News and Announcements
EDITORIAL
Creating a research community towards technological revolution of AI for materials and design
Wai Yee Yeong1†* ,
Guo Liang Goh1
Show Less
1
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore,
Republic of Singapore
Submitted: 13 March 2024 | Published: 26 March 2024
© 2024 by the Author (s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Conflict of interest
The author declares no competing interests.
References
- Makridakis S. The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures. 2017;90:46-60. doi: 10.1016/j.futures.2017.03.006
- Popenici SAD, Kerr S. Exploring the impact of artificial intelligence on teaching and learning in higher education. Res Pract Technol Enhanc Learn. 2017;12(1):1-13. doi: 10.1186/s41039-017-0062-8
- Wolff J, Pauling J, Keck A, Baumbach J. The economic impact of artificial intelligence in health care: Systematic review. J Med Internet Res. 2020;22(2):e16866. doi: 10.2196/16866
- Hardian R, Liang Z, Zhang X, Szekely G. Artificial intelligence: The silver bullet for sustainable materials development. Green Chem. 2020;22(21):7521-7528. doi: 10.1039/D0GC02956D
- Badini S, Regondi S, Pugliese R. Unleashing the power of artificial intelligence in materials design. Materials (Basel). 2023;16(17):5927. doi: 10.3390/ma16175927
- Huang JS, Liew JX, Ademiloye A, Liew KM. Artificial intelligence in materials modeling and design. Arch Comput Methods Eng. 2021;28:3399-3413. doi: 10.1007/s11831-020-09506-1
- Ng WL, Tan JS. Application of machine learning in 3D bioprinting of cultivated meat. Int J AI Mater Des. 2024;1(1):2279. doi: 10.36922/ijamd.2279
- Zhang J, Yin C, Xu Y, Sing SL. Machine learning applications for quality improvement in laser powder bed fusion: A state-of-the-art review. Int J AI Mater Des. 2024;1(1):2301. doi: 10.36922/ijamd.2301
- Wong SJL, Chen C, Tan EZE, Li H. Integration of physics-based data in deep learning model training for predicting the effect of sulfur content in the directed energy deposition process. Int J AI Mater Des. 2024;1(1):2355. doi: 10.36922/ijamd.2355
- Goh GL, Huang X, Toh W, et al. Joint angle prediction for a cable-driven gripper with variable joint stiffness through numerical modeling and machine learning. Int J AI Mater Des. 2024;1(1):2328. doi: 10.36922/ijamd.2328
- An J, Cui W, Chen H, et al. Manufacturing multi-organs database: A comprehensive, predictive, and analytical biofabrication database. Int J AI Mater Des. 2024;1(1):2420. doi: 10.36922/ijamd.2420