The multifaceted functions of mineralocorticoid receptor in cardiometabolic disease
Cardiometabolic diseases (CMDs), which cause 31% of all global deaths, are one of the greatest public health challenges. Mineralocorticoid receptor (MR), as a key nuclear transcription factor, is an important drug target for the treatment of CMDs. It is known that MR is expressed in almost all tissues and organs involved in cardiovascular homeostasis, including immune tissue, adipose tissue, brain, heart, kidney, and blood vessels. In the pathophysiology of CMDs, MR exerts different functions in different tissues and cells. This review summarizes the roles of MR in various cell types and discusses the molecular mechanisms through which MR exerts it functions in CMDs.
Arnett DK, Blumenthal RS, Albert MA, et al., 2019, 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American college of cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation, 140: e596–e646. https://doi.org/10.1161/CIR.0000000000000678
Sattar N, Gill JM, Alazawi W, 2020, Improving prevention strategies for cardiometabolic disease. Nat Med, 26: 320–325. https://doi.org/10.1038/s41591-020-0786-7
Bluher M, 2019, Obesity: Global epidemiology and pathogenesis. Nat Rev Endocrinol, 15: 288–298. https://doi.org/10.1038/s41574-019-0176-8
Joseph P, Leong D, McKee M, et al., 2017, Reducing the global burden of cardiovascular disease, Part 1: The epidemiology and risk factors. Circ Res, 121: 677–694. https://doi.org/10.1161/circresaha.117.308903
Barrera-Chimal J, Lima-Posada I, Bakris GL, et al., 2022, Mineralocorticoid receptor antagonists in diabetic kidney disease-mechanistic and therapeutic effects. Nat Rev Nephrol, 18: 56–70. https://doi.org/10.1038/s41581-021-00490-8
Belden Z, Deiuliis JA, Dobre M, et al., 2017, The role of the mineralocorticoid receptor in inflammation: Focus on kidney and vasculature. Am J Nephrol, 46: 298–314. https://doi.org/10.1159/000480652
Buonafine M, Bonnard B, Jaisser F, 2018, Mineralocorticoid receptor and cardiovascular disease. Am J Hypertens, 31: 1165–1174. https://doi.org/10.1093/ajh/hpy120
Rossier BC, 2002, Hormonal regulation of the epithelial sodium channel enac: N or P(o)? J Gen Physiol, 120: 67–70. https://doi.org/10.1085/jgp.20028638
Rossier BC, Staub O, Hummler E, 2013, Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: Importance in the control of blood pressure and hypertension. FEBS Lett, 587: 1929–1941. https://doi.org/10.1016/j.febslet.2013.05.013
Ivanes F, Susen S, Mouquet F, et al., 2012, Aldosterone, mortality, and acute ischaemic events in coronary artery disease patients outside the setting of acute myocardial infarction or heart failure. Eur Heart J, 33: 191–202. https://doi.org/10.1093/eurheartj/ehr176
Milliez P, Girerd X, Plouin PF, et al., 2005, Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol, 45: 1243–1248. https://doi.org/10.1016/j.jacc.2005.01.015
Funder JW, 2004, Aldosterone, mineralocorticoid receptors and vascular inflammation. Mol Cell Endocrinol, 217: 263–269. https://doi.org/10.1016/j.mce.2003.10.054
Brown NJ, 2008, Aldosterone and vascular inflammation. Hypertension, 51: 161–167. https://doi.org/10.1161/hypertensionaha.107.095489
Arriza JL, Weinberger C, Cerelli G, et al., 1987, Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science, 237: 268–275. https://doi.org/10.1126/science.3037703
Barrera-Chimal J, Jaisser F, 2019, Vascular mineralocorticoid receptor activation and disease. Exp Eye Res, 188: 107796. https://doi.org/10.1016/j.exer.2019.107796
Shibata S, Nagase M, Yoshida S, et al., 2008, Modification of mineralocorticoid receptor function by Rac1 GTpase: Implication in proteinuric kidney disease. Nat Med, 14: 1370–1376.https://doi.org/10.1038/nm.1879
Nagase M, Fujita T, 2013, Role of Rac1-mineralocorticoid-receptor signalling in renal and cardiac disease. Nat Rev Nephrol, 9: 86–98. https://doi.org/10.1038/nrneph.2012.282
Hayashi T, Shibata H, Kurihara I, et al., 2017, High glucose stimulates mineralocorticoid receptor transcriptional activity through the protein kinase C β signaling. Int Heart J, 58: 794–802. https://doi.org/10.1536/ihj.16-649
Nagase M, Matsui H, Shibata S, et al., 2007, Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: Role of oxidative stress. Hypertension, 50: 877–883. https://doi.org/10.1161/hypertensionaha.107.091058
Cole TJ, Young MJ, 2017, 30 years of the mineralocorticoid receptor: Mineralocorticoid receptor null mice: Informing cell-type-specific roles. J Endocrinol, 234: T83–T92. https://doi.org/10.1530/joe-17-0155
Kolkhof P, Joseph A, Kintscher U, 2021, Nonsteroidal mineralocorticoid receptor antagonism for cardiovascular and renal disorders-new perspectives for combination therapy. Pharmacol Res, 172: 105859. https://doi.org/10.1016/j.phrs.2021.105859
Usher MG, Duan SZ, Ivaschenko CY, et al., 2010, Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest, 120: 3350–3364. https://doi.org/10.1172/jci41080
Sun JY, Li C, Shen ZX, et al., 2016, Mineralocorticoid receptor deficiency in macrophages inhibits neointimal hyperplasia and suppresses macrophage inflammation through SGK1-AP1/NF-κBpathways. Arterioscler Thromb Vasc Biol, 36: 874–885. https://doi.org/10.1161/atvbaha.115.307031
McCurley A, Pires PW, Bender SB, et al., 2012, Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat Med, 18: 1429–1433. https://doi.org/10.1038/nm.2891
Nguyen Dinh A, Griol-Charhbili V, Loufrani L, et al., 2010, The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J, 24: 2454–2463. https://doi.org/10.1096/fj.09-147926
Mueller KB, Bender SB, Hong K, et al., 2015, Endothelial mineralocorticoid receptors differentially contribute to coronary and mesenteric vascular function without modulating blood pressure. Hypertension, 66: 988–997. https://doi.org/10.1161/hypertensionaha.115.06172
Sun XN, Li C, Liu Y, et al., 2017, T-cell mineralocorticoid receptor controls blood pressure by regulating interferon-gamma. Circ Res, 120: 1584–1597. https://doi.org/10.1161/circresaha.116.310480
Wu H, Ballantyne CM, 2020, Metabolic inflammation and insulin resistance in obesity. Circ Res, 126: 1549–1564. https://doi.org/10.1161/circresaha.119.315896
Ferreira NS, Tostes RC, Paradis P, et al., 2021, Aldosterone, inflammation, immune system, and hypertension. Am J Hypertens, 34: 15–27. https://doi.org/10.1093/ajh/hpaa137
Van der Heijden C, Bode M, Riksen NP, et al., 2022, The role of the mineralocorticoid receptor in immune cells in cardiovascular disease. Br J Pharmacol, 179: 3135–3151. https://doi.org/10.1111/bph.15782
Moore KJ, Tabas I, 2011, Macrophages in the pathogenesis of atherosclerosis. Cell, 145: 341–355. https://doi.org/10.1016/j.cell.2011.04.005
Keidar S, Kaplan M, Pavlotzky E, et al., 2004, Aldosterone administration to mice stimulates macrophage nadph oxidase and increases atherosclerosis development: A possible role for angiotensin-converting enzyme and the receptors for angiotensin II and aldosterone. Circulation, 109: 2213–2220. https://doi.org/10.1161/01.cir.0000127949.05756.9D
Keidar S, Hayek T, Kaplan M, et al., 2003, Effect of eplerenone, a selective aldosterone blocker, on blood pressure, serum and macrophage oxidative stress, and atherosclerosis in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol, 41: 955–963. https://doi.org/10.1097/00005344-200306000-00019
Shen ZX, Chen XQ, Sun XN, et al., 2017, Mineralocorticoid receptor deficiency in macrophages inhibits atherosclerosis by affecting foam cell formation and efferocytosis. J Biol Chem, 292: 925–935. https://doi.org/10.1074/jbc.M116.739243
Man JJ, Lu Q, Moss ME, et al., 2021, Myeloid mineralocorticoid receptor transcriptionally regulates p-selectin glycoprotein ligand-1 and promotes monocyte trafficking and atherosclerosis. Arterioscler Thromb Vasc Biol, 41: 2740–2755. https://doi.org/10.1161/atvbaha.121.316929
Fraccarollo D, Thomas S, Scholz CJ, et al., 2019, Macrophage mineralocorticoid receptor is a pleiotropic modulator of myocardial infarct healing. Hypertension, 73: 102–111. https://doi.org/10.1161/hypertensionaha.118.12162
Rickard AJ, Morgan J, Tesch G, et al., 2009, Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension, 54: 537–543. https://doi.org/10.1161/hypertensionaha.109.131110
Bienvenu LA, Morgan J, Rickard AJ, et al., 2012, Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone-independent cardiac fibrosis. Endocrinology, 153: 3416–3425. https://doi.org/10.1210/en.2011-2098
Olefsky JM, Glass CK, 2010, Macrophages, inflammation, and insulin resistance. Annu Rev Physiol, 72: 219–246. https://doi.org/10.1146/annurev-physiol-021909-135846
Guo C, Ricchiuti V, Lian BQ, et al., 2008, Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation, 117: 2253–2261. https://doi.org/10.1161/circulationaha.107.748640
Wada T, Kenmochi H, Miyashita Y, et al., 2010, Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology, 151: 2040–2049. https://doi.org/10.1210/en.2009-0869
Zhang YY, Li C, Yao GF, et al., 2017, Deletion of macrophage mineralocorticoid receptor protects hepatic steatosis and insulin resistance through ERα/HGF/Met pathway. Diabetes, 66: 1535–1547. https://doi.org/10.2337/db16-1354
Vinh A, Chen W, Blinder Y, et al., 2010, Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation, 122: 2529–2537. https://doi.org/10.1161/circulationaha.109.930446
Hevia D, Araos P, Prado C, et al., 2018, Myeloid CD11c+ antigen-presenting cells ablation prevents hypertension in response to angiotensin II plus high-salt diet. Hypertension, 71: 709–718. https://doi.org/10.1161/hypertensionaha.117.10145
Hengel FE, Benitah JP, Wenzel UO, 2022, Mosaic theory revised: Inflammation and salt play central roles in arterial hypertension. Cell Mol Immunol, 19: 561–576. https://doi.org/10.1038/s41423-022-00851-8
Herrada AA, Contreras FJ, Marini NP, et al., 2010, Aldosterone promotes autoimmune damage by enhancing TH17-mediated immunity. J Immunol, 184: 191–202. https://doi.org/10.4049/jimmunol.0802886
Amador CA, Barrientos V, Pena J, et al., 2014, Spironolactone decreases doca-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension, 63: 797–803. https://doi.org/10.1161/hypertensionaha.113.02883
Bene NC, Alcaide P, Wortis HH, et al., 2014, Mineralocorticoid receptors in immune cells: Emerging role in cardiovascular disease. Steroids, 91: 38–45. https://doi.org/10.1016/j.steroids.2014.04.005
Kirabo A, Fontana V, de Faria AP, et al., 2014, DC isoketal-modified proteins activate t cells and promote hypertension. J Clin Invest, 124: 4642–4656. https://doi.org/10.1172/JCI74084
Araos P, Prado C, Lozano M, et al., 2019, Dendritic cells are crucial for cardiovascular remodeling and modulate neutrophil gelatinase-associated lipocalin expression upon mineralocorticoid receptor activation. J Hypertens, 37: 1482–1492. https://doi.org/10.1097/HJH.0000000000002067
Buonafine M, Martinez-Martinez E, Amador C, et al., 2018, Neutrophil gelatinase-associated lipocalin from immune cells is mandatory for aldosterone-induced cardiac remodeling and inflammation. J Mol Cell Cardiol, 115: 32–38. https://doi.org/10.1016/j.yjmcc.2017.12.011
Latouche C, El Moghrabi S, Messaoudi S, et al., 2012, Neutrophil gelatinase-associated lipocalin is a novel mineralocorticoid target in the cardiovascular system. Hypertension, 59: 966–972. https://doi.org/10.1161/hypertensionaha.111.187872
Guzik TJ, Hoch NE, Brown KA, et al., 2007, Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med, 204: 2449–2460. https://doi.org/10.1084/jem.20070657
Itani HA, McMaster WG Jr., Saleh MA, et al., 2016, Activation of human T cells in hypertension: Studies of humanized mice and hypertensive humans. Hypertension, 68: 123–132. https://doi.org/10.1161/hypertensionaha.116.07237
Shen JZ, Young MJ, 2012, Corticosteroids, heart failure, and hypertension: A role for immune cells? Endocrinology, 153: 5692–5700. https://doi.org/10.1210/en.2012-1780
Chu PY, Zatta A, Kiriazis H, et al., 2011, CXCR4 antagonism attenuates the cardiorenal consequences of mineralocorticoid excess. Circ Heart Fail, 4: 651–658. https://doi.org/10.1161/circheartfailure.110.960831
Li C, Sun XN, Zeng MR, et al., 2017, Mineralocorticoid receptor deficiency in T cells attenuates pressure overload-induced cardiac hypertrophy and dysfunction through modulating T-cell activation. Hypertension, 70: 137–147. https://doi.org/10.1161/hypertensionaha.117.09070
Adamo L, Rocha-Resende C, Mann DL, 2020, The emerging role of B lymphocytes in cardiovascular disease. Annu Rev Immunol, 38: 99–121. https://doi.org/10.1146/annurev-immunol-042617-053104
McLaughlin T, Ackerman SE, Shen L, et al., 2017, Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest, 127: 5–13. https://doi.org/10.1172/JCI88876
Soehnlein O, Libby P, 2021, Targeting inflammation in atherosclerosis-from experimental insights to the clinic. Nat Rev Drug Discov, 20: 589–610. https://doi.org/10.1038/s41573-021-00198-1
Pober JS, Sessa WC, 2007, Evolving functions of endothelial cells in inflammation. Nat Rev Immunol, 7: 803–815. https://doi.org/10.1038/nri2171
Poston RN, Haskard DO, Coucher JR, et al., 1992, Expression of intercellular adhesion molecule-1 in atherosclerotic plaques. Am J Pathol, 140: 665–673.
Iiyama K, Hajra L, Iiyama M, et al., 1999, Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res, 85: 199–207. https://doi.org/10.1161/01.res.85.2.199
Caprio M, Newfell BG, la Sala A, et al., 2008, Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ Res, 102: 1359–1367. https://doi.org/10.1161/circresaha.108.174235
Marzolla V, Armani A, Mammi C, et al., 2017, Essential role of icam-1 in aldosterone-induced atherosclerosis. Int J Cardiol, 232: 233–242. https://doi.org/10.1016/j.ijcard.2017.01.013
Moss ME, Lu Q, Iyer SL, et al., 2019, Endothelial mineralocorticoid receptors contribute to vascular inflammation in atherosclerosis in a sex-specific manner. Arterioscler Thromb Vasc Biol, 39: 1588–1601. https://doi.org/10.1161/atvbaha.119.312954
Lother A, Furst D, Bergemann S, et al., 2016, Deoxycorticosterone acetate/salt-induced cardiac but not renal injury is mediated by endothelial mineralocorticoid receptors independently from blood pressure. Hypertension, 67: 130–138. https://doi.org/10.1161/hypertensionaha.115.06530
Rickard AJ, Morgan J, Chrissobolis S, et al., 2014, Endothelial cell mineralocorticoid receptors regulate deoxycorticosterone/salt-mediated cardiac remodeling and vascular reactivity but not blood pressure. Hypertension, 63: 1033–1040. https://doi.org/10.1161/hypertensionaha.113.01803
Laursen SB, Finsen S, Marcussen N, et al., 2018, Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility. PloS One, 13: e0193032. https://doi.org/10.1371/journal.pone.0193032
Zheng XJ, Liu Y, Zhang WC, et al., 2019, Mineralocorticoid receptor negatively regulates angiogenesis through repression of STAT3 activity in endothelial cells. J Pathol, 248: 438–451. https://doi.org/10.1002/path.5269
Kobayashi N, Fukushima H, Takeshima H, et al., 2010, Effect of eplerenone on endothelial progenitor cells and oxidative stress in ischemic hindlimb. Am J Hypertens, 23: 1007–1013. https://doi.org/10.1038/ajh.2010.91
Zhao M, Mantel I, Gelize E, et al., 2019, Mineralocorticoid receptor antagonism limits experimental choroidal neovascularization and structural changes associated with neovascular age-related macular degeneration. Nat Commun, 10: 369. https://doi.org/10.1038/s41467-018-08125-6
Hwang MH, Yoo JK, Luttrell M, et al., 2013, Mineralocorticoid receptors modulate vascular endothelial function in human obesity. Clin Sci (Lond), 125: 513–520. https://doi.org/10.1042/CS20130200
Schafer N, Lohmann C, Winnik S, et al., 2013, Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur Heart J, 34: 3515–3524. https://doi.org/10.1093/eurheartj/eht095
Jia G, Habibi J, DeMarco VG, et al., 2015, Endothelial mineralocorticoid receptor deletion prevents diet-induced cardiac diastolic dysfunction in females. Hypertension, 66: 1159–1167. https://doi.org/10.1161/hypertensionaha.115.06015
Jia G, Habibi J, Aroor AR, et al., 2016, Endothelial mineralocorticoid receptor mediates diet-induced aortic stiffness in females. Circ Res, 118: 935–943. https://doi.org/10.1161/circresaha.115.308269
Hassoun PM, 2021, Pulmonary arterial hypertension. N Engl J Med, 385: 2361–2376. https://doi.org/10.1056/NEJMra2000348
Maron BA, Leopold JA, 2015, Emerging concepts in the molecular basis of pulmonary arterial hypertension: Part II: Neurohormonal signaling contributes to the pulmonary vascular and right ventricular pathophenotype of pulmonary arterial hypertension. Circulation, 131: 2079–2091. https://doi.org/10.1161/circulationaha.114.006980
Omidkhoda N, Vakilian F, Mohammadpour AH, et al., 2020, Aldosterone and mineralocorticoid receptor antagonists on pulmonary hypertension and right ventricular failure: A review. Curr Pharm Des, 26: 3862–3870. https://doi.org/10.2174/1381612826666200523171137
Maron BA, Opotowsky AR, Landzberg MJ, et al., 2013, Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: A pilot study. Eur J Heart Fail, 15: 277–283. https://doi.org/10.1093/eurjhf/hfs173
Calvier L, Legchenko E, Grimm L, et al., 2016, Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart, 102: 390–396. https://doi.org/10.1136/heartjnl-2015-308365
Preston IR, Sagliani KD, Warburton RR, et al., 2013, Mineralocorticoid receptor antagonism attenuates experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 304: L678–L688. https://doi.org/10.1152/ajplung.00300.2012
Boehm M, Arnold N, Braithwaite A, et al., 2018, Eplerenone attenuates pathological pulmonary vascular rather than right ventricular remodeling in pulmonary arterial hypertension. BMC Pulm Med, 18: 41. https://doi.org/10.1186/s12890-018-0604-x
Kowalski J, Deng L, Suennen C, et al., 2021, Eplerenone improves pulmonary vascular remodeling and hypertension by inhibition of the mineralocorticoid receptor in endothelial cells. Hypertension, 78: 456–465. https://doi.org/10.1161/hypertensionaha.120.16196
Lacolley P, Regnault V, Nicoletti A, et al., 2012, The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles. Cardiovasc Res, 95: 194–204. https://doi.org/10.1093/cvr/cvs135
Galmiche G, Pizard A, Gueret A, et al., 2014, Smooth muscle cell mineralocorticoid receptors are mandatory for aldosterone-salt to induce vascular stiffness. Hypertension, 63: 520–526. https://doi.org/10.1161/hypertensionaha.113.01967
DuPont JJ, McCurley A, Davel AP, et al., 2016, Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging. JCI Insight, 1: e88942. https://doi.org/10.1172/jci.insight.88942
Lu Q, Davel AP, McGraw AP, et al., 2019, PKCδ mediates mineralocorticoid receptor activation by angiotensin II to modulate smooth muscle cell function. Endocrinology, 160: 2101–2114. https://doi.org/10.1210/en.2019-00258
Gueret A, Harouki N, Favre J, et al., 2016, Vascular smooth muscle mineralocorticoid receptor contributes to coronary and left ventricular dysfunction after myocardial infarction. Hypertension, 67: 717–723. https://doi.org/10.1161/hypertensionaha.115.06709
Kim SK, Biwer LA, Moss ME, et al., 2021, Mineralocorticoid receptor in smooth muscle contributes to pressure overload-induced heart failure. Circ Heart Fail, 14: e007279. https://doi.org/10.1161/circheartfailure.120.007279
Gourdie RG, Dimmeler S, Kohl P, 2016, Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat Rev Drug Discov, 15: 620–638. https://doi.org/10.1038/nrd.2016.89
Barrera-Chimal J, Girerd S, Jaisser F, 2019, Mineralocorticoid receptor antagonists and kidney diseases: Pathophysiological basis. Kidney Int, 96: 302–319. https://doi.org/10.1016/j.kint.2019.02.030
Stockand JD, Meszaros JG, 2003, Aldosterone stimulates proliferation of cardiac fibroblasts by activating Ki-RasA and MAPK1/2 signaling. Am J Physiol Heart Circ Physiol, 284: H176–H184. https://doi.org/10.1152/ajpheart.00421.2002
Wang Q, Cui W, Zhang HL, et al., 2013, Atorvastatin suppresses aldosterone-induced neonatal rat cardiac fibroblast proliferation by inhibiting ERK1/2 in the genomic pathway. J Cardiovasc Pharmacol, 61: 520–527. https://doi.org/10.1097/FJC.0b013e31828c090e
Fullerton MJ, Funder JW, 1994, Aldosterone and cardiac fibrosis: In vitro studies. Cardiovasc Res, 28: 1863–1867. https://doi.org/10.1093/cvr/28.12.1863
Brilla CG, Zhou G, Matsubara L, et al., 1994, Collagen metabolism in cultured adult rat cardiac fibroblasts: Response to angiotensin II and aldosterone. J Mol Cell Cardiol, 26: 809–820. https://doi.org/10.1006/jmcc.1994.1098
Lother A, Berger S, Gilsbach R, et al., 2011, Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts preserves cardiac function. Hypertension, 57: 746–754. https://doi.org/10.1161/hypertensionaha.110.163287
Fraccarollo D, Bauersachs J, 2011, Cardiomyocyte mineralocorticoid receptor function post myocardial infarction. Trends Cardiovasc Med, 21: 42–47. https://doi.org/10.1016/j.tcm.2012.02.003
Fraccarollo D, Berger S, Galuppo P, et al., 2011, Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation, 123: 400–408. https://doi.org/10.1161/circulationaha.110.983023
Bienvenu LA, Reichelt ME, Morgan J, et al., 2015, Cardiomyocyte mineralocorticoid receptor activation impairs acute cardiac functional recovery after ischemic insult. Hypertension, 66: 970–977. https://doi.org/10.1161/hypertensionaha.115.05981
He BJ, Joiner ML, Singh MV, et al., 2011, Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med, 17: 1610–1618. https://doi.org/10.1038/nm.2506
Ayoub IM, Kolarova J, Yi Z, et al., 2003, Sodium-hydrogen exchange inhibition during ventricular fibrillation: Beneficial effects on ischemic contracture, action potential duration, reperfusion arrhythmias, myocardial function, and resuscitability. Circulation, 107: 1804–1809. https://doi.org/10.1161/01.cir.0000058704.45646.0D
Rickard AJ, Morgan J, Bienvenu LA, et al., 2012, Cardiomyocyte mineralocorticoid receptors are essential for deoxycorticosterone/salt-mediated inflammation and cardiac fibrosis. Hypertension, 60: 1443–1450. https://doi.org/10.1161/hypertensionaha.112.203158
Ouvrard-Pascaud A, Sainte-Marie Y, Benitah JP, et al., 2005 Conditional mineralocorticoid receptor expression in the heart leads to life-threatening arrhythmias. Circulation, 111: 3025–3033. https://doi.org/10.1161/circulationaha.104.503706
Lother A, Bergemann S, Kowalski J, et al., 2018, Inhibition of the cardiac myocyte mineralocorticoid receptor ameliorates doxorubicin-induced cardiotoxicity. Cardiovasc Res, 114: 282–290. https://doi.org/10.1093/cvr/cvx078
Armani A, Marzolla V, Fabbri A, et al., 2015, Cellular mechanisms of mr regulation of adipose tissue physiology and pathophysiology. J Mol Endocrinol, 55: R1–R10. https://doi.org/10.1530/jme-15-0122
Caprio M, Feve B, Claes A, et al., 2007, Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J, 21: 2185–2194. https://doi.org/10.1096/fj.06-7970com
Hoppmann J, Perwitz N, Meier B, et al., 2010, The balance between gluco-and mineralo-corticoid action critically determines inflammatory adipocyte responses. J Endocrinol, 204: 153–164. https://doi.org/10.1677/JOE-09-0292
Caprio M, Antelmi A, Chetrite G, et al., 2011, Antiadipogenic effects of the mineralocorticoid receptor antagonist drospirenone: Potential implications for the treatment of metabolic syndrome. Endocrinology, 152: 113–125. https://doi.org/10.1210/en.2010-0674
Lee MJ, Fried SK, 2014, The glucocorticoid receptor, not the mineralocorticoid receptor, plays the dominant role in adipogenesis and adipokine production in human adipocytes. Int J Obes (Lond), 38: 1228–1233. https://doi.org/10.1038/ijo.2014.6
Hirata A, Maeda N, Hiuge A, et al., 2009, Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovasc Res, 84: 164–172. https://doi.org/10.1093/cvr/cvp191
Urbanet R, Nguyen Dinh Cat A, Feraco A, et al., 2015, Adipocyte mineralocorticoid receptor activation leads to metabolic syndrome and induction of prostaglandin D2 synthase. Hypertension, 66: 149–157. https://doi.org/10.1161/hypertensionaha.114.04981
Armani A, Cinti F, Marzolla V, et al., 2014, Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high-fat-diet-fed mice. FASEB J, 28: 3745–3757. https://doi.org/10.1096/fj.13-245415
Wada T, Ishikawa A, Watanabe E, et al., 2017, Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance. J Endocrinol, 235: 179–191. https://doi.org/10.1530/joe-17-0351
Lefranc C, Friederich-Persson M, Braud L, et al., 2019, Mr (mineralocorticoid receptor) induces adipose tissue senescence and mitochondrial dysfunction leading to vascular dysfunction in obesity. Hypertension, 73: 458–468. https://doi.org/10.1161/hypertensionaha.118.11873
Nguyen Dinh Cat A, Antunes TT, Callera GE, et al., 2016, Adipocyte-specific mineralocorticoid receptor overexpression in mice is associated with metabolic syndrome and vascular dysfunction: Role of redox-sensitive PKG-1 and Rho kinase. Diabetes, 65: 2392–2403. https://doi.org/10.2337/db15-1627
Johansen ML, Ibarrola J, Fernandez-Celis A, et al., 2021, The mineralocorticoid receptor antagonist eplerenone suppresses interstitial fibrosis in subcutaneous adipose tissue in patients with Type 2 diabetes. Diabetes, 70: 196–203. https://doi.org/10.2337/db20-0394
Habibi J, Chen D, Hulse JL, et al., 2022, Targeting mineralocorticoid receptors in diet-induced hepatic steatosis and insulin resistance. Am J Physiol Regul Integr Comp Physiol, 322: R253–R262. https://doi.org/10.1152/ajpregu.00316.2021
Ferguson D, Hutson I, Tycksen E, et al., 2020, Role of mineralocorticoid receptor in adipogenesis and obesity in male mice. Endocrinology, 161: bqz010. https://doi.org/10.1210/endocr/bqz010
Lefranc C, Friederich-Persson M, Foufelle F, et al., 2021, Adipocyte-mineralocorticoid receptor alters mitochondrial quality control leading to mitochondrial dysfunction and senescence of visceral adipose tissue. Int J Mol Sci, 22: 2881. https://doi.org/10.3390/ijms22062881
Feraco A, Armani A, Urbanet R, et al., 2018, Minor role of mature adipocyte mineralocorticoid receptor in high fat induced obesity. J Endocrinol, 239: 229-240. https://doi.org/10.1530/joe-18-0314
Hayakawa T, Minemura T, Onodera T, et al., 2018, Impact of MR on mature adipocytes in high-fat/high-sucrose diet-induced obesity. J Endocrinol, 239: 63–71. https://doi.org/10.1530/joe-18-0026
Kuhn E, Bourgeois C, Keo V, et al., 2014, Paradoxical resistance to high-fat diet-induced obesity and altered macrophage polarization in mineralocorticoid receptor-overexpressing mice. Am J Physiol Endocrinol Metab, 306: E75–E90. https://doi.org/10.1152/ajpendo.00323.2013
Viengchareun S, Penfornis P, Zennaro MC, et al., 2001, Mineralocorticoid and glucocorticoid receptors inhibit ucp expression and function in brown adipocytes. Am J Physiol Endocrinol Metab, 280: E640–E649. https://doi.org/10.1152/ajpendo.2001.280.4.E640
Kuhn E, Lamribet K, Viengchareun S, et al., 2019, Ucp1 transrepression in brown fat in vivo and mineralocorticoid receptor anti-thermogenic effects. Ann Endocrinol (Paris), 80: 1–9. https://doi.org/10.1016/j.ando.2018.04.018
Marzolla V, Feraco A, Gorini S, et al., 2020, The novel non-steroidal mr antagonist finerenone improves metabolic parameters in high-fat diet-fed mice and activates brown adipose tissue via ampk-atgl pathway. FASEB J, 34: 12450–12465. https://doi.org/10.1096/fj.202000164R
Marzolla V, Feraco A, Limana F, et al., 2022, Class-specific responses of brown adipose tissue to steroidal and nonsteroidal mineralocorticoid receptor antagonists. J Endocrinol Invest, 45: 215–220. https://doi.org/10.1007/s40618-021-01635-z
Thuzar M, Law WP, Dimeski G, et al., 2019, Mineralocorticoid antagonism enhances brown adipose tissue function in humans: A randomized placebo-controlled cross-over study. Diabetes Obes Metab, 21: 509–516. https://doi.org/10.1111/dom.13539
Dirckx N, Morer MC, Clemens TL, et al., 2019, The role of osteoblasts in energy homeostasis. Nat Rev Endocrinol, 15: 651–665. https://doi.org/10.1038/s41574-019-0246-y
Lee NK, Sowa H, Hinoi E, et al., 2007, Endocrine regulation of energy metabolism by the skeleton. Cell, 130: 456–469. https://doi.org/10.1016/j.cell.2007.05.047
Yi Y, Du L, Qin M, et al., 2019, Regulation of atrial fibrosis by the bone. Hypertension, 73: 379–389. https://doi.org/10.1161/hypertensionaha.118.11544
Wang YL, Bai L, Shi XR, et al., 2022, Osteoblast MR deficiency protects against adverse ventricular remodeling after myocardial infarction. J Mol Cell Cardiol, 167: 40–51. https://doi.org/10.1016/j.yjmcc.2022.03.003
Rico-Mesa JS, White A, Ahmadian-Tehrani A, et al., 2020, Mineralocorticoid receptor antagonists: A comprehensive review of finerenone. Curr Cardiol Rep, 22: 140. https://doi.org/10.1007/s11886-020-01399-7
Liu LC, Schutte E, Gansevoort RT, et al., 2015, Finerenone: Third-generation mineralocorticoid receptor antagonist for the treatment of heart failure and diabetic kidney disease. Expert Opin Investig Drugs, 24: 1123–1135. https://doi.org/10.1517/13543784.2015.1059819
Kolkhof P, Borden SA, 2012, Molecular pharmacology of the mineralocorticoid receptor: Prospects for novel therapeutics. Mol Cell Endocrinol, 350: 310–317. https://doi.org/10.1016/j.mce.2011.06.025
Pitt B, Zannad F, Remme WJ, et al., 1999, The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med, 341: 709–717. https://doi.org/10.1056/NEJM199909023411001
Agarwal R, Kolkhof P, Bakris G, et al., 2021, Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J, 42: 152–161. https://doi.org/10.1093/eurheartj/ehaa736
McMurray JJ, O’Meara E, 2004, Treatment of heart failure with spironolactone--trial and tribulations. N Engl J Med, 351: 526–528. https://doi.org/10.1056/nejmp048144
Ko DT, Juurlink DN, Mamdani MM, et al., 2006, Appropriateness of spironolactone prescribing in heart failure patients: A population-based study. J Card Fail, 12: 205–210. https://doi.org/10.1016/j.cardfail.2006.01.003
Wei L, Struthers AD, Fahey T, et al., 2010, Spironolactone use and renal toxicity: Population based longitudinal analysis. BMJ, 340: c1768. https://doi.org/10.1136/bmj.c1768
Vukadinovic D, Lavall D, Vukadinovic AN, et al., 2017, True rate of mineralocorticoid receptor antagonists-related hyperkalemia in placebo-controlled trials: A meta-analysis. Am Heart J, 188: 99–108. https://doi.org/10.1016/j.ahj.2017.03.011
Pitt B, Remme W, Zannad F, et al., 2003, Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med, 348: 1309–1321. https://doi.org/10.1056/nejmoa030207
Zannad F, McMurray JJ, Krum H, et al., 2011, Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med, 364: 11–21. https://doi.org/10.1056/NEJMoa1009492
Adamopoulos C, Ahmed A, Fay R, et al., 2009, Timing of eplerenone initiation and outcomes in patients with heart failure after acute myocardial infarction complicated by left ventricular systolic dysfunction: Insights from the ephesus trial. Eur J Heart Fail, 11: 1099–1105. https://doi.org/10.1093/eurjhf/hfp136
Montalescot G, Pitt B, Lopez de Sa E, et al., 2014, Early eplerenone treatment in patients with acute ST-elevation myocardial infarction without heart failure: The randomized double-blind reminder study. Eur Heart J, 35: 2295–2302. https://doi.org/10.1093/eurheartj/ehu164
Filippatos G, Anker SD, Bohm M, et al., 2016, A randomized controlled study of finerenone vs. Eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J, 37: 2105–2114. https://doi.org/10.1093/eurheartj/ehw132
Bakris GL, Agarwal R, Anker SD, et al., 2020, Effect of finerenone on chronic kidney disease outcomes in Type 2 diabetes. N Engl J Med, 383: 2219–2229. https://doi.org/10.1056/NEJMoa2025845
Pitt B, Filippatos G, Agarwal R, et al., 2021, Cardiovascular events with finerenone in kidney disease and Type 2 diabetes. N Engl J Med, 385: 2252–2263. https://doi.org/10.1056/nejmoa2110956
Sueta D, Yamamoto E, Tsujita K, 2020, Mineralocorticoid receptor blockers: Novel selective nonsteroidal mineralocorticoid receptor antagonists. Curr Hypertens Rep, 22: 21. https://doi.org/10.1007/s11906-020-1023-y
Kintscher U, Bakris GL, Kolkhof P, 2022, Novel non-steroidal mineralocorticoid receptor antagonists in cardiorenal disease. Br J Pharmacol, 179: 3220–3234. https://doi.org/10.1111/bph.15747