AccScience Publishing / GTM / Online First / DOI: 10.36922/gtm.5000
ORIGINAL RESEARCH ARTICLE

Morphological signs of neurodegenerative and inflammatory processes in the brain of rats on a high-calorie diet

Tatyana E. Kuznetsova1 Tatyana A. Mityukova1* Anastasia A. Basalai1 Olga Y. Poluliakh1
Show Less
1 Department of Laboratory of Biomedical Technologies and Medical Rehabilitation, Institute of Physiology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
Global Translational Medicine, 5000 https://doi.org/10.36922/gtm.5000
Submitted: 30 September 2024 | Revised: 30 December 2024 | Accepted: 2 January 2025 | Published: 21 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Much attention has been focused on studying the effects of obesity, particularly on the central nervous system (CNS). This study investigated the histoarchitecture of the prefrontal cortex (PFC) and hippocampus as well as the behavioral characteristics in male and female Wistar rats with diet-induced visceral obesity. The influence of a high-calorie diet on male and female rats reveals sex-specific changes in glial cells and the peculiarities of neurodegenerative processes in the PFC and hippocampal regions. In the context of visceral obesity, signs of depression were observed in male rats, whereas female rats showed no such signs. These results confirm the sex-specific effect of visceral obesity on the CNS.

Keywords
High-calorie diet
Visceral obesity
Rats
Prefrontal cortex
Hippocampus
Signs of inflammation and neurodegeneration
Funding
The work was supported by the State Program for Scientific Research (No.:4.1.1.5) of the National Academy of Sciences of Belarus.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Badre D, Kayser AS, D’Esposito M. Frontal cortex and the discovery of abstract action rules. Neuron. 2010;66(2):315-326. doi: 10.1016/j.neuron.2010.03.025

 

  1. Yang Y, Raine A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Res. 2009;174(2):81-88. doi: 10.1016/j.pscychresns.2009.03.012

 

  1. Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem. 2019;165:106945. doi: 10.1016/j.nlm.2018.10.001

 

  1. Giel KE, Hartmann A, Zeeck A, et al. Decreased emotional perception in obesity. Eur Eat Disord Rev. 2016;24(4):341-346. doi: 10.1002/erv.2444

 

  1. Blasco BV, García-Jiménez J, Bodoano I, Gutiérrez-Rojas L. Obesity and depression: Its prevalence and influence as a prognostic factor: A systematic review. Psychiatry Investig. 2020;17(8):715-724. doi: 10.30773/pi.2020.0099

 

  1. Mabrok HB, Ramadan AA, Hamed IM, Mohamed DA. Obesity as inducer of cognitive function decline via dysbiosis of gut microbiota in rats. Brain Sci. 2024;14(8):807. doi: 10.3390/brainsci14080807

 

  1. Bocarsly ME, Fasolino M, Kane GA, et al. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc Natl Acad Sci U S A. 2015;112(51):15731-15736. doi: 10.1073/pnas.1511593112

 

  1. Laurent JS, Watts R, Adise S, et al. Associations among body mass index, cortical thickness, and executive function in children. JAMA Pediatr. 2020;174(2):170-177. doi: 10.1001/jamapediatrics.2019.4708

 

  1. Hall PA, Best JR, Beaton EA, Sakib MN, Danckert J. Morphology of the prefrontal cortex predicts body composition in early adolescence: Cognitive mediators and environmental moderators in the ABCD Study. Soc Cogn Affect Neurosci. 2023;18(1):nsab104. doi: 10.1093/scan/nsab104

 

  1. Lee TH, Yau SY. From obesity to hippocampal neurodegeneration: Pathogenesis and non-pharmacological interventions. Int J Mol Sci. 2020;22(1):201. doi: 10.3390/ijms22010201

 

  1. Gancheva S, Zhelyazkova-Savova M, Galunska B, Chervenkov T. Experimental models of metabolic syndrome in rats. Scr Sci Med. 2015;47(2):14-21. doi: 10.14748/ssm.v47i2.1145

 

  1. Marcondes FK, Bianchi FJ, Tanno AP. Determination of the estrous cycle phases of rats: Some helpful considerations. Braz J Biol. 2002;62(4A):609-614. doi: 10.1590/s1519-69842002000400008

 

  1. Castagne V, Moser P, Porsolt RD. Behavioral assessment of antidepressant activity in rodents. In: Methods of Behavior Analysis in Neuroscience. 2nd ed., Ch. 6. Boca Raton, FL: CRC Press, Taylor & Francis; 2009.

 

  1. Paxinos Y, Watson C. The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press; 1998. p. 256.

 

  1. Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: An updated review. Front Cell Neurosci. 2023;17:1294420. doi: 10.3389/fncel.2023.1294420

 

  1. Nguyen JC, Killcross AS, Jenkins TA. Obesity and cognitive decline: Role of inflammation and vascular changes. Front Neurosci. 2014;8:375. doi: 10.3389/fnins.2014.00375

 

  1. Décarie-Spain L, Sharma S, Hryhorczuk C, et al. Nucleus accumbens inflammation mediates anxiodepressive behavior and compulsive sucrose seeking elicited by saturated dietary fat. Mol Metab. 2018;10:1-13. doi: 10.1016/j.molmet.2018.01.018

 

  1. Dasuri K, Zhang L, Kim SO, Bruce-Keller AJ, Keller JN. Dietary and donepezil modulation of mTOR signaling and neuroinflammation in the brain. Biochim Biophys Acta. 2016;1862(2):274-283. doi: 10.1016/j.bbadis.2015.11.002

 

  1. Auer MK, Sack M, Lenz JN, et al. Effects of a high-caloric diet and physical exercise on brain metabolite levels: A combined proton MRS and histologic study. J Cereb Blood Flow Metab. 2015;35(4):554-564. doi: 10.1038/jcbfm.2014.231

 

  1. Guillemot-Legris O, Masquelier J, Everard A, Cani PD, Alhouayek M, Muccioli GG. High-fat diet feeding differentially affects the development of inflammation in the central nervous system. J Neuroinflammation. 2016;13(1):206. doi: 10.1186/s12974-016-0666-8

 

  1. Nam KN, Wolfe CM, Fitz NF, et al. Integrated approach reveals diet, APOE genotype and sex affect immune response in APP mice. Biochim Biophys Acta Mol Basis Dis. 2018;1864(1):152-161. doi: 10.1016/j.bbadis.2017.10.018

 

  1. McGregor G, Harvey J. Regulation of hippocampal synaptic function by the metabolic hormone, leptin: Implications for health and neurodegenerative disease. Front Cell Neurosci. 2018;12:340. doi: 10.3389/fncel.2018.00340

 

  1. Hahm JR, Jo MH, Ullah R, Kim MW, Kim MO. Metabolic stress alters antioxidant systems, suppresses the adiponectin receptor 1 and induces Alzheimer’s like pathology in mice brain. Cells. 2020;9(1):249. doi: 10.3390/cells9010249

 

  1. Abedi A, Foroutan T, Shalmani LM, Dargahi L. Sex-specific effects of high-fat diet on rat brain glucose metabolism and early-onset dementia symptoms. Mech Ageing Dev. 2023;211:111795. doi: 10.1016/j.mad.2023.111795

 

  1. Li C, Xu JJ, Hu HT, et al. Amylin receptor insensitivity impairs hypothalamic POMC neuron differentiation in the male offspring of maternal high-fat diet-fed mice. Mol Metab. 2021;44:101135. doi: 10.1016/j.molmet.2020.101135

 

  1. Carrillo B, Collado P, Díaz F, Chowen JA, Pérez- Izquierdo MÁ, Pinos H. Physiological and brain alterations produced by high-fat diet in male and female rats can be modulated by increased levels of estradiol during critical periods of development. Nutr Neurosci. 2019;22(1):29-39. doi: 10.1080/1028415X.2017.1349574
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing