AccScience Publishing / IJAMD / Online First / DOI: 10.36922/ijamd.4285
ORIGINAL RESEARCH ARTICLE

Prediction of wall geometry for cold-metal-transfer-based wire-arc additive manufacturing

Robin Kromer1* Eric Lacoste1
Show Less
1 Univ. Bordeaux, CNRS, Bordeaux INP, I2M, UMR 5295, F-33400, Talence, France
IJAMD 2024, 1(3), 20–32; https://doi.org/10.36922/ijamd.4285
Submitted: 19 July 2024 | Accepted: 2 September 2024 | Published: 10 October 2024
(This article belongs to the Special Issue AI Usage in the Analysis of the Additive Manufacturing Process)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Wire-arc additive manufacturing (WAAM) is an advanced technique for fabricating large metal components through layer-by-layer material deposition using arc welding methods. This study focused on optimizing the WAAM process by employing machine learning models to predict and control bead geometries, specifically bead height (BH) and bead width (BW), while ensuring consistent height increments in multibead walls. Based on CMT technology in cold metal transfer experiments, linear regression models achieved high accuracy in predicting BH and BW. Analysis of variance results highlighted the considerable influence of voltage (V) and travel speed (TS) on bead geometries. For multibead wall characteristics, polynomial regression models incorporating non-linear terms, such as travel speed (TS²) and dwell time (Dt²), were developed to predict height (H) and waviness (W). Various optimization metrics were employed to balance the trade-offs between H and W for identifying optimal welding conditions that achieved the target H while minimizing W. A notable innovation of this research is the optimization of dwell time (Dt) for each layer to achieve a linear incremental H profile, minimizing W and ensuring consistent layer quality.

Keywords
Machine learning
Dwell time
Bead geometry
Process modeling
Wire-arc additive manufacturing
Funding
None.
Conflict of interest
The authors declare no competing interests.
References
  1. Ding D, Pan Z, Cuiuri D, Li H. Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81:465-481. doi: 10.1007/s00170-015-7077-3

 

  1. Le VT, Paris H. On the use of gas-metal-arc-welding additive manufacturing for repurposing of low-carbon steel components: microstructures and mechanical properties. Weld World. 2021;65:157-166. doi: 10.1007/s40194-020-01005-y

 

  1. Frostevarg J, Kaplan AFH, Lamas J. Comparison of CMT with other arc modes for laser-arc hybrid welding of steel. Weld World. 2014;58:649-660. doi: 10.1007/s40194-014-0146-7

 

  1. Cong B, Ding J, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. Int J Adv Manuf Technol. 2015;76:1593-1606. doi: 10.1007/s00170-014-6346-x

 

  1. Ali Y, Henckell P, Hildebrand J, Reimann J, Bergmann JP, Barnikol-Oettler S. Wire arc additive manufacturing of hot work tool steel with CMT process. J Mater Process Technol. 2019;269:109-116 doi: 10.1016/j.jmatprotec.2019.01.034

 

  1. Youheng F, Guilan W, Haiou Z, Liye L. Optimization of surface appearance for wire and arc additive manufacturing of Bainite steel. Int J Adv Manuf Technol. 2017;91:301-313. doi: 10.1007/s00170-016-9621-1

 

  1. Ayarkwa KF, Williams S, Ding J. Investigation of pulse advance cold metal transfer on aluminium wire arc additive manufacturing. Int J Rapid Manuf. 2015;5:44. doi: 10.1504/ijrapidm.2015.073547

 

  1. Kazanas P, Deherkar P, Almeida P, Lockett H, Williams S. Fabrication of geometrical features using wire and arc additive manufacture. Proc Inst Mech Eng Part B J Eng Manuf. 2012;226:1042-1051. doi: 10.1177/0954405412437126

 

  1. Zhao W, Wei Y, Long J, Chen J, Liu R, Ou W. Modeling and simulation of heat transfer, fluid flow and geometry morphology in GMAW-based wire arc additive manufacturing. Weld World. 2021;65:1571-1590. doi: 10.1007/s40194-021-01123-1

 

  1. Vázquez L, Rodríguez N, Rodríguez I, Alberdi E, Alvarez P. Influence of interpass cooling conditions on microstructure and tensile properties of Ti-6Al-4V parts manufactured by WAAM. Weld World. 2020;64:1377-1388. doi: 10.1007/s40194-020- 00921-3

 

  1. Reisgen U, Sharma R, Mann S, Oster L. Increasing the manufacturing efficiency of WAAM by advanced cooling strategies. Weld World. 2020;64:1409-1416. doi: 10.1007/s40194-020-00930-2

 

  1. Ma Y, Cuiuri D, Shen C, Li H, Pan Z. Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding. Addit Manuf. 2015;8:71-77. doi: 10.1016/j.addma.2015.08.001

 

  1. Shen C, Pan Z, Cuiuri D, Ding D, Li H. Influences of deposition current and interpass temperature to the Fe3Al-based iron aluminide fabricated using wire-arc additive manufacturing process. Int J Adv Manuf Technol. 2017;88:2009-2018. doi: 10.1007/s00170-016-8935-3

 

  1. Wu B, Ding D, Pan Z, et al. Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V. J Mater Process Technol. 2017;250:304-312. doi: 10.1016/j.jmatprotec.2017.07.037

 

  1. Xiong J, Li Y, Li R, Yin Z. Influences of process parameters on surface roughness of multi-layer single-pass thin- walled parts in GMAW-based additive manufacturing. J Mater Process Technol. 2018;252:128-136. doi: 10.1016/j.jmatprotec.2017.09.020

 

  1. Yang D, Wang G, Zhang G. Thermal analysis for single-pass multi-layer GMAW based additive manufacturing using infrared thermography. J Mater Process Technol. 2017;244:215-224. doi: 10.1016/j.jmatprotec.2017.01.024

 

  1. Kumar V, Mandal A, Das AK, Kumar S. Parametric study and characterization of wire arc additive manufactured steel structures. Int J Adv Manuf Technol. 2021;115:1723-1733. doi: 10.1007/s00170-021-07261-6

 

  1. Mai DS, Doan TK, Paris H. Wire and arc additive manufacturing of 308L stainless steel components: Optimization of processing parameters and material properties. Eng Sci Technol Int J. 2021;24:1015-1026.

 

  1. Chaudhari R, Parmar H, Vora J, Patel VK. Parametric study and investigations of bead geometries of GMAW-based wire-arc additive manufacturing of 316L stainless steels. Metals. 2022;12:1232. doi: 10.3390/met12071232

 

  1. Natrayan L, Anand R, Kumar SS. Optimization of process parameters in TIG welding of AISI 4140 stainless steel using Taguchi technique. Mater Today Proc. 2021;37:1550-1553. doi: 10.1016/j.matpr.2020.07.150

 

  1. Vora J, Parikh N, Chaudhari R, et al. Optimization of bead morphology for GMAW-based wire-arc additive manufacturing of 2.25 Cr-1.0 Mo steel using metal-cored wires. Appl Sci. 2022;12:5060. doi: 10.3390/app12105060

 

  1. Kumar A, Maji K. Selection of process parameters for near-net shape deposition in wire arc additive manufacturing by genetic algorithm. J Mater Eng Perform. 2020;29:3334-3352. doi: 10.1007/s11665-020-04847-1

 

  1. Liberini M, Astarita A, Campatelli G, et al. Selection of optimal process parameters for wire arc additive manufacturing. Procedia Cirp. 2017;62:470-474. doi: 10.1016/j.procir.2016.06.124

 

  1. Wang L, Wu T, Wang D, et al. A novel heterogeneous multi-wire indirect arc directed energy deposition for in-situ synthesis Al-Zn-Mg-Cu alloy: Process, microstructure and mechanical properties. Addit Manuf. 2023;72:103639. doi: 10.1016/j.addma.2023.103639

 

  1. Mishra V, Ayas C, Langelaar M, Van Keulen F. Simultaneous topology and deposition direction optimization for Wire and Arc Additive Manufacturing. Manuf Lett. 2022;31:45-51. doi: 10.1016/j.mfglet.2021.05.011

 

  1. Xiong J, Zhang G, Hu J, Li Y. Forecasting process parameters for GMAW-based rapid manufacturing using closed-loop iteration based on neural network. Int J Adv Manuf Technol. 2013;69:743-751. doi: 10.1007/s00170- 013-5038-2

 

  1. Xiong J, Zhang G, Hu J, Wu L. Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. J Intell Manuf. 2014;25:157-163. doi: 10.1007/s10845- 012-0682-1

 

  1. Ríos S, Colegrove PA, Martina F, Williams SW. Analytical process model for wire + arc additive manufacturing. Addit Manuf. 2018;21:651-657. doi: 10.1016/j.addma.2018.04.003

 

  1. Nagesh DS, Datta GL. Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. J Mater Process Technol. 2002;123:303-312. doi: 10.1016/S0924-0136(02)00101-2

 

  1. Rao PS, Gupta OP, Murty SSN, Rao ABK. Effect of process parameters and mathematical model for the prediction of bead geometry in pulsed GMA welding. Int J Adv Manuf Technol. 2009;45:496-505. doi: 10.1007/s00170-009-1991-1

 

  1. Bourlet C, Zimmer-Chevret S, Pesci R, Bigot R, Robineau A, Scandella F. Microstructure and mechanical properties of high strength steel deposits obtained by Wire-Arc Additive Manufacturing. J Mater Process Technol. 2020;285:116759. doi: 10.1016/j.jmatprotec.2020.116759

 

  1. Spencer JD, Dickens PM, Wykes CM. Rapid prototyping of metal parts by three-dimensional welding. Proc Inst Mech Eng Part B J Eng Manuf. 1998;212:175-182. doi: 10.1243/0954405981515590

 

  1. Sthle L, Wold S. Analysis of variance (ANOVA), chemometrics and intelligent laboratory systems. 1989;6:259-272.

 

  1. Turgut B, Gürol U, Onler R. Effect of interlayer dwell time on output quality in wire arc additive manufacturing of low carbon low alloy steel components. Int J Adv Manuf Technol. 2023;126:5277-5288. doi: 10.1007/s00170-023-11481-3

 

  1. Suryakumara S, Karunakaran KP, Bernard A, Chandrasekhar U, Raghavender N, Sharma D. Weld bead modeling and process optimization in Hybrid Layered Manufacturing. Comput Aided Des. 2011;43:331-344. doi: 10.1016/j.cad.2011.01.006

 

  1. Hu Z, Qin X, Li Y, Ni M. Welding parameters prediction for arbitrary layer height in robotic wire and arc additive manufacturing. J Mech Sci Technol. 2020;34:1683-1695. doi: 10.1007/s12206-020-0331-0

 

  1. Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel. Mater Sci Eng A. 2019;751:183-190. doi: 10.1016/j.msea.2019.02.078

 

  1. Wahsh L, ElShater A, Mansour A, et al. Parameter selection for wire arc additive manufacturing (WAAM) process. Mater Sci Technol. 2018;1:78-85. doi: 10.7449/2018mst/2018/mst_2018_78_85

 

  1. Patel VK, Savsani VJ. A multi-objective improved teaching-learning based optimization algorithm (MO-ITLBO). Inf Sci. 2016;357:182-200. doi: 10.1016/j.ins.2014.05.049
Share
Back to top
International Journal of AI for Materials and Design, Electronic ISSN: 3029-2573 Print ISSN: 3041-0746, Published by AccScience Publishing