AccScience Publishing / GTM / Online First / DOI: 10.36922/gtm.5745
REVIEW ARTICLE

 Advancements in cardiac regenerative therapy: Scalable human iPSC-derived cardiomyocyte differentiation and maturation

Tadahisa Sugiura1†* Dhienda C. Shahannaz1† Brandon E. Ferrell1 Taizo Yoshida2
Show Less
1 Department of Cardiothoracic and Vascular Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, United States of America
2 Department of Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, United States of America
Global Translational Medicine, 5745 https://doi.org/10.36922/gtm.5745
Submitted: 1 November 2024 | Accepted: 27 November 2024 | Published: 8 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The demand for mass production of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is escalating, driven by their potential to revolutionize cardiac regenerative therapies. The development of large-scale production protocols for iPSC-CMs is crucial to attain their therapeutic potential, enabling the treatment of millions of patients’ worldwide suffering from cardiovascular diseases. However, the scalable production of iPSC-CMs hinges on overcoming several critical challenges, including cellular differentiation and maturation. In pursue of tackling these challenges, researchers are investigating novel strategies such as prolonged culture periods, mechanical stimulation, and co-culture with supporting cell types. Overcoming these challenges is essential for unlocking the full potential of iPSC-CMs and paving the way for a new era in cardiac regenerative medicine. In this review, following topics are covered: (1) improvement of differentiation and maturation of iPSC-CMs and (2) scalable production of iPSC-CMs.

Keywords
Induced pluripotent stem cell
Cardiac regenerative therapy
Cardiomyocyte
Stem cell maturation
Clinical translation
Funding
None.
Conflict of interest
Tadahisa Sugiura is the Editorial Board Member of this journal and Guest Editor of this special issue, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Kasai-Brunswick TH, Carvalho AB, De Carvalho ACC. Cardiac stem cells: Fact or fiction? In: Resident Stem Cells and Regenerative Therapy. Amsterdam, Netherlands: Elsevier; 2023. p. 5-21. doi: 10.1016/b978-0-443-15289-4.00006-8

 

  1. Beisaw A, Wu C. Cardiomyocyte maturation and its reversal during cardiac regeneration. Dev Dyn. 2022;253(1):8-27. doi: 10.1002/dvdy.557

 

  1. Sugiura T, Shahannaz DC, Ferrell BE. Current status of cardiac regenerative therapy using induced pluripotent stem cells. Int J Mol Sci. 2024;25(11):5772. doi: 10.3390/ijms25115772

 

  1. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98-102. doi: 10.1126/science.1164680

 

  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. doi: 10.1016/j.cell.2006.07.024

 

  1. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-872. doi: 10.1016/j.cell.2007.11.019

 

  1. Mohit G, Mohammed JMS, Akbarsha MA, Rohini G. Cellular reprogramming, transdifferentiation and alleviation of the aging pathology. Res J Biotechnol. 2023;19(2):127-139. doi: 10.25303/1902rjbt1270139

 

  1. Liu Q, Feng W, Yang T, Yi T, Li F. Upconversion luminescence imaging of cells and small animals. Nat Protoc. 2013;8(10):2033-2044. doi: 10.1038/nprot.2013.114

 

  1. Hasan A, Mohammadi N, Nawaz A, et al. Age-dependent maturation of IPSC-CMs leads to the enhanced compartmentation of Β2AR-CAMP signalling. Cells. 2020;9(10):2275. doi: 10.3390/cells9102275

 

  1. Grunert M, Dorn C, Rickert-Sperling S. Cardiac transcription factors and regulatory networks. Adv Exp Med Biol. 2024;1441:295-311. doi: 10.1007/978-3-031-44087-8_16

 

  1. Robbe ZL, Shi W, Wasson LK, et al. CHD4 is recruited by GATA4 and NKX2-5 to repress noncardiac gene programs in the developing heart. Genes Dev. 2022;36(7-8):468-482. doi: 10.1101/gad.349154.121

 

  1. Morris SA, Daley GQ. A blueprint for engineering cell fate: Current technologies to reprogram cell identity. Cell Res. 2013;23:33-48. doi: 10.1038/cr.2013.1

 

  1. Correia CD, Ferreira A, Fernandes MT, et al. Human Stem cells for cardiac disease modeling and preclinical and clinical applications-are we on the road to success? Cells. 2023;12:1727. doi: 10.3390/cells12131727

 

  1. Eglen RM, Reisine T. Human IPS Cell-derived patient tissues and 3D cell culture part 1: Target identification and lead optimization. SLAS Technol. 2018;24(1):3-17. doi: 10.1177/2472630318803277

 

  1. Afjeh-Dana E, Naserzadeh P, Moradi E, Hosseini N, Seifalian AM, Ashtari B. Correction to: Stem cell differentiation into cardiomyocytes: Current methods and emerging approaches. Stem Cell Rev Rep. 2022;18(6):2202. doi: 10.1007/s12015-022-10395-z

 

  1. Clancy CE, Santana LF. Advances in induced pluripotent stem cell‐derived cardiac myocytes: Technological breakthroughs, key discoveries and new applications. J Physiol. 2024;602(16):3871-3892. doi: 10.1113/jp282562

 

  1. Correia C, Christoffersson J, Tejedor S, et al. Enhancing maturation and translatability of human pluripotent stem cell-derived cardiomyocytes through a novel medium containing acetyl-CoA carboxylase 2 inhibitor. Cells. 2024;13(16):1339. doi: 10.3390/cells13161339

 

  1. Bhattacharya S, Burridge PW, Kropp EM, et al. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J Vis Exp. 2014;91:52010. doi: 10.3791/52010

 

  1. Hamad S, Derichsweiler D, Papadopoulos S, et al. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics. 2019;9(24):7222-7238. doi: 10.7150/thno.32058

 

  1. Ma J, Guo L, Fiene SJ, et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: Electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol. 2011;301(5):H2006-H2017. doi: 10.1152/ajpheart.00694.2011

 

  1. Kiss E, Fischer C, Sauter JM, Sun J, Ullrich ND. The structural and the functional aspects of intercellular communication in IPSC-Cardiomyocytes. Int J Mol Sci. 2022;23(8):4460. doi: 10.3390/ijms23084460

 

  1. Li X, Zeng D, Chen Y, et al. Role of alpha‐and beta‐adrenergic receptors in cardiomyocyte differentiation from murine‐induced pluripotent stem cells. Cell Prolif. 2016;50(1):e12310. doi: 10.1111/cpr.12310

 

  1. Liang P, Lan F, Lee AS, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation. 2013;127(16):1677-1691. doi: 10.1161/circulationaha.113.001883

 

  1. Lemmens M, Perner J, Potgeter L, et al. Identification of marker genes to monitor residual iPSCs in iPSC-derived products. Cytotherapy. 2022;25(1):59-67. doi: 10.1016/j.jcyt.2022.09.010

 

  1. Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC. Reconstructing the heart using iPSCs: Engineering strategies and applications. J Mol Cellu Cardiol. 2021;157:56-65. doi: 10.1016/j.yjmcc.2021.04.006

 

  1. Yamamoto T, Sato Y, Yasuda S, et al. Correlation between genetic abnormalities in induced pluripotent stem Cell- Derivatives and abnormal tissue formation in tumorigenicity tests. Stem Cells Transl Med. 2022;11(5):527-538. doi: 10.1093/stcltm/szac014

 

  1. Ye C, Yang C, Zhang H, et al. Canonical Wnt signaling directs the generation of functional human PSC-derived atrioventricular canal cardiomyocytes in bioprinted cardiac tissues. Cell Stem Cell. 2024;31(3):398-409.e5. doi: 10.1016/j.stem.2024.01.008

 

  1. Wang F, Yin L, Zhang W, Tang Y, Wang X, Huang C. The method of sinus node-like pacemaker cells from human induced pluripotent stem cells by BMP and Wnt signaling. Cell Biol Toxicol. 2023;39(6):2725-2741. doi: 10.1007/s10565-023-09797-7

 

  1. Burridge PW, Matsa E, Shukla P, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11(8):855-860. doi: 10.1038/nmeth.2999

 

  1. Burridge PW, Li YF, Matsa E, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22(5):547-556. doi: 10.1038/nm.4087

 

  1. Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: Lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2021;12(1):177. doi: 10.1186/s13287-021-02252-6

 

  1. Zhao MT, Shao NY, Garg V. Subtype-specific cardiomyocytes for precision medicine: Where are we now? Stem Cells. 2020;38(7):822-833. doi: 10.1002/stem.3178

 

  1. Zhou Y, Zhou R, Huang W, et al. Gene expression, morphology, and electrophysiology during the dynamic development of human induced pluripotent stem cell-derived atrial- and ventricular-like cardiomyocytes. Biologics. 2024;18:115-127. doi: 10.2147/btt.s448054

 

  1. Shiti A, Arbil G, Shaheen N, Huber I, Setter N, Gepstein L. Utilizing human induced pluripotent stem cells to study atrial arrhythmias in the short QT syndrome. J Mol Cell Cardiol. 2023;183:42-53. doi: 10.1016/j.yjmcc.2023.08.003

 

  1. Joshi J, Albers C, Smole N, Guo S, Smith SA. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for modeling cardiac arrhythmias: Strengths, challenges and potential solutions. Front Physiol. 2024;15:1475152. doi: 10.3389/fphys.2024.1475152

 

  1. Seibertz F, Rubio T, Springer R, et al. Atrial fibrillation-associated electrical remodelling in human induced pluripotent stem cell-derived atrial cardiomyocytes: A novel pathway for antiarrhythmic therapy development. Cardiovasc Res. 2023;119(16):2623-2637. doi: 10.1093/cvr/cvad143

 

  1. Cyganek L, Tiburcy M, Sekeres K, et al. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight. 2018;3(12):e99941. doi: 10.1172/jci.insight.99941

 

  1. Li J, Wiesinger A, Fokkert L, et al. Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids. Cell Stem Cell. 2024;31:1667-1684.e6. doi: 10.1016/j.stem.2024.08.008

 

  1. Kim JJ, Yang L, Lin B, et al. Mechanism of automaticity in cardiomyocytes derived from human induced pluripotent stem cells. J Mol Cell Cardiol. 2015;81:81-93. doi: 10.1016/j.yjmcc.2015.01.013

 

  1. Gonzalez DM, Dariolli R, Moyett J, et al. Transient notch activation converts pluripotent stem cell-derived cardiomyocytes towards a purkinje fiber fate. bioRxiv [Preprint]. 2024. doi: 10.1101/2024.09.22.614353

 

  1. Loh KM, Ang LT. Building human artery and vein endothelial cells from pluripotent stem cells, and enduring mysteries surrounding arteriovenous development. Semin Cell Dev Biol. 2023;155:62-75. doi: 10.1016/j.semcdb.2023.06.004

 

  1. Salameh S, Ogueri V, Posnack NG. Adapting to a new environment: Postnatal maturation of the human cardiomyocyte. J Physiol. 2023;601(13):2593-2619. doi: 10.1113/jp283792

 

  1. Prondzynski M, Berkson P, Trembley MA, et al. Efficient and reproducible generation of human iPSC-derived cardiomyocytes and cardiac organoids in stirred suspension systems. Nat Commun. 2024;15(1):5929. doi: 10.1038/s41467-024-50224-0

 

  1. Rapöhn M, Cyganek L, Voigt N, Hasenfuß G, Lehnart SE, Wegener JW. Noninvasive analysis of contractility during identical maturations revealed two phenotypes in ventricular but not in atrial iPSC-CM. Am J Physiol Heart Circ Physiol. 2024;326(3):H599-H611. doi: 10.1152/ajpheart.00527.2023

 

  1. Lu A, Gu R, Chu C, et al. Inhibition of Wnt/β‐catenin signaling upregulates Nav1.5 channels in Brugada syndrome iPSC‐derived cardiomyocytes. Physiol Rep. 2023;11(10):e15696. doi: 10.14814/phy2.15696

 

  1. Sánchez-Duffhues G, Hiepen C. Human IPSCs as model systems for BMP-related rare diseases. Cells. 2023;12(17):2200. doi: 10.3390/cells12172200

 

  1. Røsand Ø, Wang J, Scrimgeour N, Marwarha G, Høydal MA. Exosomal preconditioning of human IPSC-Derived cardiomyocytes beneficially alters cardiac electrophysiology and micro RNA expression. Int J Mol Sci. 2024;25(15):8460. doi: 10.3390/ijms25158460

 

  1. Martyniak A, Jeż M, Dulak J, Stępniewski J. Adaptation of cardiomyogenesis to the generation and maturation of cardiomyocytes from human pluripotent stem cells. IUBMB Life. 2022;75(1):8-29. doi: 10.1002/iub.2685

 

  1. Thomas D, Cunningham NJ, Shenoy S, Wu JC. Human-induced pluripotent stem cells in cardiovascular research: current approaches in cardiac differentiation, maturation strategies, and scalable production. Cardiovasc Res. 2021;118(1):20-36. doi: 10.1093/cvr/cvab115

 

  1. Kamakura T, Makiyama T, Sasaki K, et al. Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ J. 2013;77(5):1307-1314. doi: 10.1253/circj.cj-12-0987

 

  1. Satsuka A, Ribeiro AJS, Kawagishi H, et al. Contractility assessment using aligned human iPSC-derived cardiomyocytes. J Pharmacol Toxicol Methods. 2024;128:107530. doi: 10.1016/j.vascn.2024.107530

 

  1. Hamledari H, Asghari P, Jayousi F, et al. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation. Front Cardiovasc Med. 2022;9:967659. doi: 10.3389/fcvm.2022.967659

 

  1. Yoshida A, Sekine W, Homma J, et al. Development of appropriate fatty acid formulations to raise the contractility of constructed myocardial tissues. Regen Ther. 2022;21:413-423. doi: 10.1016/j.reth.2022.09.006

 

  1. Young KM, Reinhart-King CA. Cellular mechanosignaling for sensing and transducing matrix rigidity. Curr Opin Cell Biol. 2023;83:102208. doi: 10.1016/j.ceb.2023.102208

 

  1. Dai Y, Mu J, Zhou F. The use of electrical stimulation to induce cardiac differentiation of stem cells for the treatment of myocardial infarction. Rev Cardiovasc Med. 2021;22(4):1167-1171. doi: 10.31083/j.rcm2204125

 

  1. Sandora N, Putra MA, Busro PW, et al. Preparation of cell-seeded heart patch in vitro; Co-culture of adipose-derived mesenchymal stem cell and cardiomyocytes in amnion bilayer patch. Cardiovasc Eng Technol. 2021;13(2):193-206. doi: 10.1007/s13239-021-00565-4

 

  1. Vivas A, IJspeert C, Pan JY, et al. Generation and culture of cardiac microtissues in a microfluidic chip with a reversible open top enables electrical pacing, dynamic drug dosing and endothelial cell co‐culture. Adv Mater Technol. 2022;7(7):2101355. doi: 10.1002/admt.202101355

 

  1. Rupert C, López JE, Cortez-Toledo E, et al. Increased length-dependent activation of human engineered heart tissue after chronic α1A-adrenergic agonist treatment: Testing a novel heart failure therapy. Am J Physiol Heart Circ Physiol. 2023;324(3):H293-H304. doi: 10.1152/ajpheart.00279.2022

 

  1. Mir A, Lee E, Shih W, et al. 3D bioprinting for vascularization. Bioengineering (Basel). 2023;10(5):606. doi: 10.3390/bioengineering10050606

 

  1. Friedman MJ, Wagner T, Lee H, Rosenfeld MG, Oh S. Enhancer-promoter specificity in gene transcription: Molecular mechanisms and disease associations. Exp Mol Med. 2024;56(4):772-787. doi: 10.1038/s12276-024-01233-y

 

  1. Guo Y, Cao Y, Jardin BD, et al. Ryanodine receptor 2 (RYR2) dysfunction activates the unfolded protein response and perturbs cardiomyocyte maturation. Cardiovasc Res. 2022;119(1):221-235. doi: 10.1093/cvr/cvac077

 

  1. Mesquita FCP, Morrissey J, Monnerat G, Domont GB, Nogueira FCS, Hochman-Mendez C. Decellularized extracellular matrix powder accelerates metabolic maturation at early stages of cardiac differentiation in human induced pluripotent stem cell-derived cardiomyocytes. Cells Tissues Organs. 2021;212(1):32-44. doi: 10.1159/000521580

 

  1. Clarke GA, Hartse BX, Asli AEN, et al. Advancement of sensor integrated organ-on-chip devices. Sensors (Basel). 2021;21(4):1367. doi: 10.3390/s21041367

 

  1. Seibertz F, Rubio T, Springer R, et al. Atrial fibrillation-associated electrical remodelling in human induced pluripotent stem cell-derived atrial cardiomyocytes: a novel pathway for antiarrhythmic therapy development. Cardiovasc Res. 2023;119:2623-2637. doi: 10.1093/cvr/cvad143

 

  1. Balbi C, Vassalli G. Exosomes: Beyond stem cells for cardiac protection and repair. Stem Cells. 2020;38(11):1387-1399. doi: 10.1002/stem.3261

 

  1. Kim SW, Kim HW, Huang W, et al. Cardiac stem cells with electrical stimulation improve ischaemic heart function through regulation of connective tissue growth factor and miR-378. Cardiovasc Res. 2013;100(2):241-251. doi: 10.1093/cvr/cvt192

 

  1. Zhang H, Shen Y, Kim IM, et al. Electrical stimulation increases the secretion of cardioprotective extracellular vesicles from cardiac mesenchymal stem cells. Cells. 2023;12(6):875. doi: 10.3390/cells12060875

 

  1. Omer SA, McKnight KH, Young LI, Song S. Stimulation strategies for electrical and magnetic modulation of cells and tissues. Cell Regen. 2023;12(1):21. doi: 10.1186/s13619-023-00165-8

 

  1. Wang Y, Chen L, Wang L, et al. Pulsed electromagnetic fields combined with adipose-derived stem cells protect ischemic myocardium by regulating miR-20a-5p/E2F1/p73 signaling. Stem Cells. 2023;41(7):724-737. doi: 10.1093/stmcls/sxad037

 

  1. Yokoyama T, Lee JK, Miwa K, et al. Quantification of sympathetic hyperinnervation and denervation after myocardial infarction by three-dimensional assessment of the cardiac sympathetic network in cleared transparent murine hearts. PLoS One. 2017;12(7):e0182072. doi: 10.1371/journal.pone.0182072

 

  1. Seah I, Goh D, Banerjee A, Su X. Modeling inherited retinal diseases using human induced pluripotent stem cell derived photoreceptor cells and retinal pigment epithelial cells. Front Med (Lausanne). 2024;11:1328474. doi: 10.3389/fmed.2024.1328474

 

  1. Zhang H, Wei Y, Wang Y, et al. Emerging diabetes therapies: Regenerating pancreatic β cells. Tissue Eng Part B Rev. 2024;30:644-656. doi: 10.1089/ten.teb.2024.0041

 

  1. Dehghan S, Mirshahi R, Shoae-Hassani A, Naseripour M. Human-induced pluripotent stem cells-derived retinal pigmented epithelium, a new horizon for cells-based therapies for age-related macular degeneration. Stem Cell Res Ther. 2022;13(1):217. doi: 10.1186/s13287-022-02894-0

 

  1. Novoa JJ, Westra IM, Steeneveld E, et al. Good manufacturing practice-compliant human induced pluripotent stem cells: From bench to putative clinical products. Cytotherapy. 2024;26(6):556-566. doi: 10.1016/j.jcyt.2024.02.021

 

  1. Fang Y, Wang SPH, Liao I, et al. HLA-Ehigh/HLA-Ghigh/ HLA-IIlow Human iPSC-derived cardiomyocytes exhibit low immunogenicity for heart regeneration. Adv Healthc Mater. 2023;12(29):e2301186. doi: 10.1002/adhm.202301186

 

  1. Kuo HH, Gao X, DeKeyser JM, et al. Negligible-cost and weekend-free chemically defined human IPSC culture. Stem Cell Reports. 2020;14(2):256-270. doi: 10.1016/j.stemcr.2019.12.007

 

  1. Lotz S, Goderie S, Tokas N, et al. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding. PLoS One. 2013;8(2):e56289. doi: 10.1371/journal.pone.0056289

 

  1. Mossahebi-Mohammadi M, Quan M, Zhang JS, Li X. FGF signaling pathway: A key regulator of stem cell pluripotency. Front Cell Dev Biol. 2020;8:79. doi: 10.3389/fcell.2020.00079

 

  1. Kelly RG. The heart field transcriptional landscape at single-cell resolution. Dev Cell. 2023;58(4):257-266. doi: 10.1016/j.devcel.2023.01.010

 

  1. Farah EN, Hu RK, Kern C, et al. Spatially organized cellular communities form the developing human heart. Nature. 2024;627(8005):854-864. doi: 10.1038/s41586-024-07171-z

 

  1. Zhang Q, Carlin D, Zhu F, et al. Unveiling complexity and multipotentiality of early heart fields. Circ Res. 2021;129(4):474-487. doi: 10.1161/circresaha.121.318943

 

  1. Bisson JA, Gordillo M, Kumar R, et al. GATA6 regulates WNT and BMP programs to pattern precardiac mesoderm during the earliest stages of human cardiogenesis. bioRxiv [Preprint]. 2024. doi: 10.1101/2024.07.09.602666

 

  1. Sharma A, Wasson LK, Willcox JA, et al. GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm. Elife. 2020;9:e53278. doi: 10.7554/elife.53278

 

  1. Guo H, Hang C, Lin B, et al. HAND factors regulate cardiac lineage commitment and differentiation from human pluripotent stem cells. Stem Cell Res Ther. 2024;15(1):31. doi: 10.1186/s13287-024-03649-9

 

  1. Pezhouman A, Engel JL, Nguyen NB, et al. Isolation and characterization of human embryonic stem cell-derived heart field-specific cardiomyocytes unravels new insights into their transcriptional and electrophysiological profiles. Cardiovasc Res. 2021;118(3):828-843. doi: 10.1093/cvr/cvab102

 

  1. Pezhouman A, Nguyen NB, Sercel AJ, et al. Transcriptional, electrophysiological, and metabolic characterizations of HESC-Derived first and second heart fields demonstrate a potential role of TBX5 in cardiomyocyte maturation. Front Cell Dev Biol. 2021;9:787684. doi: 10.3389/fcell.2021.787684

 

  1. Singh BN, Yucel D, Garay BI, et al. Proliferation and maturation: Janus and the art of cardiac tissue engineering. Circ Res. 2023;132(4):519-540. doi: 10.1161/circresaha.122.321770

 

  1. Shouman S, Zaher A, Abdelhameed A, et al. Cardiac progenitor cells. Adv Exp Med Biol. 2020;1312:51-73. doi: 10.1007/5584_2020_594

 

  1. Yan W, Xia Y, Zhao H, Xu X, Ma X, Tao L. Stem cell-based therapy in cardiac repair after myocardial infarction: Promise, challenges, and future directions. J Mol Cell Cardiol. 2024;188:1-14. doi: 10.1016/j.yjmcc.2023.12.009

 

  1. Lee CS, Kim J, Cho HJ, Kim HS. Cardiovascular regeneration via stem cells and direct reprogramming: A review. Korean Circ J. 2022;52(5):341. doi: 10.4070/kcj.2022.0005

 

  1. Almuwaqqat Z, Kim JH, Garcia M, et al. Associations between inflammation, cardiovascular regenerative capacity, and cardiovascular events: A cohort study. Arterioscler Thromb Vasc Biol. 2021;41(11):2814-2822. doi: 10.1161/atvbaha.121.316574

 

  1. Kastlmeier MT, Gonzalez-Rodriguez E, Cabanis P, et al. Cytokine signaling converging on IL11 in ILD fibroblasts provokes aberrant epithelial differentiation signatures. Front Immunol. 2023;14:1128239. doi: 10.3389/fimmu.2023.1128239

 

  1. Barnes AM, Holmstoen TB, Bonham AJ, Rowland TJ. Differentiating human pluripotent stem cells to cardiomyocytes using purified extracellular matrix proteins. Bioengineering (Basel). 2022;9(12):720. doi: 10.3390/bioengineering9120720

 

  1. Napiwocki BN, Stempien A, Lang D, et al. Micropattern platform promotes extracellular matrix remodeling by human PSC‐derived cardiac fibroblasts and enhances contractility of co‐cultured cardiomyocytes. Physiol Rep. 2021;9(19):e15045. doi: 10.14814/phy2.15045

 

  1. Brown GE, Han YD, Michell AR, et al. Engineered cocultures of iPSC-derived atrial cardiomyocytes and atrial fibroblasts for modeling atrial fibrillation. Sci Adv. 2024;10(3):eadg1222. doi: 10.1126/sciadv.adg1222

 

  1. Henn AD, Pereira T, Hunsberger J, et al. Cytocentric measurement for regenerative medicine. Front Med Technol. 2023;5:1154653. doi: 10.3389/fmedt.2023.1154653

 

  1. Sebastião MJ, Abecasis B, Carrondo MJT, Alves PM, Gomes- Alves P, Serra M. 3D strategies for expansion of human cardiac stem/progenitor cells. In: Bioreactors for Stem Cell Expansion and Differentiation. United States: CRC Press; 2018. p. 63-95. doi: 10.1201/9780429453144-4

 

  1. Pianezzi E, Altomare C, Bolis S, et al. Role of somatic cell sources in the maturation degree of human induced pluripotent stem cell-derived cardiomyocytes. Biochim Biophys Acta Mol Cell Res. 2019;1867(3):118538. doi: 10.1016/j.bbamcr.2019.118538

 

  1. Yasui R, Sekine K, Taniguchi H. Clever experimental designs: Shortcuts for better IPSC differentiation. Cells. 2021;10(12):3540. doi: 10.3390/cells10123540

 

  1. Chen CXQ, Abdian N, Maussion G, et al. Standardized quality control workflow to evaluate the reproducibility and differentiation potential of human iPSCs into neurons. bioRxiv [Preprint]. 2021. doi: 10.1101/2021.01.13.426620

 

  1. He X, Liang J, Paul C, Huang W, Dutta S, Wang Y. Advances in cellular reprogramming-based approaches for heart regenerative repair. Cells. 2022;11(23):3914. doi: 10.3390/cells11233914

 

  1. Derish I, Cecere R. Multifaceted role of induced pluripotent stem cells in preclinical cardiac regeneration research. In: Handbook of Stem Cell Applications. Singapore: Springer; 2024. p. 787-847. doi: 10.1007/978-981-99-7119-0_33

 

  1. Li N, Nguyen BT, Stitt EA, Zhang Z, MacLellan WR, Zhang Y. Dynamic visualization of DNA methylation in cell cycle genes during iPSC cardiac differentiation. Epigenomics. 2024;16:1407-1414. doi: 10.1080/17501911.2024.2430171

 

  1. Zieliński PS, Gudeti PKR, Rikmanspoel T, Włodarczyk- Biegun MK. 3D printing of bio-instructive materials: Toward directing the cell. Bioact Mater. 2022;19:292-327. doi: 10.1016/j.bioactmat.2022.04.008

 

  1. Körner A, Mosqueira M, Hecker M, Ullrich ND. Substrate stiffness influences structural and functional remodeling in induced pluripotent stem cell-derived cardiomyocytes. Front Physiol. 2021;12:710619. doi: 10.3389/fphys.2021.710619

 

  1. Qin J, Van Mil A, Sluijter JPG. Biophysical stretch induced differentiation and maturation of induced pluripotent stem cell-derived cardiomyocytes. In: Cardiac and Vascular Biology. Cham: Springer; 2023. p. 141-179. doi: 10.1007/978-3-031-23965-6_7

 

  1. Wan X, Liu Z, Li L. Manipulation of stem cells Fates: The master and multifaceted roles of biophysical cues of biomaterials. Adv Funct Mater. 2021;31(23):2010626. doi: 10.1002/adfm.202010626

 

  1. Cho S, Discher DE, Leong KW, Vunjak-Novakovic G, Wu JC. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat Methods. 2022;19(9):1064-1071. doi: 10.1038/s41592-022-01591-3

 

  1. Nogueira DES, Cabral JMS, Rodrigues CAV. Single-use bioreactors for human pluripotent and adult stem cells: Towards regenerative medicine applications. Bioengineering. (Basel). 2021;8(5):68. doi: 10.3390/bioengineering8050068

 

  1. Ackermann M, Saleh F, Abdin SM, et al. Standardized generation of human iPSC-derived hematopoietic organoids and macrophages utilizing a benchtop bioreactor platform under fully defined conditions. Stem Cell Res Ther. 2024;15(1):171. doi: 10.1186/s13287-024-03785-2

 

  1. Bachhav B, De Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng. 2023;120(9): 2441-2459. doi: 10.1002/bit.28365

 

  1. Carvalho AB, Kasai-Brunswick TH, De Carvalho ACC. Advanced cell and gene therapies in cardiology. EBioMedicine. 2024;103:105125. doi: 10.1016/j.ebiom.2024.105125
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing