AccScience Publishing / GTM / Online First / DOI: 10.36922/gtm.4602
MINI-REVIEW

Unraveling the role of graphene oxide in cancer drug delivery

Subhadeep Das1,2* Sudipta Mondal3 Binayok Sharma4 Rajashree Nayak5
Show Less
1 Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
2 Purdue University Institute for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
3 School of Materials Engineering, Purdue University, West Lafayette, Indiana, United States of America
4 Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
5 Indian Institute of Science Education and Research, Pune, Maharashtra, India
Global Translational Medicine 2024, 3(3), 4602 https://doi.org/10.36922/gtm.4602
Submitted: 20 August 2024 | Accepted: 10 September 2024 | Published: 24 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The advancements in nanotechnology have opened up novel possibilities for drug delivery in cancer treatment. Among these, carbon-based nanomaterials have shown significant promise due to their capacity to carry multiple anticancer drugs. In particular, graphene oxide (GO) and its derivatives have been extensively studied and utilized as effective carriers for cancer drug delivery, due to their high drug-loading capability, large surface area, and ease of functionalization. This mini-review aims to provide recent evidence highlighting the important role of GO and its derivatives in cancer diagnosis and therapy.

Keywords
Graphene oxide
Reduced graphene oxide
Cancer drug delivery
Cancer treatment
Funding
None.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229-263. doi: 10.3322/caac.21834

 

  1. Dizon DS, Kamal AH. Cancer statistics 2024: All hands on deck. CA Cancer J Clin. 2024;74:8-9. doi: 10.3322/caac.21824

 

  1. Chaudhari R, Patel V, Kumar A. Cutting-edge approaches for targeted drug delivery in breast cancer: Beyond conventional therapies. Nanoscale Adv. 2024;6:2270-2286. doi: 10.1039/D4NA00086B.

 

  1. Daunt R, Curtin D, O’Mahony D. Optimizing drug therapy for older adults: Shifting away from problematic polypharmacy. Expert Opin Pharmacother. 2024;25:1199-1208. doi: 10.1080/14656566.2024.2374048

 

  1. Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman C, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther. 2017;11:2871-2890.

 

  1. Shafiee A, Iravani S, Varma RS. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm (2020). 2022;3:e118. doi: 10.1002/mco2.118

 

  1. Fusco L, Gazzi A, Peng G, et al. Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics. 2020;10:5435-5488. doi: 10.7150/thno.40068

 

  1. Pourmadadi M, Soleimani Dinani H, Saeidi Tabar F, et al. Properties and applications of graphene and its derivatives in biosensors for cancer detection: A comprehensive review. Biosensors (Basel). 2022;12:269. doi: 10.3390/bios12050269

 

  1. Song S, Shen H, Wang Y, et al. Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surf B Biointerfaces. 2020;185:110596. doi: 10.1016/j.colsurfb.2019.110596

 

  1. Jain VP, Chaudhary, S, Sharma D, et al. Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: A review. Eur Polym J. 2021;142:110124. doi: 10.1016/j.eurpolymj.2020.110124

 

  1. Kadkhoda J, Tarighatnia A, Barar J, Aghanejad A, Davaran S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn Ther. 2022;37:102697. doi: 10.1016/j.pdpdt.2021.102697

 

  1. Jiříčková A, Jankovský O, Sofer Z, Sedmidubský D. Synthesis and applications of graphene oxide. Materials. 2022;15:920. doi: 10.3390/ma15030920

 

  1. Talyzin AV, Mercier G, Klechikov A, et al. Brodie vs hummers graphite oxides for preparation of multi-layered materials. Carbon. 2017;115:430-440. doi: 10.1016/j.carbon.2016.12.097

 

  1. Staudenmaier L. Verfahren zur darstellung der graphitslure. Ber Deut Chem Ges. 1898;31:1481-1487.

 

  1. Anegbe B, Ifijen IH, Maliki M, Uwidia IE, Aigbodion AI. Graphene oxide synthesis and applications in emerging contaminant removal: A comprehensive review. Environ Sci Eur. 2024;36:15. doi: 10.1186/s12302-023-00814-4

 

  1. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339. doi: 10.1021/ja01539a017

 

  1. Yu H, Zhang B, Bulin C, Li R, Xing R. High-efficient synthesis of graphene oxide based on improved hummers method. Sci Rep. 2016;6:1-7. doi: 10.1038/srep36143

 

  1. Chen H, Du W, Liu J, Qu L, Li C. Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chem Sci. 2019;10:1244-1253. doi: 10.1039/c8sc03695k

 

  1. Guo C, Cai Y, Zhao H, et al. Efficient synthesis of graphene oxide by Hummers method assisted with an electric field. Mater Res Express. 2019;6:055602. doi: 10.1088/2053-1591/ab023d

 

  1. Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806-4814. doi: 10.1021/nn1006368

 

  1. Kim F, Cote LJ, Huang J. Graphene oxide: Surface activity and two‐dimensional assembly. Adv Mater. 2010;22:1954-1958. doi: 10.1002/adma.200903932

 

  1. Thinh DB, Dat NM, Tuyen NNK, et al. A review of silver‐dopped graphene oxide nanocomposite: Synthesis and multifunctional applications. Vietnam J Chem. 2022;60:553-570. doi: 10.1002/vjch.202200034

 

  1. Méndez-Lozano N, Pérez-Reynoso F, González-Gutiérrez C. Eco-friendly approach for graphene oxide synthesis by modified hummers method. Materials (Basel). 2022;15:7228. doi: 10.3390/ma15207228

 

  1. Olanipekun O, Oyefusi A, Neelgund GM, Oki A. Synthesis and characterization of reduced graphite oxide-polymer composites and their application in adsorption of lead. Spectrochim Acta A Mol Biomol Spectrosc. 2015;149:991-996. doi: 10.1016/j.saa.2015.04.071

 

  1. Yadav N, Lochab B. A comparative study of graphene oxide: Hummers, intermediate and improved method. Flat Chem. 2019;13:40-49. doi: 10.1016/j.flatc.2019.02.001

 

  1. Zahed M, Parsamehr PS, Tofighy MA, Mohammadi T. Synthesis and functionalization of graphene oxide (GO) for salty water desalination as adsorbent. Chem Eng Res Design. 2018;138:358-365. doi: 10.1016/j.cherd.2018.08.022

 

  1. Georgakilas V, Otyepka M, Bourlinos AB, et al. Functionalization of Graphene: Covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112:6156-6214. doi: 10.1021/cr3000412

 

  1. Liu J, Chen S, Liu Y, Zhao B. Progress in preparation, characterization, surface functional modification of graphene oxide: A review. J Saudi Chem Soc. 2022;26:101560. doi: 10.1016/j.jscs.2022.101560

 

  1. Xiao Y, Pang YX, Yan Y, et al. Synthesis and functionalization of graphene materials for biomedical applications: Recent advances, challenges, and perspectives. Adv Sci (Weinh). 2023;10:e2205292. doi: 10.1002/advs.202205292

 

  1. Shang Y, Zhang D, Liu Y, Guo C. Preliminary comparison of different reduction methods of graphene oxide. Bull Mater Sci. 2015;38:7-12. doi: 10.1007/s12034-014-0794-7

 

  1. Wojtoniszak M, Mijowska E. Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale. J Nanopart Res. 2012;14:1248. doi: 10.1007/s11051-012-1248-z

 

  1. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228-240. doi: 10.1039/b917103g

 

  1. Peng L, Xu Z, Liu Z, et al. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun. 2015;6:5716.

 

  1. Yu C, Wang CF, Chen S. Facile access to graphene oxide from ferro-induced oxidation. Sci Rep. 2016;6:17071. doi: 10.1038/srep17071

 

  1. Ranjan P, Agrawal S, Sinha A, et al. A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci Rep. 2018;8:1-13. doi: 10.1038/s41598-018-30613-4

 

  1. Pei S, Wei Q, Huang K, Cheng HM, Ren W. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat Commun. 2018;9:1-9. doi: 10.1038/s41467-017-02479-z

 

  1. Ahmed A, Singh A, Young SJ, Gupta V, Singh M, Arya S. Synthesis techniques and advances in sensing applications of reduced graphene oxide (rGO) composites: A review. Compos Part A Appl Sci Manuf. 2023;165:107373. doi: 10.1016/j.compositesa.2022.107373

 

  1. De Silva KK, Huang HH, Joshi RK, Yoshimura M. Chemical reduction of graphene oxide using green reductants. Carbon. 2017;119:190-199. doi: 10.1016/j.carbon.2017.04.025

 

  1. Kuang B, Song W, Ning M, et al. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon. 2018;127:209-217. doi: 10.1016/j.carbon.2017.10.092

 

  1. Jose PP, Kala MS, Kalarikkal N, Thomas S. Reduced graphene oxide produced by chemical and hydrothermal methods. Mater Today Proc. 2018;5:16306-16312. doi: 10.1016/j.matpr.2018.05.124

 

  1. Khan MU, Shaida MA. Reduction mechanism of graphene oxide including various parameters affecting the C/O ratio. Mater Today Commun. 2023l;36:106577. doi: 10.1016/j.mtcomm.2023.106577

 

  1. Thakur S, Karak N. Alternative methods and nature-based reagents for the reduction of graphene oxide: A review. Carbon. 2015;94:224-242. doi: 10.1016/j.carbon.2015.06.030

 

  1. Jeong HK, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH. Thermal stability of graphite oxide. Chem Phys Lett. 2009;470:255-258. doi: 10.1016/j.cplett.2009.01.050

 

  1. Das P, Ibrahim S, Chakraborty K, Ghosh S, Pal T. Stepwise reduction of graphene oxide and studies on defect-controlled physical properties. Sci Rep. 2024;14:294. doi: 10.1038/s41598-023-51040-0

 

  1. Yar A, Dennis JO, Mohamed Saheed MS, et al. Physical reduction of graphene oxide for supercapacitive charge storage. J Alloys Compd. 2020;822:153636. doi: 10.1016/j.jallcom.2019.153636

 

  1. Alemi F, Zarezadeh R, Sadigh AR, et al. Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. J Drug Deliv Sci Technol. 2020;60:101974. doi: 10.1016/j.jddst.2020.101974

 

  1. Sharma H, Mondal S. Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: A promising material in nanomedicine. Int J Mol Sci. 2020;21:6280. doi: 10.3390/ijms21176280

 

  1. Bagheri B, Surwase SS, Lee SS, et al. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B. 2022;10:9944-9967. doi: 10.1039/D2TB01741E

 

  1. Maiti D, Tong X, Mou X, Yang K. Carbon-based nanomaterials for biomedical applications: A recent study. Front Pharmacol. 2019;9:1401. doi: 10.3389/fphar.2018.01401

 

  1. Yanikoglu R, Karakas CY, Ciftci F, et al. Development of graphene oxide-based anticancer drug combination functionalized with folic acid as nanocarrier for targeted delivery of methotrexate. Pharmaceutics. 2024;16:837. doi: 10.3390/pharmaceutics16060837

 

  1. Dash BS, Lu YJ, Huang YS, Chen JP. Chitosan-coated magnetic graphene oxide for targeted delivery of doxorubicin as a nanomedicine approach to treat glioblastoma. Int J Biol Macromol. 2024;260:129401. doi: 10.1016/j.ijbiomac.2024.129401

 

  1. Shirvalilou S, Khoei S, Khoee S, Raoufi NJ, Karimi MR, Shakeri-Zadeh A. Development of a magnetic nano-graphene oxide carrier for improved glioma-targeted drug delivery and imaging: In vitro and in vivo evaluations. Chem Biol Interact. 2018;295:97-108. doi: 10.1016/j.cbi.2018.08.027

 

  1. Su X, Chan C, Shi J, et al. A graphene quantum dot@Fe3O4 @SiO2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells. Biosens Bioelectron. 2017;92:489-95. doi: 10.1016/j.bios.2016.10.076

 

  1. Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A review of the current state of magnetic force microscopy to unravel the magnetic properties of nanomaterials applied in biological systems and future directions for quantum technologies. Nanomaterials (Basel). 2023;13:2585. doi: 10.3390/nano13182585

 

  1. Pham TT, Whelan B, Oborn BM, et al. Magnetic resonance imaging (MRI) guided proton therapy: A review of the clinical challenges, potential benefits and pathway to implementation. Radiother Oncol. 2022;170:37-47. doi: 10.1016/j.radonc.2022.02.031

 

  1. Wang K, Xu X, Li Y, et al. Preparation Fe3O4@chitosan-graphene quantum dots nanocomposites for fluorescence and magnetic resonance imaging. Chem Phys Lett. 2021;783:139060. doi: 10.1016/j.cplett.2021.139060

 

  1. Javadian S, Najafi K, Sadrpoor SM, Ektefa F, Dalir N, Nikkhah M. Graphene quantum dots based magnetic nanoparticles as a promising delivery system for controlled doxorubicin release. J Mol Liq. 2021;331:115746. doi: 10.1016/j.molliq.2021.115746

 

  1. Batool M, Qazi RM, Mudassir MA, et al. Titania-graphene oxide nanocomposite-based philadelphia-positive leukemia therapy. ACS Appl Bio Mater. 2024;7:4352-4365. doi: 10.1021/acsabm.4c00207

 

  1. Shen JJ, Xue SJ, Mei ZH, et al. Synthesis, characterization, and efficacy evaluation of a PH-responsive Fe-MOF@GO composite drug delivery system for the treating colorectal cancer. Heliyon. 2024;10:e28066. doi: 10.1016/j.heliyon.2024.e28066

 

  1. Gong P, Zhang L, Yuan X, et al. Multifunctional fluorescent PEGylated fluorinated graphene for targeted drug delivery: An experiment and DFT study. Dyes Pigments. 2019;162:573-582. doi: 10.1016/j.dyepig.2018.10.031

 

  1. Gong P, Ji S, Wang J, Dai D, et al. Fluorescence-switchable ultrasmall fluorinated graphene oxide with high near-infrared absorption for controlled and targeted drug delivery. Chem Eng J. 2018;348:438-446. doi: 10.1016/j.cej.2018.04.193

 

  1. Sontakke AD, Tiwari S, Gupta P, Banerjee SK, Purkait MK. Room temperature synthesis of β-cyclodextrin functionalized graphene oxide decorated MIL-100 (Fe): A sustainable drug cargo for anticancer drug delivery. Mater Today Commun. 2024;38:108560. doi: 10.1016/j.mtcomm.2024.108560

 

  1. Aliabadi M, Yunessnia Lehi A, Shagholani H, Gerayeli A. Planar polymer-graphene oxide nanohybrid as a 5-fluorouacil carrier in pH-responsive controlled release. J Drug Deliv Sci Technol. 2018;43:103-106. doi: 10.1016/j.jddst.2017.09.020

 

  1. Parvaneh S, Pourmadadi M, Abdouss M, et al. Carboxymethyl cellulose/starch/reduced graphene oxide composite as a pH-sensitive nanocarrier for curcumin drug delivery. Int J Biol Macromol. 2023;241:124566. doi: 10.1016/j.ijbiomac.2023.124566

 

  1. Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials. 2012;33:2206-2214. doi: 10.1016/j.biomaterials.2011.11.064

 

  1. Lim MH, Jeung IC, Jeong J, et al. Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases. Acta Biomater. 2016;46:191-203. doi: 10.1016/j.actbio.2016.09.018

 

  1. Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release. 2018;286:64-73. doi: 10.1016/j.jconrel.2018.07.034

 

  1. Orecchioni M, Bedognetti D, Sgarrella F, Marincola FM, Bianco A, Delogu LG. Impact of carbon nanotubes and graphene on immune cells. J Transl Med. 2014;12:138. doi: 10.1186/1479-5876-12-138

 

  1. Loutfy SA, Salaheldin TA, Ramadan MA, Farroh KY, Abdallah ZF, Youssef T. Synthesis, characterization and cytotoxic evaluation of graphene oxide nanosheets: In vitro liver cancer model. Asian Pac J Cancer Prev. 2017;18:955-961. doi: 10.22034/APJCP.2017.18.4.955

 

  1. Yunus MA, Ramli MM, Osman NH, Mohamed R. Stimulation of innate and adaptive immune cells with graphene oxide and reduced graphene oxide affect cancer progression. Arch Immunol Ther Exp (Warsz). 2021;69:20. doi: 10.1007/s00005-021-00625-6

 

  1. Feito MJ, Diez-Orejas R, Cicuéndez M, Casarrubios L, Rojo JM, Portolés MT. Characterization of M1 and M2 polarization phenotypes in peritoneal macrophages after treatment with graphene oxide nanosheets. Colloids Surf B Biointerfaces. 2019;176:96-105. doi: 10.1016/j.colsurfb.2018.12.063

 

  1. Ni G, Wang Y, Wu X, Wang X, Chen S, Liu X. Graphene oxide absorbed anti-IL10R antibodies enhance LPS induced immune responses in vitro and in vivo. Immunol Lett. 2012;148:126-132. doi: 10.1016/j.imlet.2012.10.001

 

  1. Sinha A, Cha BG, Choi Y, et al. Carbohydrate-Functionalized rGO as an effective cancer vaccine for stimulating antigen-specific cytotoxic t cells and inhibiting tumor growth. Chem Mater. 2017;29:6883-6892. doi: 10.1021/acs.chemmater.7b02197

 

  1. Zamorina SA, Shardina KY, Timganova VP, Bochkova MS, Nechaev AI, Khramtsov P. Effect of graphene oxide nanoparticles on differentiation of myeloid suppressor cells. Bull Exp Biol Med. 2020;170:84-87. doi: 10.1007/s10517-020-05009-y

 

  1. Lu YJ, Vayalakkara RK, Dash BS, et al. Immunomodulatory R848-Loaded Anti-PD-L1-conjugated reduced graphene oxide quantum dots for photothermal immunotherapy of glioblastoma. Pharmaceutics. 2024;16:1064. doi: 10.3390/pharmaceutics16081064

 

  1. Deng X, Liang H, Yang W, Shao Z. Polarization and function of tumor-associated macrophages mediate graphene oxide-induced photothermal cancer therapy. J Photochem Photobiol B. 2020;208:111913. doi: 10.1016/j.jphotobiol.2020.111913

 

  1. Tabish TA, Pranjol MZ, Jabeen F, et al. Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues. Appl Mater Today. 2018;12:389-401. doi: 10.1016/j.apmt.2018.07.005

 

  1. Sontakke AD, Tiwari S, Purkait MK. A comprehensive review on graphene oxide-based nanocarriers: Synthesis, functionalization and biomedical applications. Flat Chem. 2023;38:100484. doi: 10.1016/j.flatc.2023.100484

 

  1. Reina G, González-Domínguez JM, Criado A, Vázquez E, Bianco A, Prato M. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev. 2017;46:4400-4416. doi: 10.1039/C7CS00363C

 

  1. Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed Technol. 2024;5:109-122. doi: 10.1016/j.bmt.2023.09.001

 

  1. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25:2193. doi: 10.3390/molecules25092193

 

  1. Nanda SS, Papaefthymiou GC, Yi DK. Functionalization of graphene oxide and its biomedical applications. Crit Rev Solid State Mater Sci. 2015;40:291-315. doi: 10.1080/10408436.2014.1002604

 

  1. Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9:9243-9257. doi: 10.1016/j.actbio.2013.08.016
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Published by AccScience Publishing