooling methods for dwellings: A review. Renew Sustain Energy Rev. 2018;82:531-544. doi: 10.1016/j.rser.2017.09.059

 

  1. Monghasemi N, Vadiee A. A review of solar chimney integrated systems for space heating and cooling application. Renew Sustain Energy Rev. 2018;81:2714-2730. doi: 10.1016/j.rser.2017.06.078

 

  1. Khan MMA, Saidur R, Al-Sulaiman FA. A review for phase change materials (PCMs) in solar absorption refrigeration systems. Renew Sustain Energy Rev. 2017;76:105-137. doi: 10.1016/j.rser.2017.03.070

 

  1. Iten M, Liu S, Shukla A. Experimental validation of an air- PCM storage unit comparing the effective heat capacity and enthalpy methods through CFD simulations. Energy. 2018;155:495-503. doi: 10.1016/j.energy.2018.04.128

 

  1. Muresan AA, Attia S. Energy efficiency in the Romanian residential building stock: A literature review. Renew Sustain Energy Rev. 2017;74:349-363. doi: 10.1016/j.rser.2017.02.022

 

  1. Xie Y, Gilmour MS, Yuan Y, Jin H, Wu H. A review on house design with energy saving system in the UK. Renew Sustain Energy Rev. 2017;71:29-52. doi: 10.1016/j.rser.2017.01.004

 

  1. Nematpour Keshteli A, Sheikholeslami M. Nanoparticle enhanced PCM applications for intensification of thermal performance in building: A review. J Mol Liq. 2019;274:516- 533. doi: 10.1016/j.molliq.2018.10.151

 

  1. Milián YE, Gutiérrez A, Grágeda M, Ushak S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renew Sustain Energy Rev. 2017;73:983-999. doi: 10.1016/j.rser.2017.01.159

 

  1. Yu K, Liu Y, Yang Y. Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties. Appl Energy. 2021;292:116845. doi: 10.1016/j.apenergy.2021.116845

 

  1. Xiong Y, Song C, Ren J, et al. Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage. Process Saf Environ Prot. 2022;162:346-356. doi: 10.1016/j.psep.2022.04.004

 

  1. Jiang Z, Navarro Rivero ME, Liu X, She X, Xuan Y, Ding Y. A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method. Appl Energy. 2021;303:117591. doi: 10.1016/j.apenergy.2021.117591

 

  1. Wang W, He X, Shuai Y, Qiu J, Hou Y, Pan Q. Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate. Appl Energy. 2022;309:118433. doi: 10.1016/j.apenergy.2021.118433

 

  1. Antoniadou-Plytaria K, Steen D, Tuan LA, Carlson O, Fotouhi Ghazvini MA. Market-based energy management model of a building microgrid considering battery degradation. IEEE Trans Smart Grid. 2021;12(2):1794-1804. doi: 10.1109/TSG.2020.3037120

 

  1. Ren F, Wei Z, Zhai X. Multi-objective optimization and evaluation of hybrid CCHP systems for different building types. Energy. 2021;215:119096. doi: 10.1016/j.energy.2020.119096

 

  1. Lin Q, Chen YC, Chen F, DeGanyar T, Yin H. Design and experiments of a thermoelectric-powered wireless sensor network platform for smart building envelope. Appl Energy. 2022;305:1794-1804. doi: 10.1016/j.apenergy.2021.117791

 

  1. Yu C, Konlan J, Li G. Energy harvesting and electricity production through dissolved carbon dioxide by connecting two form-stable phase change materials. J Mater Chem A. 2024;12:7943-7955. doi: 10.1039/d3ta06766a

 

  1. Lv Z, Cheng C, Lv H. Digital twins for secure thermal energy storage in building. Appl Energy. 2023;338:120907. doi: 10.1016/j.apenergy.2023.120907

 

  1. Vazquez S, Lukic SM, Galvan E, Franquelo LG, Carrasco JM. Energy storage systems for transport and grid applications. IEEE Trans Ind Electron. 2010;57(12):3881-3895. doi: 10.1109/TIE.2010.2076414

 

  1. International Eletrotechnical Comission. Electrical Energy Storage White Paper. Vol 2; 2011.

 

  1. Lin Y, Jia Y, Alva G, Fang G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev. 2018;82:2730-2742. doi: 10.1016/j.rser.2017.10.002

 

  1. Bland A, Khzouz M, Statheros T, Gkanas EI. PCMs for residential building applications: A short review focused on disadvantages and proposals for future development. Buildings. 2017;7(3):78. doi: 10.3390/buildings7030078

 

  1. Masood U, Haggag M, Hassan A, Laghari M. A Review of phase change materials as a heat storage medium for cooling applications in the built environment. Buildings. 2023;13(7):1595. doi: 10.3390/buildings13071595

 

  1. Sharaf M, Huzayyin AS, Yousef MS. Performance enhancement of photovoltaic cells using phase change material (PCM) in winter. Alexandria Eng J. 2022;61(6):4229- 4239. doi: 10.1016/j.aej.2021.09.044

 

  1. Lilley D, Menon AK, Kaur S, Lubner S, Prasher RS. Phase change materials for thermal energy storage: A perspective on linking phonon physics to performance. J Appl Phys. 2021;130(22):220903. doi: 10.1063/5.0069342

 

  1. Bhagat K, Saha SK. Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant. Renew Energy. 2016;95:323-336. doi: 10.1016/j.renene.2016.04.018

 

  1. Anisur MR, Kibria MA, Mahfuz MH, Metselaar IHSC, Saidur R. Latent Heat Thermal Storage (LHTS) for energy sustainability. In: Green Energy and Technology. New Delhi: Springer; 2015. p. 201. doi: 10.1007/978-81-322-2337-5_10

 

  1. Liang L, Diao Y, Kang Y, Zhao Y, Wei X, Chen C. Characteristic of latent heat thermal energy storage strengthened by flat micro heat pipe array-copper foam composite structure. Huagong Xuebao/CIESC J. 2018;69:34-42. doi: 10.11949/j.issn.0438-1157.20180778

 

  1. Tyagi V V., Kaushik SC, Tyagi SK, Akiyama T. Development of phase change materials based microencapsulated technology for buildings: A review. Renew Sustain Energy Rev. 2011;15(2):1373-1391. doi: 10.1016/j.rser.2010.10.006

 

  1. Jelle BP, Kalnæs SE. Phase change materials for application in energy-efficient buildings. In: Cost-Effective Energy Efficient Building Retrofitting: Materials, Technologies, Optimization and Case Studies. United Kingdom: Woodhead Publishing; 2017. doi: 10.1016/B978-0-08-101128-7.00003-4

 

  1. Wang Q, Wu R, Wu Y, Zhao CY. Parametric analysis of using PCM walls for heating loads reduction. Energy Build. 2018;172:328-336. doi: 10.1016/j.enbuild.2018.05.012

 

  1. Amaral C, Vicente R, Marques PAAP, Barros-Timmons A. Phase change materials and carbon nanostructures for thermal energy storage: A literature review. Renew Sustain Energy Rev. 2017;79:1212-1228. doi: 10.1016/j.rser.2017.05.093

 

  1. Memon SA. Phase change materials integrated in building walls: A state of the art review. Renew Sustain Energy Rev. 2014;31:870-906. doi: 10.1016/j.rser.2013.12.042

 

  1. Zhai XQ, Wang XL, Wang T, Wang RZ. A review on phase change cold storage in air-conditioning system: Materials and applications. Renew Sustain Energy Rev. 2013;22:108- 120. doi: 10.1016/j.rser.2013.02.013

 

  1. Solangi NH, Mubarak NM, Karri RR, et al. MXene-based phase change materials for solar thermal energy storage. Energy Convers Manag. 2022;273:116432. doi: 10.1016/j.enconman.2022.116432

 

  1. Pandey AK, Hossain MS, Tyagi VV, Abd Rahim N, Selvaraj JAL, Sari A. Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renew Sustain Energy Rev. 2018;82:281-323. doi: 10.1016/j.rser.2017.09.043

 

  1. Waqas A, Ud Din Z. Phase Change Material (PCM) storage for free cooling of buildings - A review. Renew Sustain Energy Rev. 2013;18:607-625. doi: 10.1016/j.rser.2012.10.034

 

  1. Chandel SS, Agarwal T. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew Sustain Energy Rev. 2017;67:581-596. doi: 10.1016/j.rser.2016.09.070

 

  1. Luo J, Zou D, Wang Y, Wang S, Huang L. Battery thermal management systems (BTMs) based on Phase Change Material (PCM): A comprehensive review. Chem Eng J. 2022;430:132741. doi: 10.1016/j.cej.2021.132741

 

  1. Drissi S, Ling TC, Mo KH. Thermal efficiency and durability performances of paraffinic phase change materials with enhanced thermal conductivity-a review. Thermochim Acta. 2019;673:198-210. doi: 10.1016/j.tca.2019.01.020

 

  1. Luo X, Zhu YS, Zhong YQ, Qin Y. An effective and reliable power data transmission scheme based on smart antenna WLAN technology. J Clean Energy Technol. 2013;1:327-330. doi: 10.7763/jocet.2013.v1.74

 

  1. Podara CV., Kartsonakis IA, Charitidis CA. Towards phase change materials for thermal energy storage: Classification, improvements and applications in the building sector. Appl Sci. 2021;11(4):1490. doi: 10.3390/app11041490

 

  1. Leong KY, Abdul Rahman MR, Gurunathan BA. Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges. J Energy Storage. 2019;21:18-31. doi: 10.1016/j.est.2018.11.008

 

  1. Da Cunha SRL, De Aguiar JLB. Phase change materials and energy efficiency of buildings: A review of knowledge. J Energy Storage. 2020;27:101083. doi: 10.1016/j.est.2019.101083

 

  1. Nie B, Palacios A, Zou B, Liu J, Zhang T, YunrenLi. Corrigendum to “Review on phase change materials for cold thermal energy storage applications” [Renew. Sustain. Energy Rev. 134 (2020) 110340/RSER-D-20-00822]. Renew Sustain Energy Rev. 2021;139:110642. doi: 10.1016/j.rser.2020.110642

 

  1. Mehling H, Brütting M, Haussmann T. PCM products and their fields of application-an overview of the state in 2020/2021. J Energy Storage. 2022;51:104354. doi: 10.1016/j.est.2022.104354

 

  1. Ning M, Jingyu H, Dongmei P, Shengchun L, Mengjie S. Investigations on thermal environment in residential buildings with PCM embedded in external wall. Energy Procedia. 2017;142:1888-1895. doi: 10.1016/j.egypro.2017.12.387

 

  1. Wang SM, Matiašovský P, Mihálka P, Lai CM. Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard. Energy Build. 2018;159:419-425. doi: 10.1016/j.enbuild.2017.10.080

 

  1. Lee KO, Medina MA, Sun X, Jin X. Thermal performance of Phase Change Materials (PCM)-enhanced cellulose insulation in passive solar residential building walls. Solar Energy. 2018;163:113-121. doi: 10.1016/j.solener.2018.01.086

 

  1. Yao C, Kong X, Li Y, Du Y, Qi C. Numerical and experimental research of cold storage for a novel expanded perlite-based shape-stabilized phase change material wallboard used in building. Energy Convers Manag. 2018;155:20-31. doi: 10.1016/j.enconman.2017.10.052

 

  1. Biswas K, Lu J, Soroushian P, Shrestha S. Combined experimental and numerical evaluation of a prototype nano- PCM enhanced wallboard. Appl Energy. 2014;131:517-529. doi: 10.1016/j.apenergy.2014.02.047

 

  1. Kharbouch Y, Mimet A, El Ganaoui M. Thermal impact study of a bio-based wall coupled with an inner PCM layer. Energy Procedia. 2017;139:10-15. doi: 10.1016/j.egypro.2017.11.165

 

  1. Li Y, Liu S, Lu J. Effects of various parameters of a PCM on thermal performance of a solar chimney. Appl Therm Eng. 2017;127:1119-1131. doi: 10.1016/j.applthermaleng.2017.08.087

 

  1. Agostinelli S, Cumo F, Guidi G, Tomazzoli C. Cyber-physical systems improving building energy management: Digital twin and artificial intelligence. Energies (Basel). 2021;14(8):2338. doi: 10.3390/en14082338

 

  1. Zou Y, Li R, Zhang X, Song J. Five-dimensional model research of complex product assembly driven by digital twin. Int J Wirel Mob Comput. 2021;21(3):198-206. doi: 10.1504/IJWMC.2021.120883

 

  1. Lu X, Huang J, Wong WY, Qu JP. A novel bio-based polyurethane/wood powder composite as shape-stable phase change material with high relative enthalpy efficiency for solar thermal energy storage. Solar Energy Mater Solar Cells. 2019;200:109987. doi: 10.1016/j.solmat.2019.109987

 

  1. Huang J, Su J, Weng M, et al. An innovative phase change composite with high thermal conductivity and sensitive light response rate for thermal energy storage. Solar Energy Mater Solar Cells. 2022;245:111872. doi: 10.1016/j.solmat.2022.111872

 

  1. Rudra Murthy BV, Gumtapure V. Thermo-physical analysis of natural shellac wax as novel bio-phase change material for thermal energy storage applications. J Energy Storage. 2020;29:101390. doi: 10.1016/j.est.2020.101390

 

  1. Lu X, Huang J, Kang B, Yuan T, Qu J ping. Bio-based poly (lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications. Solar Energy Mater Solar Cells. 2019;192:170-178. doi: 10.1016/j.solmat.2018.12.036

 

  1. Sam MN, Caggiano A, Mankel C, Koenders E. A comparative study on the thermal energy storage performance of bio-based and paraffin-based PCMs using DSC procedures. Materials. 2020;13(7):1705. doi: 10.3390/ma13071705

 

  1. Liu L, Fan X, Zhang Y, et al. Novel bio-based phase change materials with high enthalpy for thermal energy storage. Appl Energy. 2020;268:114979. doi: 10.1016/j.apenergy.2020.114979

 

  1. Seo H, Yun WS. Digital twin-based assessment framework for energy savings in university classroom lighting. Buildings. 2022;12(5):544. doi: 10.3390/buildings12050544

 

  1. Tan Y, Chen P, Shou W, Sadick AM. Digital Twin-driven approach to improving energy efficiency of indoor lighting based on computer vision and dynamic BIM. Energy Build. 2022;270:112271. doi: 10.1016/j.enbuild.2022.112271

 

  1. Qian Y, Leng J, Chun Q, Wang H, Zhou K. A year-long field investigation on the spatio-temporal variations of occupant’s thermal comfort in Chinese traditional courtyard dwellings. Build Environ. 2023;228:109836. doi: 10.1016/j.buildenv.2022.109836

 

  1. Deng M, Wang X, Li D, Menassa CC. Digital ID framework for human-centric monitoring and control of smart buildings. Build Simul. 2022;15(10):1709-1728.doi: 10.1007/s12273-022-0902-3

 

  1. Nurumova K, Ramaji I, Kermanshachi S. Leveraging Digital Twin for Enhancing Occupants Comfort: A Case Study. In: Computing in Civil Engineering 2021-Selected Papers from the ASCE International Conference on Computing in Civil Engineering; 2021. doi: 10.1061/9780784483893.052

 

  1. Gnecco VM, Vittori F, Pisello AL. Digital twins for decoding human-building interaction in multi-domain test-rooms for environmental comfort and energy saving via graph representation. Energy Build. 2023;279:112652. doi: 10.1016/j.enbuild.2022.112652

 

  1. Abdelrahman MM, Chong A, Miller C. Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec. Build Environ. 2022;207:108532. doi: 10.1016/J.BUILDENV.2021.108532

 

  1. Abdelrahman MM, Miller C. Targeting occupant feedback using digital twins: Adaptive spatial-temporal thermal preference sampling to optimize personal comfort models. Build Environ. 2022;218:109090. doi: 10.1016/j.buildenv.2022.109090
Share
Back to top
International Journal of AI for Materials and Design, Electronic ISSN: 3029-2573 Print ISSN: 3041-0746, Published by AccScience Publishing