Optimization of gelatin-based cell carriers for tooth-germ organoids
Tooth loss is a widespread condition that significantly impacts quality of life, and effective functional treatments remain limited. Research in regenerative technologies is advancing toward solutions that are functional, customizable, and biologically integrative. Tooth-germ organoids – three-dimensional constructs cultured in vitro – hold promise for developing functional dental tissues. Hydrogel microparticles, selected for their structural support, resemblance to the natural extracellular matrix, and moldability, serve as carriers and scaffolds for organoid culture. Methacrylate gelatin microspheres (GelMA MS) have previously been identified as suitable scaffolds for dental organoids, as they support the composition of multiple cell types necessary for forming functional dental tissue. However, producing GelMA MS at a scale sufficient for tooth-organoid research is time-consuming and suffers from limited reproducibility. This study aims to develop alternative gelatin-based carriers with simpler, more reproducible fabrication processes that provide equal or enhanced support for tooth-germ organoid formation. Two alternative carriers – gelatin microspheres (Gel MS) and micronized photo-crosslinked GelMA microparticles (GelMA MP) – were evaluated in comparison to GelMA MS and GelMA hydrogel. Both Gel MS and GelMA MP were found to be more cost-effective, easier to produce, and more reproducible than GelMA MS. To assess their effectiveness as cell carriers, the growth and osteogenic differentiation of human dental pulp stem cells (hDPSCs) were directly compared across all carriers. Results showed that hDPSCs demonstrated significant proliferation and formed organoid-like clusters on both Gel MS and GelMA MP, similar to GelMA MS. Cell viability was higher on GelMA MS, GelMA MP, and Gel MS than in GelMA hydrogel, a commonly used cell carrier. Among the four cell carriers, Gel MS provided the best support for the growth and osteogenic differentiation of hDPSCs. This study identifies viable alternatives to GelMA MS and highlights the superior performance of Gel MS as a cell carrier, advancing tooth-germ organoid research and developing potential therapeutic applications.
- Zhang W, Yelick PC. Tooth repair and regeneration: Potential of dental stem cells. Trends Mol Med. 2021;27(5):501-511. doi: 10.1016/j.molmed.2021.02.005
- Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625-13630. doi: 10.1073/pnas.240309797
- Zhang W, Saxena S, Fakhrzadeh A, et al. Use of human dental pulp and endothelial cell seeded tyrosine-derived polycarbonate scaffolds for robust in vivo alveolar jaw bone regeneration. Front Bioeng Biotechnol. 2020;8:796. doi: 10.3389/fbioe.2020.00796
- Zhang W, Abukawa H, Troulis MJ, Kaban LB, Vacanti JP, Yelick PC. Tissue engineered hybrid tooth-bone constructs. Methods. 2009;47(2):122-128. doi: 10.1016/j.ymeth.2008.09.004
- Zheng L, Liu Y, Jiang L, et al. Injectable decellularized dental pulp matrix-functionalized hydrogel microspheres for endodontic regeneration. Acta Biomater. 2023;156:37-48. doi: 10.1016/j.actbio.2022.11.047
- Farshbaf A, Mottaghi M, Mohammadi M, et al. Regenerative application of oral and maxillofacial 3D organoids based on dental pulp stem cell. Tissue Cell. 2024;89:102451. doi: 10.1016/j.tice.2024.102451
- Kilic Bektas C, Zhang W, Mao Y, Wu X, Kohn J, Yelick PC. Self-assembled hydrogel microparticle-based tooth-germ organoids. Bioengineering (Basel). 2022;9(5):215. doi: 10.3390/bioengineering9050215
- Sloan AJ, Smith AJ. Stem cells and the dental pulp: Potential roles in dentine regeneration and repair. Oral Dis. 2007;13(2):151-157. doi: 10.1111/j.1601-0825.2006.01346.x
- Lehmann R, Lee CM, Shugart EC, et al. Human organoids: A new dimension in cell biology. Mol Biol Cell. 2019;30(10):1129-1137. doi: 10.1091/mbc.E19-03-0135
- Misteli T. The concept of self-organization in cellular architecture. J Cell Biol. 2001;155(2):181-185. doi: 10.1083/jcb.200108110
- Kim J, Koo BK, Knoblich JA. Human organoids: Model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571-584. doi: 10.1038/s41580-020-0259-3
- Cacciamali A, Villa R, Dotti S. 3D cell cultures: Evolution of an ancient tool for new applications. Front Physiol. 2022;13:836480. doi: 10.3389/fphys.2022.836480
- Revete A, Aparicio A, Cisterna BA, et al. Advancements in the use of hydrogels for regenerative medicine: Properties and biomedical applications. Int J Biomater. 2022;2022:3606765. doi: 10.1155/2022/3606765
- Bektas C, Mao Y. Hydrogel microparticles for bone regeneration. Gels. 2023;10(1):28. doi: 10.3390/gels10010028
- Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res. 2015;6(2):105-121. doi: 10.1016/j.jare.2013.07.006
- Kilic Bektas C, Hasirci V. Mimicking corneal stroma using keratocyte-loaded photopolymerizable methacrylated gelatin hydrogels. J Tissue Eng Regen Med. 2018;12(4):e1899-e1910. doi: 10.1002/term.2621
- Carpentier N, Ye SC, Delemarre MD, et al. Gelatin-based hybrid hydrogels as matrices for organoid culture. Biomacromolecules. 2024;25(2):590-604. doi: 10.1021/acs.biomac.2c01496
- Ozhava D, Bektas C, Lee K, Jackson A, Mao Y. Human mesenchymal stem cells on size-sorted gelatin hydrogel microparticles show enhanced in vitro wound healing activities. Gels. 2024;10(2):97. doi: 10.3390/gels10020097
- Kong YQ, Li D, Wang LJ, Adhikari B. Preparation of gelatin microparticles using water-in-water (W/W) emulsification technique. J Food Eng. 2011;103(1):9-13. doi: 10.1016/j.jfoodeng.2010.09.012
- Zhu M, Wang Y, Ferracci G, Zheng J, Cho NJ, Lee BH. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci Rep. 2019;9(1):6863. doi: 10.1038/s41598-019-42186-x
- Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31(21):5536-5544. doi: 10.1016/j.biomaterials.2010.03.064
- Bupphathong S, Quiroz C, Huang W, Chung PF, Tao HY, Lin CH. Gelatin methacrylate hydrogel for tissue engineering applications-a review on material modifications. Pharmaceuticals (Basel). 2022;15(2):171. doi: 10.3390/ph15020171
- Martinez-Ibanez M, Murthy NS, Mao Y, et al. Enhancement of plasma protein adsorption and osteogenesis of hMSCs by functionalized siloxane coatings for titanium implants. J Biomed Mater Res B Appl Biomater. 2018;106(3):1138-1147. doi: 10.1002/jbm.b.33889
- Ma H, Peng Y, Zhang S, Zhang Y, Min P. Effects and progress of photo-crosslinking hydrogels in wound healing improvement. Gels. 2022;8(10):609. doi: 10.3390/gels8100609
- Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020;5(1):20-43. doi: 10.1038/s41578-019-0148-6
- Contessi Negrini N, Lipreri MV, Tanzi MC, Fare S. In vitro cell delivery by gelatin microspheres prepared in water-in-oil emulsion. J Mater Sci Mater Med. 2020;31(3):26. doi: 10.1007/s10856-020-6363-2
- Tang XY, Wang ZM, Meng HC, et al. Robust W/O/W emulsion stabilized by genipin-cross-linked sugar beet pectin-bovine serum albumin nanoparticles: Co-encapsulation of betanin and curcumin. J Agric Food Chem. 2021;69(4):1318-1328. doi: 10.1021/acs.jafc.0c05212
- Bonnier F, Keating ME, Wrobel TP, et al. Cell viability assessment using the Alamar blue assay: A comparison of 2D and 3D cell culture models. Toxicol In Vitro. 2015;29(1):124-131. doi: 10.1016/j.tiv.2014.09.014
- Zhou H, Li X, Yin Y, et al. The proangiogenic effects of extracellular vesicles secreted by dental pulp stem cells derived from periodontally compromised teeth. Stem Cell Res Ther. 2020;11(1):110. doi: 10.1186/s13287-020-01614-w
- Schultz KM, Kyburz KA, Anseth KS. Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proc Natl Acad Sci U S A. 2015;112(29):E3757-E3764. doi: 10.1073/pnas.1511304112
- Xie W, Wei X, Kang H, et al. Static and dynamic: Evolving biomaterial mechanical properties to control cellular mechanotransduction. Adv Sci (Weinh). 2023;10(9):e2204594. doi: 10.1002/advs.202204594
- Kim TK, Yoon JJ, Lee DS, Park TG. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials. 2006;27(2):152-159. doi: 10.1016/j.biomaterials.2005.05.081
- Wang YJ, Shi XT, Ren L, Wang CM, Wang DA. Porous poly (lactic-co-glycolide) microsphere sintered scaffolds for tissue repair applications. Mat Sci Eng C. 2009;29(8):2502-2507. doi: 10.1016/j.msec.2009.07.018
- Amoyav B, Benny O. Microfluidic based fabrication and characterization of highly porous polymeric microspheres. Polymers (Basel). 2019;11(3):419. doi: 10.3390/polym11030419
- Awais S, Balouch SS, Riaz N, Choudhery MS. Human dental pulp stem cells exhibit osteogenic differentiation potential. Open Life Sci. 2020;15:229-236. doi: 10.1515/biol-2020-0023
- Son YB, Kang YH, Lee HJ, et al. Evaluation of odonto/ osteogenic differentiation potential from different regions derived dental tissue stem cells and effect of 17beta-estradiol on efficiency. BMC Oral Health. 2021;21(1):15. doi: 10.1186/s12903-020-01366-2
- Noda S, Kawashima N, Yamamoto M, et al. Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. Sci Rep. 2019;9(1):5430. doi: 10.1038/s41598-019-41741-w
- Spagnuolo G, De Luca I, Iaculli F, et al. Regeneration of dentin-pulp complex: Effect of calcium-based materials on hDPSCs differentiation and gene expression. Dent Mater. 2023;39(5):485-491. doi: 10.1016/j.dental.2023.03.017
- Werner M, Blanquer SB, Haimi SP, et al. Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv Sci (Weinh). 2017;4(2):1600347. doi: 10.1002/advs.201600347
- Xu JJ, Sun MY, Tan Y, et al. Effect of matrix stiffness on the proliferation and differentiation of umbilical cord mesenchymal stem cells. Differentiation. 2017;96:30-39. doi: 10.1016/j.diff.2017.07.001
- Na J, Yang ZJ, Shi QS, et al. Extracellular matrix stiffness as an energy metabolism regulator drives osteogenic differentiation in mesenchymal stem cells. Bioact Mater. 2024;35:549-563. doi: 10.1016/j.bioactmat.2024.02.003
- Sun MY, Chi GF, Li PD, et al. Effects of matrix stiffness on the morphology, adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells. Int J Med Sci. 2018;15(3):257-268. doi: 10.7150/ijms.21620
- Walejewska E, Melchels FPW, Paradiso A, et al. Tuning physical properties of GelMA hydrogels through microarchitecture for engineering osteoid tissue. Biomacromolecules. 2023;25(1):188-199. doi: 10.1021/acs.biomac.3c00909