AccScience Publishing / GTM / Online First / DOI: 10.36922/gtm.5840
REVIEW ARTICLE

Synergizing phytonanotherapy and complementary medicine: Future horizons in cancer and diabetes care

Faheem Patwekar1* Mohsina Patwekar2* Mohammad Amjad Kamal3,4,5,6
Show Less
1 Department of Pharmacognosy, Luqman College of Pharmacy, PB 86, old Jewargi Road, Gulbarga, Karnataka
2 Department of Pharmacology, Luqman College of Pharmacy, PB 86, old Jewargi Road, Gulbarga, Karnataka, India
3 Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
4 Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Savar, Dhaka -1216, Bangladesh
5 Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
6 Novel Global Community Educational Foundation, Australia
Global Translational Medicine, 5840 https://doi.org/10.36922/gtm.5840
Submitted: 11 November 2024 | Revised: 24 December 2024 | Accepted: 3 January 2025 | Published: 22 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The intersection of phytonanotherapy, complementary and alternative medicine (CAM), and nanoparticles (NPs) promises an exciting new area in cancer and diabetes treatment. The CAM has attracted international recognition, emphasizing natural therapies and holistic health. Phytonanotherapy uses the promise of environmentally safe and sustainable green synthesis processes to develop NPs rich in bioactive chemicals originating from plants. These NPs provide a novel approach to targeted drug delivery, diagnostics, and therapy. Personalized medicine, tailoring therapies to individual genetic profiles and illness features, will most certainly be a cornerstone of these approaches in the future. The accuracy of NP-based drug delivery systems offers improved treatment outcomes while lowering systemic toxicity. Advanced diagnostics based on NPs and biosensors will enable early disease identification and real-time therapy response monitoring. Furthermore, combining CAM principles with NP-based therapies has great promise for holistic care. Combination therapies combining traditional medicine with cutting-edge nanomedicine have the potential to revolutionize cancer and diabetes care. These medicines will become more widely available provided an improvement in the regulatory approval process and accessibility. Individual preferences and well-being will be prioritized in patient-centered care, promoting a range of treatment options. Collaboration between practitioners of traditional medicine, researchers, artificial intelligence experts, and healthcare providers will improve complete and integrative health care. Green synthesis technologies will improve the efficiency and scalability of NP production. However, greater public and professional awareness is needed through educational initiatives to highlight the benefits and potential of CAM, phytonanotherapy, and NP-based treatments. To summarize, the future of CAM, phytonanotherapy, and NPs in cancer and diabetes treatment is bright since they provide patients with a variety of options while also contributing to more effective, sustainable, and patient-centered health care. To realize the full potential of these novel techniques, rigorous research, comprehensive clinical trials, and regulatory support will be required.

Keywords
Phytonanotherapy
Complementary and alternative medicine
Nanoparticles
Cancer treatment
Diabetes management
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Fuad NF, Ching SM, Dzulkarnain DH, Cheong AT, Zakaria ZA. Complementary alternative medicine use among postpartum mothers in a primary care setting: A cross-sectional study in Malaysia. BMC Complement Med Ther. 2020;20:197. doi: 10.1186/s12906-020-02984-7

 

  1. Frawley JE, McKenzie K, Janosi J, Forssman B, Sullivan E, Wiley K. The role of complementary and alternative medicine practitioners in the information‐seeking pathway of vaccine‐hesitant parents in the Blue Mountains area, Australia. Health Soc Care Community. 2021;29(6):e368-e376. doi: 10.1111/hsc.13361

 

  1. Upamali S, Rathnayake S. Perspectives of older people with uncontrolled type 2 diabetes mellitus towards medication adherence: A qualitative study. PLoS One. 2023;18(8):e0289834. doi: 10.1371/journal.pone.0289834

 

  1. Kristoffersen AE, Nilsen JV, Stub T, et al. Use of Complementary and Alternative Medicine in the context of cancer; prevalence, reasons for use, disclosure, information received, risks and benefits reported by people with cancer in Norway. BMC Complement Med Ther. 2022;22(1):202. doi: 10.1186/s12906-022-03606-0

 

  1. Vijayakumar S, Vinayagam R, Anand MA, et al. Green synthesis of gold nanoparticle using Eclipta alba and its antidiabetic activities through regulation of Bcl-2 expression in pancreatic cell line. J Drug Deliv Sci Technol. 2020;58:101786. doi: 10.1016/j.jddst.2020.101786

 

  1. Singh H, Desimone MF, Pandya S, et al. Revisiting the green synthesis of nanoparticles: Uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. Int J Nanomed. 2023;18:4727-4750. doi: 10.2147/IJN.S419369

 

  1. Taifa S, Muhee A, Bhat RA, et al. Evaluation of therapeutic efficacy of copper nanoparticles in Staphylococcus aureus-induced rat mastitis model. J Nanomater. 2022;2022:7124114. doi: 10.1155/2022/7124114

 

  1. Elnawasany S, Haggag YA, Shalaby SM, et al. Anti-cancer effect of nano-encapsulated boswellic acids, curcumin and naringenin against HepG-2 cell line. BMC Complement Med Ther. 2023;23(1):270. doi: 10.1186/s12906-023-04096-4

 

  1. Butler KS, Brinker CJ, Leong HS. Bridging the in vitro to in vivo gap: Using the chick embryo model to accelerate nanoparticle validation and qualification for in vivo studies. ACS Nano. 2022;16(12):19626-19650. doi: 10.1021/acsnano.2c03990

 

  1. Devi N, Rani K, Kharb P, Prasad M. Herbal medicine for urinary tract infections with the blazing nanotechnology. J Nanosci Nanotechnol. 2021;21(6):3495-3512. doi: 10.1166/jnn.2021.19002

 

  1. Zhang H, Han G, Litscher G. Traditional acupuncture meets modern nanotechnology: opportunities and perspectives. Evid Based Complement Alternat Med. 2019;2019:2146167. doi: 10.1155/2019/2146167

 

  1. De Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine. 2008; 3(2):133-149. doi: 10.2147/ijn.s596

 

  1. Javed R, Ghonaim R, Shathili A, Khalifa SA, El-Seedi HR. Phytonanotechnology: A greener approach for biomedical applications. In: Biogenic Nanoparticles for Cancer Theranostics. Amsterdam: Elsevier; 2021. p. 43-86. doi: 10.1016/B978-0-12-821467-1.00009-4

 

  1. Rana N, Singh SK, Banu NA, Hjazi A, Vamanu E, Singh MP. The ethnopharmacological properties of green-engineered metallic nanoparticles against metabolic disorders. Medicina (Kaunas). 2023;59(6):1022. doi: 10.3390/medicina59061022

 

  1. Meydan I, Burhan H, Gür T, Seçkin H, Tanhaei B, Sen F. Characterization of Rheum ribes with ZnO nanoparticle and its antidiabetic, antibacterial, DNA damage prevention and lipid peroxidation prevention activity of in vitro. Environ Res. 2022;204:112363. doi: 10.1016/j.envres.2021.112363

 

  1. Mohamed HE, Khalil AT, Hkiri K, et al. Physicochemical and nanomedicine applications of phyto-reduced erbium oxide (Er2O3) nanoparticles. AMB Exp. 2023;13(1):24. doi: 10.1186/s13568-023-01527-w

 

  1. Ehtesabi H, Fayaz M, Hosseini-Doabi FS, Rezaei P. The application of green synthesis nanoparticles in wound healing: A review. Mater Today Sustain. 2022;2022:100272. doi: 10.1016/j.mtsust.2022.100272

 

  1. Mahanty S, Bakshi M, Ghosh S, et al. Green synthesis of iron oxide nanoparticles mediated by filamentous fungi isolated from Sundarban mangrove ecosystem, India. BioNanoScience. 2019;9:637-651. doi: 10.1007/s12668-019-00644-w

 

  1. Ojo OA, Olayide II, Akalabu MC, et al. Nanoparticles and their biomedical applications. Biointerface Res Appl Chem. 2021;11(1):8431-8445. doi: 10.33263/BRIAC111.84318445

 

  1. Navada KM, Nagaraja GK, D’Souza JN, et al. Synthesis of phyto-functionalized nano hematite for lung cancer suppressive activity and paracetamol sensing by electrochemical studies. Process Biochem. 2022;123:76-90. doi: 10.1016/j.procbio.2022.10.033

 

  1. Abd El-Moaty HI, Soliman NA, Hamad RS, Ismail EH, Sabry DY, Khalil MM. Comparative therapeutic effects of Pituranthos tortuosus aqueous extract and phyto-synthesized gold nanoparticles on Helicobacter pylori, diabetic and cancer proliferation. South Afr J Bot. 2021;139:167-174. doi: 10.1016/j.sajb.2021.02.009

 

  1. Venkatadri B, Shanparvish E, Rameshkumar MR, et aL. Green synthesis of silver nanoparticles using aqueous rhizome extract of Zingiber officinale and Curcuma longa: In-vitro anti-cancer potential on human colon carcinoma HT-29 cells. Saudi J Biol Sci. 2020;27(11):2980-2986. doi: 10.1016/j.sjbs.2020.09.021

 

  1. Shashiraj KN, Hugar A, Kumar RS, et al. Exploring the antimicrobial, anticancer, and apoptosis inducing ability of biofabricated silver nanoparticles using Lagerstroemia speciosa flower buds against the Human Osteosarcoma (MG-63) cell line via flow cytometry. Bioengineering. 2023;10(7):821. doi: 10.3390/bioengineering10070821

 

  1. Said A, Abu-Elghait M, Atta HM, Salem SS. Antibacterial activity of green synthesized silver nanoparticles using lawsonia inermis against common pathogens from urinary tract infection. Appl Biochem Biotechnol. 2023;196:85-98. doi: 10.1007/s12010-023-04482-1

 

  1. Baldea I, Florea A, Olteanu D, et al. Effects of silver and gold nanoparticles phytosynthesized with Cornus mas extract on oral dysplastic human cells. Nanomedicine. 2020;15(1):55-75. doi: 10.2217/nnm-2019-0290

 

  1. Hublikar LV, Ganachari SV, Patil VB. Phytofabrication of silver nanoparticles using Averrhoa bilimbi leaf extract for anticancer activity. Nanoscale Adv. 2023;5(16):4149-4157. doi: 10.1039/D3NA00313B

 

  1. Halkai KR, Mudda JA, Shivanna V, Patil V, Rathod V, Halkai R. Cytotoxicity evaluation of fungal-derived silver nanoparticles on human gingival fibroblast cell line: An in vitro study. J Conserv Dent. 2019;22(2):160.

 

  1. Ogidi CO, Oyetayo VO, Akinyele BJ. Wild Medicinal Mushrooms: Potential Applications in Phytomedicine and Functional Foods. An Introduction to Mushroom. London: Intechopen; 2020. p. 118-i26.

 

  1. Zheng X, Yang X, Lin J, Song F, Shao Y. Low curcumin concentration enhances the anticancer effect of 5-fluorouracil against colorectal cancer. Phytomedicine. 2021;85:153547. doi: 10.1016/j.phymed.2021.153547

 

  1. Naqvi SA, Ali S, Sherazi TA, et al. Antioxidant, antibacterial, and anticancer activities of bitter gourd fruit extracts at three different cultivation stages. J Chem. 2020;2020:1. doi: 10.1155/2020/7394751

 

  1. Zhu Z, Cui L, Yang J, et al. Anticancer effects of asiatic acid against doxorubicin-resistant breast cancer cells via an AMPK-dependent pathway in vitro. Phytomedicine. 2021;92:153737. doi: 10.1016/j.phymed.2021.153737

 

  1. Samuel MS, Ravikumar M, John J A, et al. A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts. 2022;12(5):459. doi: 10.3390/catal12050459

 

  1. Jiang Z, Li L, Huang H, He W, Ming W. Progress in laser ablation and biological synthesis processes: “Top-Down” and “Bottom-Up” approaches for the green synthesis of Au/ Ag nanoparticles. Int J Mol Sci. 2022;23(23):14658. doi: 10.3390/ijms232314658

 

  1. Patwekar M, Sehar N, Patwekar F, et al. Novel immune checkpoint targets: A promising therapy for cancer treatments. Int Immunopharmacol. 2024;126:111186. doi: 10.1016/j.intimp.2023.111186

 

  1. Shabani L, Kasaee SR, Chelliapan S, et al. An investigation into green synthesis of Ru template gold nanoparticles and the in vitro photothermal effect on the MCF-7 human breast cancer cell line. Appl Phys A. 2023;129(8):564. doi: 10.1007/s00339-023-06832-6

 

  1. Lopes J, Lopes D, Pereira‐Silva M, et.al Macrophage cell membrane‐cloaked nanoplatforms for biomedical applications. Small Methods. 2022;6(8):2200289. doi: 10.1002/smtd.202200289

 

  1. Sukardima, Ervina M. The recent use of Swietenia mahagoni (L.) Jacq. as antidiabetes type 2 phytomedicine: A systematic review. Heliyon. 2020;6(3):e03536. doi: 10.1016/j.heliyon.2020.e03536

 

  1. Radheshyam JB, Tripathi S, Singh R, et al. Recent studies on phytomedicine used in diabetic disorder. J Pharm Pharmacol. 2022;10:159-172. doi: 10.17265/2328-2150/2022.05.002

 

  1. Deng W, Wang H, Wu B, Zhang X. Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharm Sin B. 2019;9(1):74-86. doi: 10.1016/j.apsb.2018.09.009

 

  1. Govindan N, Vairaprakasam K, Chinnasamy C, Sivalingam T, Mohammed MK. Green synthesis of Zn-doped Catharanthus roseus nanoparticles for enhanced anti-diabetic activity. Mater Adv. 2020;1(9):3460-3465. doi: 10.1039/D0MA00698J

 

  1. Nagaraja S, Ahmed SS, Bharathi DR, et al. Green synthesis and characterization of silver nanoparticles of Psidium guajava leaf extract and evaluation for its antidiabetic activity. Molecules. 2022;27(14):4336. doi: 10.3390/molecules27144336

 

  1. Jobie FN, Ranjbar M, Moghaddam AH, Kiani M. Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. Adv Powder Technol. 2021;32(6):2043-2052. doi: 10.1016/j.apt.2021.04.014

 

  1. Hamza RZ, Al-Salmi FA, El-Shenawy NS. Zinc oxide nanoparticles with green tea extract complex in the pancreas of rats against monosodium glutamate toxicity. J Basic Clin Physiol Pharmacol. 2020;32(5):979-985. doi: 10.1515/jbcpp-2020-0164

 

  1. Sidorowicz A, Fais G, Casula M, et al. Nanoparticles from microalgae and their biomedical applications. Mar Drugs. 2023;21(6):352. doi: 10.3390/md21060352

 

  1. Yosri N, Khalifa SA, Guo Z, Xu B, Zou X, El-Seedi HR. Marine organisms: Pioneer natural sources of polysaccharides/ proteins for green synthesis of nanoparticles and their potential applications. Int J Biol Macromol. 2021;193:1767-1798. doi: 10.1016/j.ijbiomac.2021.10.229

 

  1. Venkatesan J, Anil S, Kim SK, Shim MS. Seaweed polysaccharide-based nanoparticles: Preparation and applications for drug delivery. Polymers. 2016;8(2):30. doi: 10.3390/polym8020030

 

  1. Rai PK, Kumar V, Lee S, et al. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ Int. 2018;119:1-9. doi: 10.1016/j.envint.2018.06.012

 

  1. Sharma G, Pandey S, Ghatak S, Watal G, Rai PK. Potential of spectroscopic techniques in the characterization of “green nanomaterials”. In: Nanomaterials in Plants, Algae, and Microorganisms. United States: Academic Press; 2018. p. 59-77. doi: 10.1016/B978-0-12-811487-2.00003-7

 

  1. Khandker SS, Shakil MS, Hossen MS. Gold nanoparticles; potential nanotheranostic agent in breast cancer: A comprehensive review with systematic search strategy. Curr Drug Metab. 2020;21(8):579-598. doi: 10.1016/B978-0-12-811487-2.00003-7

 

  1. Mei W, Wu Q. Applications of metal nanoparticles in medicine/metal nanoparticles as anticancer agents. In: Metal Nanoparticles: Synthesis and Applications in Pharmaceutical Sciences. Germany: WILEY-VCH Verlag GmbH & Co.; 2018. p. 169-90.

 

  1. Cheeseman S, Christofferson AJ, Kariuki R, et al. Antimicrobial metal nanomaterials: From passive to stimuli‐activated applications. Adv Sci. 2020;7(10):1902913. doi: 10.1002/advs.201902913

 

  1. Dey AD, Bigham A, Esmaeili Y, et al. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin Cancer Biol. 2022;86:396-419. doi: 10.1016/j.semcancer.2022.06.003

 

  1. Ragni R, Cicco S, Vona D, Leone G, Farinola GM. Biosilica from diatoms microalgae: Smart materials from bio-medicine to photonics. J Mater Res. 2017;32(2):279-291. doi: 10.1557/jmr.2016.459

 

  1. Sprynskyy M, Pomastowski P, Hornowska M, Król A, Rafińska K, Buszewski B. Naturally organic functionalized 3D biosilica from diatom microalgae. Mater Des. 2017; 132:22-29. doi: 10.1016/j.matdes.2017.06.044

 

  1. Rea I, De Stefano L. Special issue on new frontiers in diatom nanotechnology. Appl Sci. 2022;12(20):10332. doi: 10.3390/app122010332

 

  1. Bayu A, Yoshida A, Guan G. Hierarchical nanoporous silica-based materials from marine diatoms. In: Handbook of Greener Synthesis of Nanomaterials and Compounds. Amsterdam: Elsevier; 2021. p. 307-328. doi: 10.1016/B978-0-12-822446-5.00014-9

 

  1. Ali DM, Divya C, Gunasekaran M, Thajuddin N. Biosynthesis and characterization of silicon-germanium oxide nanocomposite by diatom. Dig J Nanomater Biostruct. 2011;6:117-120.

 

  1. Yaseen M, Humayun M, Khan A, et al. Preparation, functionalization, modification, and applications of nanostructured gold: A critical review. Energies. 2021; 14(5):1278. doi: 10.3390/en14051278

 

  1. Singh S, Singh P, Mishra N, et al. Advanced drug delivery systems in breast cancer. In: Advanced Drug Delivery Systems in the Management of Cancer. United States: Academic Press; 2021. p. 107-126. doi: 10.1016/B978-0-323-85503-7.00028-6

 

  1. Hemdan BA, Hassan GK, Abou Hammad AB, El Nahrawy AM. Industrial Perspective of Microbial Application of Nanoparticles Synthesis. Microbial Nanotechnology: Green Synthesis and Applications. Berlin: Springer; 2021. p. 155-190. doi: 10.1007/978-981-16-1923-6_9

 

  1. Zhang F, Li Z, Duan Y, et al. Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule. Sci Robot. 2022;7(70):eabo4160. doi: 10.1126/scirobotics.abo4160

 

  1. Jo MJ, Bae SJ, Son BW, Kim CY, Kim GD. 3, 4-dihydroxyphenyl acetic acid and (+)-epoxydon isolated from marine algae-derived microorganisms induce down regulation of epidermal growth factor activated mitogenic signaling cascade in Hela cells. Cancer Cell Int. 2013;13(1):1-9. doi: 10.1186/1475-2867-13-49

 

  1. Shera SS, Banik RM. Algal nanoparticles: Synthesis and characterization. In: Bioprospecting Algae for Nanosized Materials. Cham: Springer International Publishing; 2022. p. 25-69. doi: 10.1007/978-3-030-81557-8_2

 

  1. Tsolakis N, Goldsmith AT, Aivazidou E, Kumar M. Microalgae-based circular supply chain configurations using Industry 4.0 technologies for pharmaceuticals. J Clean Prod. 2023;395:136397. doi: 10.1016/j.jclepro.2023.136397

 

  1. Srivastava N, Srivastava M, Singh R, et al. Co-fermentation of residual algal biomass and glucose under the influence of Fe3O4 nanoparticles to enhance biohydrogen production under dark mode. Bioresour Technol. 2021;342:126034. doi: 10.1016/j.biortech.2021.126034

 

  1. Mariano S, Panzarini E, Inverno MD, Voulvoulis N, Dini L. Toxicity, bioaccumulation and biotransformation of glucose-capped silver nanoparticles in green microalgae Chlorella vulgaris. Nanomaterials. 2020;10(7):1377. doi: 10.3390/nano10071377

 

  1. Sahayaraj K, Rajesh S, Rathi JA, Kumar V. Green preparation of seaweed‐based silver nano‐liquid for cotton pathogenic fungi management. IET Nanobiotechnol. 2019;13(2):219-225. doi: 10.1049/iet-nbt.2018.5007

 

  1. Neumann U, Derwenskus F, Flaiz Flister V, Schmid-Staiger U, Hirth T, Bischoff SC. Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants. 2019;8(6):183. doi: 10.3390/antiox8060183

 

  1. Scholtz J, Van der Colff J, Steenekamp J, Stieger N, Hamman J. More good news about polymeric plant-and algae-derived biomaterials in drug delivery systems. Curr Drug Targets. 2014;15(5):486-501. doi: 10.2174/13894501113149990175

 

  1. Ho TC, Chang CC, Chan HP, et al. Hydrogels: Properties and applications in biomedicine. Molecules. 2022;27(9):2902. doi: 10.3390/molecules27092902

 

  1. Thomas D, O’Brien T, Pandit A. Toward customized extracellular niche engineering: progress in cell‐entrapment technologies. Adv Mater. 2018;30(1):1703948. doi: 10.1002/adma.201703948

 

  1. Pangestuti R, Kim SK. Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods. 2011;3(4):255-266. doi: 10.1016/j.jff.2011.07.001

 

  1. Kim SK, Pangestuti R. Biological activities and potential health benefits of fucoxanthin derived from marine brown algae. Adv Food Nutr Res. 2011;64:111-128. doi: 10.1016/B978-0-12-387669-0.00009-0

 

  1. Menaa F, Wijesinghe U, Thiripuranathar G, et al. Marine algae-derived bioactive compounds: A new wave of nanodrugs? Mar Drugs. 2021;19(9):484. doi: 10.3390/md19090484

 

  1. Pereira L, Valado A. Algae-derived natural products in diabetes and its complications-current advances and future prospects. Life. 2023;13(9):1831. doi: 10.3390/life13091831

 

  1. Jain C, Ansarullah, Bilekova S, Lickert H. Targeting pancreatic β cells for diabetes treatment. Nat Metab. 2022;4(9):1097-1108. doi: 10.1038/s42255-022-00618-5

 

  1. Kaneto H, Kajimoto Y, Miyagawa JI, et al. Beneficial effects of antioxidants in diabetes: Possible protection of pancreatic beta-cells against glucose toxicity. Diabetes. 1999;48(12):2398-2406. doi: 10.2337/diabetes.48.12.2398

 

  1. Quazi A, Patwekar M, Patwekar F, et al. In vitro alpha-amylase enzyme assay of hydroalcoholic polyherbal extract: Proof of concept for the development of polyherbal teabag formulation for the treatment of diabetes. Evid Based Complement Alternat Med. 2022;2022:1577957. doi: 10.1155/2022/1577957

 

  1. Patwekar M, Patwekar F, Mezni A, et al. Assessment of antioxidative and alpha-amylase potential of polyherbal extract. Evid Based Complement Alternat Med. 2022;2022:7153526. doi: 10.1155/2022/7153526

 

  1. Kaur A, Kaur G, Rai MP. Algae cultivation for biomedical applications: Current scenario and future direction. In: Algal Biotechnology. Netherlands: Elsevier; 2022. p. 283-303. doi: 10.1016/B978-0-323-90476-6.00009-1

 

  1. Lobine D, Rengasamy KR, Mahomoodally MF. Functional foods and bioactive ingredients harnessed from the ocean: Current status and future perspectives. Crit Rev Food Sci Nutr. 2022;62(21):5794-5823. doi: 10.1080/10408398.2021.1893643

 

  1. Shinde MU, Patwekar M, Patwekar F, et al. Nanomaterials: A potential hope for life sciences from bench to bedside. J Nanomater. 2022;2022:1-3. doi: 10.1155/2022/5968131

 

  1. Kalasariya HS, Patel AK, Suthar RJ, Pereira L. Exploring the Skin Cosmetic Benefits of Phenolic Compounds and Pigments from Marine Macroalgae: A Novel Green Approach for Sustainable Beauty Solutions. Available from: https://www. preprints.org/manuscript/202307.0739 [Last accessed on 2025 Jan 21].

 

  1. Cotas J, Pacheco D, Gonçalves AM, Silva P, Carvalho LG, Pereira L. Seaweeds’ nutraceutical and biomedical potential in cancer therapy: A concise review. J Cancer Metastasis Treat. 2021;7:13. doi: 10.20517/2394-4722.2020.134

 

  1. Patwekar M, Patwekar F, Medikeri A, et al. Mechanistic insights on anticancer drugs with specific biological targets and signalling pathways. Explor Med. 2023;4(5):637-663. doi: 10.37349/emed.2023.00166

 

  1. Zia KM, Zuber M, Ali M, editors. Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Materials Science. Amsterdam: Elsevier; 2017.

 

  1. Singh PK, Fillat MF, Kumar A, editors. Cyanobacterial Lifestyle and its Applications in Biotechnology. United States: Academic Press; 2021.

 

  1. Siddiqui SA, Pahmeyer MJ, Mehdizadeh M, Nagdalian AA, Oboturova NP, Taha A. Consumer behavior and industry implications. In: The Age of Clean Label Foods. Cham: Springer International Publishing; 2022. p. 209-247. doi: 10.1007/978-3-030-96698-0_7

 

  1. Ahmed SR, Cardoso AG, Kumar S, Ortega GA, Srinivasan S, Rajabzadeh AR. 7 Nanozymes in Biosensing. Nanozymes: Advances and Applications. Boca Raton: CRC Press; 2021. p. 115.

 

  1. Madamsetty VS, Mohammadinejad R, Uzieliene I, et al. Dexamethasone: Insights into pharmacological aspects, therapeutic mechanisms, and delivery systems. ACS Biomater Sci Eng. 2022;8(5):1763-1790.doi: 10.1021/acsbiomaterials.2c00026

 

  1. Samavati SS, Kashanian S, Derakhshankhah H, Rabiei M. Nanoparticle application in diabetes drug delivery. J Nanoparticle Res. 2022;24(9):178. doi: 10.1007/s11051-022-05547-8

 

  1. Mohammad G, Mishra VK, Pandey HP. Antioxidant properties of some nanoparticle may enhance wound healing in T2DM patient. Digest J Nanomater Biostruct. 2008;3(4):159-162.

 

  1. Fu LH, Qi C, Lin J, Huang P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem Soc Rev. 2018;47(17):6454-6472. doi: 10.1039/C7CS00891K

 

  1. Li C, Wang J, Wang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9(6):1145-1162. doi: 10.1016/j.apsb.2019.08.003

 

  1. Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnol. 2018;16(1):1-33. doi: 10.1186/s12951-018-0392-8

 

  1. Li Z, Wang Y, Liu J, Rawding P, Bu J, Hong S, Hu Q. Chemically and biologically engineered bacteria‐based delivery systems for emerging diagnosis and advanced therapy. Adv Mater. 2021;33(38):2102580. doi: 10.1002/adma.202102580

 

  1. Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev. 2014;114(12):6130-6178. doi: 10.1021/cr200359p

 

  1. Wu F, Liu J. Decorated bacteria and the application in drug delivery. Adv Drug Deliv Rev. 2022;2022:114443. doi: 10.1016/j.addr.2022.114443

 

  1. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62(11):1064-1079. doi: 10.1016/j.addr.2010.07.009

 

  1. Luther DC, Huang R, Jeon T, et al. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev. 2020;156:188-213. doi: 10.1016/j.addr.2020.06.020

 

  1. Thakuria A, Kataria B, Gupta D. Nanoparticle-based methodologies for targeted drug delivery-an insight. J Nanoparticle Res. 2021;23:1-30. doi: 10.1007/s11051-021-05190-9
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing