AccScience Publishing / GTM / Volume 1 / Issue 1 / DOI: 10.36922/gtm.v1i1.54
Cite this article
109
Download
1670
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Fusion genes as diagnostic and predictive biomarkers for tumor

Zhaoshi Bao1* Ruichao Chai2 Xing Liu2 Jiayi Wang3
Show Less
1 Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
2 Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
3 Department of Neurosurgery, San Bo Brain Hospital, Capital Medical University, Beijing, China
Global Translational Medicine 2022, 1(1), 54 https://doi.org/10.36922/gtm.v1i1.54
Submitted: 22 March 2022 | Accepted: 12 May 2022 | Published: 27 May 2022
© 2022 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Structural variants, including chromosomal rearrangements and translocations, may result in the formation of fusion genes. Glioma is the most frequent brain tumor among adults. Due to complex tumor classifications, characterization of recurrence, inadequate sample size and controversial mechanisms of tumor malignancy, clinical strategies have not been developed for almost 30 years. Fusion gene is one of the strong driver events in glioma tumorigenesis and has provided fundamental insights into the disease mechanisms. This review elucidates the literature on the discovery of fusion genes, the development of detection techniques, and their clinical implementations. In conclusion, fusion genes are important diagnostic and predictive biomarkers for brain tumors.

Keywords
Glioma
Fusion gene
Target therapy
PTPRZ1-MET fusion
Funding
National Natural Science Foundation of China
Beijing Natural Science Foundation
Outstanding Young Talents of the Capital Medical University
Beijing Nova Program
References
[1]

Siegel RL, Miller KD, Jemal A, 2019, Cancer statistics, 2019. CA Cancer J Clin, 69(1): 7–34. https://doi.org/10.3322/caac.21551

[2]

Jiang B, Liu H, Sun D, et al., 2021, Mortality due to primary brain tumours in China and detection rate in people with suspected symptoms: A nationally representative cross-sectional survey. World J Surg Oncol, 19(1): 71. https://doi.org/10.1186/s12957-021-02179-5

[3]

Miller KD, Ostrom QT, Kruchko C, et al., 2021, Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin, 71(5): 381–406. https://doi.org/10.3322/caac.21693

[4]

Vickers AJ, 2011, Prediction models in cancer care. CA Cancer J Clin, 61(5): 315–326.

[5]

Wang Y, Jiang T, 2013, Understanding high grade glioma: Molecular mechanism, therapy and comprehensive management. Cancer Lett, 331(2): 139–146. https://doi.org/10.1016/j.canlet.2012.12.024

[6]

Louis DN, Ohgaki H, Wiestler OD, et al., 2007, The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 114(2): 97–109. https://doi.org/10.1007/s00401-007-0243-4 

[7]

Louis DN, Perry A, Reifenberger G, et al., 2016, The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol, 131(6): 803–820. https://doi.org/10.1007/s00401-016-1545-1

[8]

Stupp R, Mason WP, van den Bent MJ, et al., 2005, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 352(10): 987–996. https://doi.org/10.1097/01.cot.0000289242.47980.f9

[9]

Agarwala SS, Kirkwood JM, 2000, Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist, 5(2): 144–151. https://doi.org/10.1634/theoncologist.5-2-144

[10]

National Comprehensive Cancer Network, 2019, CNS Cancers (Version1. 2019). National Comprehensive Cancer Network.

[11]

Jiang T, Mao Y, Ma W, et al., 2016, CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett, 375(2): 263–273.

[12]

Mertens F, Johansson B, Fioretos T, et al., 2015, The emerging complexity of gene fusions in cancer. Nat Rev Cancer, 15(6): 371–381. https://doi.org/10.1038/nrc3947 

[13]

Singh D, Chan JM, Zoppoli P, et al., 2012, Transforming fusions of FGFR and TACC genes in human glioblastoma. Science, 337(6099): 1231–1235. https://doi.org/10.1126/science.1220834 

[14]

Bandopadhayay P, Ramkissoon LA, Jain P, et al., 2016, MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet, 48(3): 273–282. https://doi.org/10.1158/1538-7445.am2016-4372

[15]

Bao ZS, Chen HM, Yang MY, et al., 201, RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res, 24(11): 1765–1773. https://doi.org/10.1101/gr.165126.113

[16]

Mitelman F, Johansson B, Mertens F, 200, Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat Genet, 36(4): 331–334. https://doi.org/10.1038/ng1335

[17]

Mani RS, Chinnaiyan AM, 2010, Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences. Nat Rev Genet, 11(12): 819–829. https://doi.org/10.1038/nrg2883

[18]

Hakim O, Resch W, Yamane A, et al., 2012, DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature, 484(7392): 69–74. https://doi.org/10.1038/nature10909

[19]

Zhang Y, McCord RP, Ho YJ, et al., 2012, Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell, 148(5): 908–921. https://doi.org/10.1016/j.cell.2012.02.002

[20]

Nowell PC, 1962, The minute chromosome (Phl) in chronic granulocytic leukemia. Blut, 8: 65–66. https://doi.org/10.1007/bf01630378

[21]

Caspersson T, Zech L, Johansson C, 1970, Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res, 60(3): 315–319. https://doi.org/10.1016/0014-4827(70)90523-9

[22]

Rowley JD, 1973, Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 243(5405): 290–293. https://doi.org/10.1038/243290a0

[23]

Miyoshi I, Hiraki S, Kimura I, et al., 1979, 2/8 translocation in a Japanese Burkitt’s lymphoma. Experientia, 35(6): 742–743. https://doi.org/10.1007/bf01968217

[24]

Rowley JD, Golomb HM, Dougherty C, 1977, 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet, 1(8010): 549–550. https://doi.org/10.1016/s0140-6736(77)91415-5

[25]

Wachtel M, Dettling M, Koscielniak E, et al., 200, Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res, 64(16): 5539–5545. https://doi.org/10.1158/0008-5472.can-04-0844

[26]

Sinclair PB, Nacheva EP, Leversha M, et al., 2000, Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood, 95(3): 738–743. https://doi.org/10.1182/blood.v95.3.738.003k21_738_743

[27]

Soda M, Choi YL, Enomoto M, et al., 2007, Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448(7153): 561–566. https://doi.org/10.1038/nature05945

[28]

Eck MJ, Manley PW, 2009, The interplay of structural information and functional studies in kinase drug design: Insights from BCR-Abl. Curr Opin Cell Biol, 21(2): 288–295. https://doi.org/10.1016/j.ceb.2009.01.014

[29]

Takahashi M, Ritz J, Cooper GM, 1985, Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell, 42(2): 581–588. https://doi.org/10.1016/0092-8674(85)90115-1

[30]

Tognon C, Knezevich SR, Huntsman D, et al., 2002, Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell, 2(5): 367–376. https://doi.org/10.1016/s1535-6108(02)00180-0

[31]

Zinszner H, Albalat R, Ron D, 1994, A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev, 8(21): 2513–2526. https://doi.org/10.1101/gad.8.21.2513

[32]

Linden M, Thomsen C, Grundevik P, et al., 2019, FET family fusion oncoproteins target the SWI/SNF chromatin remodeling complex. EMBO Rep, 20(5): e45766. https://doi.org/10.15252/embr.201845766

[33]

Linden M, Vannas C, Osterlund T, et al., 2022, FET fusion oncoproteins interact with BRD4 and SWI/SNF chromatin remodelling complex subtypes in sarcoma. Mol Oncol, Online ahead of print. https://doi.org/10.1002/1878-0261.13195/v2/review2

[34]

Chong S, Graham TG, Dugast-Darzacq C, et al., 2022, Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol Cell, 2022: 00318–5. https://doi.org/10.1016/j.molcel.2022.04.007

[35]

Hondele M, Heinrich S, De Los Rios P, et al., 2020, Membraneless organelles: Phasing out of equilibrium. Emerg Top Life Sci, 4(3): 331–342. https://doi.org/10.1042/etls20190190

[36]

Davis RB, Moosa MM, Banerjee PR, 2022, Ectopic biomolecular phase transitions: fusion proteins in cancer pathologies. Trends Cell Biol, 2022: 00077–0. https://doi.org/10.1016/j.tcb.2022.03.005

[37]

Saraon P, Pathmanathan S, Snider J, et al., 2021, Receptor tyrosine kinases and cancer: Oncogenic mechanisms and therapeutic approaches. Oncogene, 40(24): 4079–4093. https://doi.org/10.1038/s41388-021-01841-2

[38]

Fawal M, Espinos E, Jean-Jean O, et al., 2011, Looking for the functions of RNA granules in ALK–transformed cells. Bioarchitecture, 1(2): 91–95. https://doi.org/10.4161/bioa.1.2.16269

[39]

Hrustanovic G, Olivas V, Pazarentzos E, et al., 2015, RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nat Med, 21(9): 1038–1047. https://doi.org/10.1038/nm.3930

[40]

Richards MW, O’Regan L, Roth D, et al., 2015, Microtubule association of EML proteins and the EML4-ALK variant 3 oncoprotein require an N-terminal trimerization domain. Biochem J, 467(3): 529–536. https://doi.org/10.1042/bj20150039

[41]

Sampson J, Richards MW, Choi J, et al., 2021, Phase-separated foci of EML4-ALK facilitate signalling and depend upon an active kinase conformation. EMBO Rep, 22(12): e53693. https://doi.org/10.15252/embr.202153693

[42]

Tulpule A, Guan J, Neel DS, et al., 2021, Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell, 184(10): 2649–2664.e2618. https://doi.org/10.1016/j.cell.2021.03.031

[43]

Zhang JZ, Lu TW, Stolerman LM, et al., 2020, Phase separation of a PKA regulatory subunit controls camp compartmentation and oncogenic signaling. Cell, 182(6): 1531–1544.e1515. https://doi.org/10.1016/j.cell.2020.07.043

[44]

Honeyman JN, Simon EP, Robine N, et al., 2014, Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science, 343(6174): 1010–1014. https://doi.org/10.1126/science.1249484

[45]

Corpet A, Kleijwegt C, Roubille S, et al., 2020, PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res, 48(21): 11890–11912. https://doi.org/10.1093/nar/gkaa828

[46]

Dyck JA, Maul GG, Miller WH Jr., et al., 1994, A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell, 76(2): 333–343. https://doi.org/10.1016/0092-8674(94)90340-9

[47]

di Masi A, Cilli D, Berardinelli F, et al., 2016, PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL. Cell Death Dis, 7: e2308. https://doi.org/10.1038/cddis.2016.115

[48]

Salesse S, Verfaillie CM, 2002, BCR/ABL: From molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia. Oncogene, 21(56): 8547–8559. https://doi.org/10.1038/sj.onc.1206082

[49]

Kashiwagi S, Fujioka Y, Kondo T, et al., 2019, Localization of BCR-ABL to stress granules contributes to its oncogenic function. Cell Struct Funct, 44(2): 195–204. https://doi.org/10.1247/csf.19033

[50]

Tomlins SA, Rhodes DR, Perner S, et al., 2005, Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 310(5748): 644–648. https://doi.org/10.1126/science.1117679

[51]

Wang X, Qiao Y, Asangani IA, et al., 2017, Development of peptidomimetic inhibitors of the ERG gene fusion product in prostate cancer. Cancer Cell, 31(4): 532–548.e537. https://doi.org/10.1016/j.ccell.2017.02.017

[52]

Camidge DR, Dziadziuszko R, Peters S, et al., 2019, Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non-small cell lung cancer in the global phase III ALEX study. J Thorac Oncol, 14(7): 1233–1243. https://doi.org/10.1016/j.jtho.2019.03.007

[53]

Gong J, Gregg JP, Ma W, et al., 2019, Squamous cell transformation of primary lung adenocarcinoma in a patient with EML4-ALK fusion variant 5 refractory to ALK inhibitors. J Natl Compr Canc Netw, 17(4): 297–301. https://doi.org/10.6004/jnccn.2019.7291 

[54]

Kohsaka S, Hayashi T, Nagano M, et al., 2020, Identification of Novel CD74-NRG2alpha fusion from comprehensive profiling of lung adenocarcinoma in Japanese never or light smokers. J Thorac Oncol, 15(6): 948–961. https://doi.org/10.1016/j.jtho.2020.01.021

[55]

Jerby-Arnon L, Neftel C, Shore ME, et al., 2021, Opposing immune and genetic mechanisms shape oncogenic programs in synovial sarcoma. Nat Med, 27: 289–300.

[56]

Karajannis MA, Legault G, Fisher MJ, et al., 201, Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol, 16(10): 1408–1416. https://doi.org/10.1093/neuonc/nou059

[57]

Helgager J, Lidov HG, Mahadevan NR, et al., 2017, A novel GIT2-BRAF fusion in pilocytic astrocytoma. Diagn Pathol, 12(1): 82. https://doi.org/10.1186/s13000-017-0669-5

[58]

Jones DT, Hutter B, Jager N, et al., 2013, Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet, 45(8): 927–932.

[59]

Qaddoumi I, Orisme W, Wen J, et al., 2016, Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol, 131(6): 833–845. https://doi.org/10.1093/neuonc/now075.10

[60]

Ryall S, Zapotocky M, Fukuoka K, et al., 2020, Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell, 37(4): 569–583.e565.

[61]

Tomic TT, Olausson J, Wilzen A, et al., 2017, A new GTF2I-BRAF fusion mediating MAPK pathway activation in pilocytic astrocytoma. PLoS One, 12(4): e0175638. https://doi.org/10.1371/journal.pone.0175638

[62]

Zhang J, Wu G, Miller CP, et al., 2013, Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet, 45(6): 602–612. https://doi.org/10.1038/ng.2611

[63]

Weinberg F, Griffin R, Frohlich M, et al., 2020, Identification and characterization of a BRAF fusion oncoprotein with retained autoinhibitory domains. Oncogene, 39(4): 814–832. https://doi.org/10.1038/s41388-019-1021-1

[64]

Fangusaro J, Onar-Thomas A, Poussaint TY, et al., 2019, Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis Type 1-associated recurrent, refractory, or progressive low-grade glioma: A multicentre, phase 2 trial. Lancet Oncol, 20(7): 1011–1022. https://doi.org/10.1016/s1470-2045(19)30277-3

[65]

Sievert AJ, Lang SS, Boucher KL, et al., 2013, Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci U S A, 110(15): 5957–5962. https://doi.org/10.1073/pnas.1307863110

[66]

Lawrence MS, Stojanov P, Mermel CH, et al., 2014, Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505(7484): 495–501. https://doi.org/10.1038/nature12912

[67]

Hallberg B, Palmer RH, 2016, The role of the ALK receptor in cancer biology. Ann Oncol, 27 Suppl 3: iii4–iii15. https://doi.org/10.1093/annonc/mdw301 

[68]

Childress MA, Himmelberg SM, Chen H, et al., 2018, ALK fusion partners impact response to ALK inhibition: Differential effects on sensitivity, cellular phenotypes, and biochemical properties. Mol Cancer Res, 16(11): 1724–1736. https://doi.org/10.1158/1541-7786.mcr-18-0171 

[69]

Soda M, Takada S, Takeuchi K, et al., 2008, A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci U S A, 105(50): 19893–19897. https://doi.org/10.1073/pnas.0805381105

[70]

Clarke M, Mackay A, Ismer B, et al., 2020, Infant high-grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov, 10(7): 942–963.

[71]

Nguyen KT, Zong CS, Uttamsingh S, et al., 2002, The role of phosphatidylinositol 3-kinase, rho family GTPases, and STAT3 in Ros-induced cell transformation. J Biol Chem, 277(13): 11107–11115. https://doi.org/10.1074/jbc.m108166200

[72]

Charest A, Kheifets V, Park J, et al., Oncogenic targeting of an activated tyrosine kinase to the Golgi apparatus in a glioblastoma. Proc Natl Acad Sci U S A, 100(3): 916–921. https://doi.org/10.1073/pnas.242741799

[73]

Uguen A, De Braekeleer M, 2016, ROS1 fusions in cancer: A review. Future Oncol, 12(16): 1911–1928. https://doi.org/10.2217/fon-2016-0050

[74]

Wu G, Diaz AK, Paugh BS, et al., 2014, The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet, 46(5): 444–450. https://doi.org/10.1038/ng.2938

[75]

Solomon JP, Benayed R, Hechtman JF, et al., 2019, Identifying patients with NTRK fusion cancer. Ann Oncol, 30 Suppl 8: viii16–viii22. https://doi.org/10.1093/annonc/mdz384

[76]

Klein R, Smeyne RJ, Wurst W, et al., 1993, Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell, 75(1): 113–122. https://doi.org/10.1016/s0092-8674(05)80088-1

[77]

International Cancer Genome Consortium PedBrain Tumor P, 2016, Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med, 22(11): 1314–1320. https://doi.org/10.1038/nm.4204

[78]

Johnson A, Severson E, Gay L, et al., 2017, Comprehensive genomic profiling of 282 pediatric low-and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist, 22(12): 1478–1490. https://doi.org/10.1634/theoncologist.2017-0242

[79]

Morrison KB, Tognon CE, Garnett MJ, et al., 2002, ETV6- NTRK3 transformation requires insulin-like growth factor 1 receptor signaling and is associated with constitutive IRS-1 tyrosine phosphorylation. Oncogene, 21(37): 5684–5695. https://doi.org/10.1038/sj.onc.1205669 

[80]

Nelson KN, Meyer AN, Siari A, et al., 2016, Oncogenic gene fusion FGFR3-TACC3 is regulated by tyrosine phosphorylation. Mol Cancer Res, 14(5): 458–469. https://doi.org/10.1158/1541-7786.mcr-15-0497

[81]

Parker BC, Annala MJ, Cogdell DE, et al., 2013, The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Invest, 123(2): 855–865. https://doi.org/10.1158/1538-7445.am2013-5311

[82]

Frattini V, Pagnotta SM, Tala, et al., 2018, A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature, 553(7687): 222–227. https://doi.org/10.1038/nature25171

[83]

Hu H, Mu Q, Bao Z, et al., 2018, Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor. Cell, 175(6): 1665–1678.e1618.

[84]

Davare MA, Henderson JJ, Agarwal A, et al., 2018, Rare but recurrent ROS1 fusions resulting from chromosome 6q22 microdeletions are targetable oncogenes in glioma. Clin Cancer Res, 24(24): 6471–6482. https://doi.org/10.1158/1078-0432.ccr-18-1052

[85]

Matjasic A, Zupan A, Bostjancic E, et al., 2002, A novel PTPRZ1– ETV1 fusion in gliomas. Brain Pathol, 30(2): 226–234. https://doi.org/10.1111/bpa.12776

[86]

Mak HH, Peschard P, Lin T, et al., 2007, Oncogenic activation of the Met receptor tyrosine kinase fusion protein, Tpr-Met, involves exclusion from the endocytic degradative pathway. Oncogene, 26(51): 7213–7221. https://doi.org/10.1038/sj.onc.1210522

[87]

Hernandez L, Pinyol M, Hernandez S, et al., 1999, TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood, 94(9): 3265–3268. https://doi.org/10.1182/blood.v94.9.3265

[88]

Slotkin EK, Diolaiti D, Shukla NN, et al., 2019, Patient-driven discovery, therapeutic targeting, and post-clinical validation of a novel AKT1 fusion-driven cancer. Cancer Discov, 9(5): 605–616. https://doi.org/10.1158/2159-8290.cd-18-0953

[89]

Choudhury NJ, Drilon A, 2020, Decade in review: A new era for RET-rearranged lung cancers. Transl Lung Cancer Res, 9(6): 2571–2580. https://doi.org/10.21037/tlcr-20-346

[90]

Ziegler DS, Wong M, Mayoh C, et al., 2018, Brief report: Potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma. Br J Cancer, 119(6): 693–696. https://doi.org/10.1038/s41416-018-0251-2

[91]

Drilon A, 2019, TRK inhibitors in TRK fusion-positive cancers. Ann Oncol, 30 Suppl 8: viii23–viii30. https://doi.org/10.1093/annonc/mdz282

[92]

Li Z, Shen L, Ding D, et al., 2018, Efficacy of crizotinib among different types of ROS1 fusion partners in patients with ROS1-rearranged non-small cell lung cancer. J Thorac Oncol, 13(7): 987–995. https://doi.org/10.1016/j.jtho.2018.04.016

[93]

Forschner A, Forchhammer S, Bonzheim I, 2020, NTRK gene fusions in melanoma: Detection, prevalence and potential therapeutic implications. J Dtsch Dermatol Ges, 18(12): 1387–1392. https://doi.org/10.1111/ddg.14160

[94]

Goyal L, Saha SK, Liu LY, et al., 2017, Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov, 7(3): 252–263. https://doi.org/10.1158/1538-7445.am2017-4114

[95]

Rosen EY, Johnson ML, Clifford SE, et al., 2021, Overcoming MET-dependent resistance to selective RET inhibition in patients with RET fusion-positive lung cancer by combining selpercatinib with crizotinib. Clin Cancer Res, 27(1): 34–42. https://doi.org/10.1158/1078-0432.ccr-20-2278

[96]

Kulkarni A, Al-Hraishawi H, Simhadri S, et al., 2017, BRAF fusion as a novel mechanism of acquired resistance to vemurafenib in BRAF(V600E) mutant melanoma. Clin Cancer Res, 23(18): 5631–5638. https://doi.org/10.1158/1078-0432.ccr-16-0758

[97]

Available from: https://www.foundationmedicine.com/genomic-testing [Last accessed on 2019 Feb 01]. 

[98]

Song Z, Liu T, Shi L, et al., 2021, The deep learning model combining CT image and clinicopathological information for predicting ALK fusion status and response to ALK-TKI therapy in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging, 48(2): 361–371. https://doi.org/10.1007/s00259-020-04986-6

[99]

Zhang Y, Li J, Yi K, et al., 2019, Elevated signature of a gene module coexpressed with CDC20 marks genomic instability in glioma. Proc Natl Acad Sci U S A, 116(14): 6975–6984. https://doi.org/10.1073/pnas.1921769117

[100]

Drilon A, Rekhtman N, Arcila M, et al., 2016, Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: An open-label, single-centre, phase 2, single-arm trial. Lancet Oncol, 17(12): 1653–1660. https://doi.org/10.1016/s1470-2045(16)30562-9

[101]

Aggarwal C, Redman MW, Lara PN Jr., et al., 2019, SWOG S1400D (NCT02965378), a phase II study of the fibroblast growth factor receptor inhibitor AZD4547 in previously treated patients with fibroblast growth factor pathway-activated stage IV squamous cell lung cancer (lung-MAP substudy). J Thorac Oncol, 14(10): 1847–1852. https://doi.org/10.1016/j.jtho.2019.05.041

[102]

Drilon A, Siena S, Dziadziuszko R, et al., 2020, Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: Integrated analysis of three phase 1-2 trials. Lancet Oncol, 21(2): 261–270.

[103]

Drilon A, Nagasubramanian R, Blake JF, et al., 2017, A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov, 7(9): 963–972. https://doi.org/10.1158/2159-8290.cd-17-0507

[104]

Drilon A, Laetsch TW, Kummar S, et al., 2018, Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med, 378(8): 731–739. 

[105]

Hong DS, Bauer TM, Lee JJ, et al., 2019, Larotrectinib in adult patients with solid tumours: A multi-centre, open-label, phase I dose-escalation study. Ann Oncol, 30(2): 325–331. https://doi.org/10.1093/annonc/mdy539

[106]

Hong DS, DuBois SG, Kummar S, et al., 2020, Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol, 21(4): 531–540. https://doi.org/10.1016/s1470-2045(19)30856-3

[107]

Zhao Z, Chen J, Bao Z, et al., 2020, Extensive MET alterations confer clinical response to MET inhibitors in gliomas. BioRxiv, 2020: 364711. 

[108]

Laetsch TW, DuBois SG, Mascarenhas L, et al., 2018, Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: Phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol, 19(5): 705–714. https://doi.org/10.1016/s1470-2045(18)30119-0

Conflict of interest
The authors declare no conflict of interest.
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Published by AccScience Publishing