Comparative evaluation of the therapeutic effects of Schisandra chinensis and Schisandra sphenanthera on vascular cognitive impairment and their drug-like compounds

The fruits of Schisandra chinensis (SCF) and Schisandra sphenanthera (SSF) are traditional Chinese herbal medicines classified as medicinal and food homologous materials, known for their significant neuroprotective efficacy. However, the differences in their therapeutic effects and active components for the treatment of vascular cognitive impairment (VCI) remain unclear. This study aimed to elucidate the neuroprotective activities of SCF and SSF on VCI and investigate the compositional disparities between the two. The lipopolysaccharide-induced and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced BV2 cell models were used to evaluate the protective effects of SCF and SSF against neuroinflammation and mitochondrial damage, respectively. The therapeutic effects were further validated using a bilateral common carotid artery stenosis mouse model. Compositional differences were analyzed using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), and drug-like properties of their constituents were assessed. In vitro experiments showed that SCF and SSF at concentrations of 6.4, 16, and 40 μg/mL reduced nitric oxide, tumor necrosis factor-alpha, and interleukin-6 levels in a dose-dependent manner. Notably, at the same concentrations, SCF significantly mitigated OGD/R-induced mitochondrial damage, whereas SSF showed no significant effect. Compared with SSF, SCF exhibited stronger anti-neuroinflammatory and antioxidant properties. In vivo experiments further demonstrated that SCF, administered at 400 mg/kg, was more effective in improving learning ability, spatial learning and memory, cerebral blood flow, and nerve fiber repair than SSF. Moreover, 71 and 64 compounds were identified in SCF and SSF, respectively, using UPLC-Q-TOF/MS. Drug-like property analysis of these compounds revealed that the superior therapeutic effects of SCF may be attributed to differences in biphenylcyclooctene-type lignans. Our data support the conclusion that SCF possesses significantly superior neuroprotective activity compared to SSF, providing a theoretical basis for its clinical application in VCI.
- Wang Z, Han B, Qi J, Cao X, Gu H, Sun J. Chuanzhitongluo capsule improves cognitive impairment in mice with chronic cerebral poperfusion via the cholinergic anti-inflammatory pathway. Exp Gerontol. 2024;189:112407. doi: 10.1016/j.exger.2024.112407
- Lou T, Wu H, Feng M, et al. Integration of metabolomics and transcriptomics reveals that da chuanxiong formula improves vascular cognitive impairment via Acsl4/Gpx4 mediated ferroptosis. J Ethnopharmacol. 2024;325:117868. doi: 10.1016/j.jep.2024.117868
- Hao S, He Q, Yuan Y, Mu Q. The protective effects of Irbesartan in cognitive impairment in hypertension. Aging (Albany NY). 2024;16(6):5065-5076. doi: 10.18632/aging.205589
- Li S, Xiao Z. Recent research progress on the use of transcranial magnetic stimulation in the treatment of vascular cognitive impairment. Neuropsychiatr Dis Treat. 2024;20:1235-1246. doi: 10.2147/ndt.S467357
- Lu H, Zhang J, Liang Y, et al. Network topology and machine learning analyses reveal microstructural white matter changes underlying Chinese medicine Dengzhan Shengmai treatment on patients with vascular cognitive impairment. Pharmacol Res. 2020;156:104773. doi: 10.1016/j.phrs.2020.104773
- Lv S, Wang Q, Zhang X, et al. Mechanisms of Multi-Omics and network pharmacology to explain traditional Chinese medicine for vascular cognitive impairment: A narrative review. Phytomedicine. 2024;123:155231. doi: 10.1016/j.phymed.2023.155231
- Hu WH, Mak SH, Zheng ZY, et al. Shexiang Baoxin Pill, a traditional chinese herbal formula, rescues the cognitive impairments in APP/PS1 transgenic mice. Front Pharmacol. 2020;11:1045. doi: 10.3389/fphar.2020.01045
- Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. An overview of neuroprotective and cognitive enhancement properties of Lignans from Schisandra chinensis. Biomed Pharmacother. 2018;97:958-968. doi: 10.1016/j.biopha.2017.10.145
- Zhang M, Xu L, Yang H. Schisandra chinensis fructus and its active ingredients as promising resources for the treatment of neurological diseases. Int J Mol Sci. 2018;19(7):1970. doi: 10.3390/ijms19071970
- Rybnikár M, Malaník M, Smejkal K, et al. Dibenzocyclooctadiene Lignans from Schisandra chinensis with anti-inflammatory effects. Int J Mol Sci. 2024;25(6):3465. doi: 10.3390/ijms25063465
- Li B, Xiao Q, Zhang JN, et al. Exploring the active compounds and potential mechanism of the anti-nonalcoholic fatty liver disease activity of the fraction from Schisandra chinensis fruit extract based on multi-technology integrated network pharmacology. J Ethnopharmacol. 2023;301:115769. doi: 10.1016/j.jep.2022.115769
- Huang S, Zhang D, Li Y, et al. Schisandra sphenanthera: A comprehensive review of its botany, phytochemistry, pharmacology, and clinical applications. Am J Chin Med. 2021;49(7):1577-1622. doi: 10.1142/s0192415x21500749
- Yang K, Qiu J, Huang Z, et al. A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, and pharmacokinetics of Schisandra chinensis (Turcz.) Baill. And Schisandra sphenanthera Rehd. et Wils. J Ethnopharmacol. 2022;284:114759. doi: 10.1016/j.jep.2021.114759
- Jafernik K, Motyka S, Calina D, Sharifi-Rad J, Szopa A. Comprehensive review of dibenzocyclooctadiene lignans from the schisandra genus: Anticancer potential, mechanistic insights and future prospects in oncology. Chin Med. 2024;19(1):17. doi: 10.1186/s13020-024-00879-0
- Liu SQ, Yang YP, Hussain N, et al. Dibenzocyclooctadiene Lignans from the Family Schisandraceae: A review of phytochemistry, structure-activity relationship, and hepatoprotective effects. Pharmacol Res. 2023;195:106872. doi: 10.1016/j.phrs.2023.106872
- Kim DH, Hung TM, Bae KH, et al. Gomisin a improves scopolamine-induced memory impairment in mice. Eur J Pharmacol. 2006;542(1):129-135. doi: 10.1016/j.ejphar.2006.06.015
- Li XL, Zhao X, Xu X, et al. Schisantherin a recovers Aβ-induced neurodegeneration with cognitive decline in mice. Physiol Behav. 2014;132:10-16. doi: 10.1016/j.physbeh.2014.04.046
- Xu MJ, Yan TX, Fan KY, et al. Polysaccharide of Schisandra chinensis fructus ameliorates cognitive decline in a mouse model of Alzheimer’s disease. J Ethnopharmacolo. 2019;237:354-365. doi: 10.1016/j.jep.2019.02.046
- Hu D, Cao Y, He R, et al. Schizandrin, an antioxidant Lignan from Schisandra chinensis, ameliorates Aβ1-42-induced memory impairment in mice. Oxid Med Cell Longev. 2012;2012:721721. doi: 10.1155/2012/721721
- Zhao X, Liu CM, Xu MJ, Li XL, Bi KS, Jia Y. Total Lignans of Schisandra chinensis Ameliorates Aβ(1-42)-induced neurodegeneration with cognitive impairment in mice and primary mouse neuronal cells. PLoS One. 2016;11(4):e0152772. doi: 10.1371/journal.pone.0152772
- Shibata M, Ohtani R, Ihara M, Tomimoto H. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke. 2004;35(11):2598-2603. doi: 10.1161/01.Str.0000143725.19053.60
- Zhang YL, Chopp M, Meng YL, et al. Effect of exosomes derived from multipluripotent mesenchyrnal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856-867. doi: 10.3171/2014.11.Jns14770
- Wan YS, You Y, Ding QY, et al. Triptolide protects against white matter injury induced by chronic cerebral hypoperfusion in mice. Acta Pharmacol Sin. 2022;43(1):15-25. doi: 10.1038/s41401-021-00637-0
- Chen S, Li Q, Shi H, Li F, Duan Y, Guo, Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed Pharmacother. 2024;178:117084. doi: 10.1016/j.biopha.2024.117084
- Ma P, Zhang R, Xu L, Liu H, Xiao P. The neuroprotective effects of coreopsis tinctoria and its mechanism: interpretation of network pharmacological and experimental data. Front Pharmacol. 2021;12:791288. doi: 10.3389/fphar.2021.791288
- Mendie LE, Hemalatha S. Bioactive compounds from nyctanthes arbor tristis linn as potential inhibitors of Janus Kinases (Jaks) involved in rheumatoid arthritis. Appl Biochem Biotechnol. 2023;195(1):314-330. doi: 10.1007/s12010-022-04121-1
- Yao JY, Yang YL, Chen WJ, Fan HY. Exploring the therapeutic potential of Qi Teng Mai Ning recipe in ischemic stroke and vascular cognitive impairment. Trad Med Res. 2024;9:57.
- Fu Z, Wang X, Fan Y, et al. Brozopine ameliorates cognitive impairment via upregulating Nrf2, antioxidation and anti-inflammation activities. Front Pharmacol. 2024;15:1428455. doi: 10.3389/fphar.2024.1428455
- Cai H, Cai T, Zheng H, et al. The neuroprotective effects of danggui-shaoyao san on vascular cognitive impairment: Involvement of the role of the low-density lipoprotein receptor-related protein. Rejuvenation Res. 2020;23:420-433. doi: 10.1089/rej.2019.2182
- Zheng V, Wong G. Neuroinflammation responses after subarachnoid hemorrhage: A review. J Clin Neurosci. 2017;42:7-11 doi: 10.1016/j.jocn.2017.02.001
- Kim T, Vemuganti R. Mechanisms of Parkinson’s disease-related proteins in mediating secondary brain damage after cerebral ischemia. J Cereb Blood Flow Metab. 2017;37(6):1910-1926. doi: 10.1177/0271678x17694186
- Ziemka-Nalecz M, Jaworska J, Zalewska T. Insights into the neuroinflammatory responses after neonatal hypoxia-ischemia. J Neuropathol Exp Neurol. 2017;76(8):644-654. doi: 10.1093/jnen/nlx046
- Xiao ZH, Xiao W, Li GL. Research progress on the pharmacological action of Schisantherin A. Evid Based Complement Alternat Med. 2022;2022:6420865. doi: 10.1155/2022/6420865
- Jung CH, Hong MH, Kim JH, et al. Protective effect of a Phenolie-rich fraction from Schisandra chinensis against H2O2-induced apoptosis in SH-SY5Y cells. J Pharmacy Pharmacol. 2007;59(3):455-462. doi: 10.1211/jpp.59.3.0016
- Khan MB, Hoda MN, Vaibhav K, et al. Remote ischemic postconditioning: Harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl Stroke Res. 2015;6(1):69-77. doi: 10.1007/s12975-014-0374-6
- Hattori Y, Enmi JI, Iguchi S, et al. Substantial reduction of parenchymal cerebral blood flow in mice with bilateral common carotid artery stenosis. Sci Rep. 2016;6(1):32179. doi: 10.1038/srep32179
- Wang JY, Zhang GL, Yang YF, et al. Schisandra chinensis Lignans exert antidepressant effects by promoting BV2 microglia polarization toward the M2 phenotype through the activation of the cannabinoid receptor type-2-signal transducer and activator of transcription 6 pathway. J Agric Food Chem. 2022;70(44):14157-14169. doi: 10.1021/acs.jafc.2c04565
- Song FJ, Zeng KW, Liao LX, Yu Q, Tu PF, Wang XM. Schizandrin A inhibits microglia-mediated neuroninflammation through inhibiting TRAF6-NF-κB and JAK2-STAT3 signaling pathways. PLoS One. 2016;11(2):e0149991. doi: 10.1371/journal.pone.0149991
- Zeng KW, Zhang T, Fu H, Liu GX, Wang XM. Schisandrin B exerts anti-neuroinflammatory activity by inhibiting the toll-like receptor 4-dependent MyD88/IKK/NF-κB signaling pathway in lipopolysaccharide-induced microglia. Eur J Pharmacol. 2012;692(1-3):29-37. doi: 10.1016/j.ejphar.2012.05.030
- Chen S, Ding YH, Shi SS, Tu XK. Schisandrin B inhibits NLRP3 inflammasome pathway and attenuates early brain injury in rats of subarachnoid hemorrhage. Chin J Integr Med. 2022;28(7):594-602. doi: 10.1007/s11655-021-3348-z
- Qun E, Tang M, Zhang X, et al. Protection of seven dibenzocyclooctadiene lignans from schisandra chinensis against serum and glucose deprivation injury in SH-SY5Y cells. Cell Biol Int. 2015;39(12):1418-1424. doi: 10.1002/cbin.10537