AccScience Publishing / GHES / Online First / DOI: 10.36922/ghes.3556
LETTER TO EDITOR

Global solutions for long COVID: The necessity of sustainable vagal tone restoration

Claire-Marie Rangon1* Peter Staats2
Show Less
1 One Clinic, Child Neurology, Montmorency, France
2 Office of the Chief Medical Officer, National Spine and Pain Centers, Atlantic Beach, Florida, United States of America
Submitted: 1 May 2024 | Published: 9 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Conflict of interest
Peter Staats owns patents on VNS for viral infections such as COVID-19 and is the founder of the company electroCore. Meanwhile, Claire-Marie Rangon declares no competing of interests.
References

Al-Aly, Z., & Topol, E. (2024). Solving the puzzle of Long Covid. Science, 383(6685):830-832. https://doi.org/10.1126/science.adl0867

 

Bohlson, S.S., O’Conner, S.D., Hulsebus, H.J., Ho, M.M., & Fraser, D.A. (2014). Complement, C1q, and C1q-related molecules regulate macrophage polarization. Frontiers in Immunology, 5:402. https://doi.org/10.3389/fimmu.2014.00402

 

Cervia-Hasler, C., Brüningk, S.C., Hoch, T., Fan, B., Muzio, G., Thompson, R.C., et al. (2024). Persistent complement dysregulation with signs of thromboinflammation in active Long Covid. Science, 383(6680):eadg7942. https://doi.org/10.1126/science.adg7942

 

Jakob, M.O., Murugan, S., & Klose, C.S.N. (2020). Neuro-immune circuits regulate immune responses in tissues and organ homeostasis. Frontiers in Immunology, 11:308. https://doi.org/10.3389/fimmu.2020.00308

 

Jin, H., Li, M., Jeong, E., Castro-Martinez, F., & Zuker, C.S. (2024). A body-brain circuit that regulates body inflammatory responses. Nature, 630(8017):695-703. https://doi.org/10.1038/s41586-024-07469-y

 

Kim, S., Park, I., Lee, J.H., Kim, S., Jang, D.H., & Jo, Y.H. (2022). Vagus nerve stimulation improves mitochondrial dysfunction in post-cardiac arrest syndrome in the asphyxial cardiac arrest model in rats. Frontiers in Neuroscience, 16:762007. https://doi.org/10.3389/fnins.2022.762007

 

Kumaria, A., & Ashkan, K. (2023). Neuromodulation as an anticancer strategy. Cancer Medicine, 12(21):20521-20522. https://doi.org/10.1002/cam4.6624

 

Lladós, G., Massanella, M., Coll-Fernández, R., Rodríguez, R., Hernández, E., Lucente, G., et al. (2023). Vagus nerve dysfunction in the post-COVID-19 condition : A pilot cross-sectional study. Clinical Microbiology and Infection, 30(4):515-521. https://doi.org/10.1016/j.cmi.2023.11.007

 

Nakamura, Y., Matsumoto, H., Wu, C.H., Fukaya, D., Uni, R., Hirakawa, Y., et al. (2023). Alpha 7 nicotinic acetylcholine receptors signaling boosts cell-cell interactions in macrophages effecting anti-inflammatory and organ protection. Communications Biology, 6(1):666. https://doi.org/10.1038/s42003-023-05051-2

 

Papadopoulou, M., Bakola, E., Papapostolou, A., Stefanou, M.I., Andreadou, E., Zouvelou, V., et al. (2023). Autonomic dysfunction entwined with post-COVID but absent in non-post-COVID patients: A neurophysiological and neurosonology study. Therapeutic Advances in Neurological Disorders, 16:eCollection 2023. https://doi.org/10.1177/17562864231180711

 

Pendse, M., De Selle, H., Vo, N., Quinn, G., Dende, C., Li, Y., et al. (2023). Macrophages regulate gastrointestinal motility through complement component 1q. Elife, 12:e78558. https://doi.org/10.7554/eLife.78558

 

Petrisko, T.J., Gargus, M., Chu, S.H., Selvan, P., Whiteson, K.L., & Tenner, A.J. (2023). Influence of complement protein C1q or complement receptor C5aR1 on gut microbiota composition in wildtype and Alzheimer’s mouse models. Journal of Neuroinflammation, 20(1):211. https://doi.org/10.1186/s12974-023-02885-9

 

Rangon, C.M. (2024). VNS in Long COVID. In: Vagus Nerve Stimulation. United States: Academic Press Inc.

 

Rangon, C.M., & Staats, P. (2024). Benefit of noninvasive vagus nerve stimulation in vaccine optimization for young children. Microbes and Immunity, 1(1):2598. https://doi.org/10.36922/mi.2598

 

Rangon, C.M., Barruet, R., Mazouni, A., Le Cossec, C., Thevenin, S., Guillaume, J., et al. (2021). Auricular neuromodulation for mass vagus nerve stimulation: Insights from SOS COVID-19 a multicentric, randomized, controlled, double-blind French pilot study. Frontiers in Physiology, 12:704599. https://doi.org/10.3389/fphys.2021.704599

 

Rangon, C.M., Krantic, S., Moyse, E., & Fougère, B. (2020). The vagal autonomic pathway of COVID-19 at the crossroad of Alzheimer’s Disease and aging: A review of knowledge. Journal of Alzheimers Disease Reports, 4(1):537-551. https://doi.org/10.3233/ADR-200273

 

Schedel, A., Thornton, S., Schloss, P., Klüter, H., & Bugert, P. (2011). Human platelets express functional Alpha7-nicotinic acetylcholine receptors. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(4):928-934. https://doi.org/10.1161/ATVBAHA.110.218297

 

Sévoz‐Couche, C., Liao, W., Foo, H.Y.C., Bonne, I., Lu, T.B., Tan Qi Hui, C., et al. (2024). Direct vagus nerve stimulation: A new tool to control allergic airway inflammation through α7 nicotinic acetylcholine receptor. British Journal of Pharmacology, 181(13):1916-1934. https://doi.org/10.1111/bph.16334

 

Siopi, E., Galerne, M., Rivagorda, M., Saha, S., Moigneu, C., Moriceau, S., et al. (2023). Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice. Molecular Psychiatry, 28(7):3002-3012. https://doi.org/10.1038/s41380-023-02071-6

 

Van Westerloo, D.J., Giebelen, I.A.J., Meijers, J.C.M., Daalhuisen, J., De Vos, A.F., Levi, M., et al. (2006). Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. Journal of Thrombosis and Haemostasis, 4(9):1997-2002. https://doi.org/10.1111/j.1538-7836.2006.02112.x

 

Yang, Y., Yang, L.Y., Orban, L., Cuylear, D., Thompson, J., Simon, B., et al. (2018). Non-invasive vagus nerve stimulation reduces blood-brain barrier disruption in a rat model of ischemic stroke. Brain Stimulation, 11(4):689-698. https://doi.org/10.1016/j.brs.2018.01.034

 

Zhang, D., Zhou, Y., Ma, Y., Chen, P., Tang, J., Yang, B., et al. (2023). Gut microbiota dysbiosis correlates with Long COVID-19 at one-year after discharge. Journal of Korean Medical Science, 38(15):e120. https://doi.org/10.3346/jkms.2023.38.e120

 

Zheng, Z.S., Simonian, N., Wang, J., & Rosario, E.R. (2024), Transcutaneous vagus nerve stimulation improves Long COVID symptoms in a female cohort: A pilot study. Frontiers in Neurology, 15:1393371. https://doi.org/10.3389/fneur.2024.1393371

 

Zhou, H., Liang, H., Li, Z.F., Xiang, H., Liu, W., & Li, J.G. (2013). Vagus nerve stimulation attenuates intestinal epithelial tight junctions disruption in endotoxemic mice through α7 nicotinic acetylcholine receptors. Shock, 40(2):144-151. https://doi.org/10.1097/SHK.0b013e318299e9c0

Share
Back to top
Global Health Economics and Sustainability, Electronic ISSN: 2972-4570 Published by AccScience Publishing