Antimicrobial silver-loaded starch-based bioplastic grafted with poly(4-vinylpyridine) as a novel eco-friendly material
The incorporation of polymer materials into disposable medical devices proves to be valuable due to their chemical and physical properties that make them practically unique. Approximately 25% of hospital waste consists of plastics, prompting various efforts to mitigate their environmental impact, such as reusing or reprocessing. In this study, we attained a hybrid material (organic-inorganic) with antibacterial properties through surface modification of a starch-based polymer matrix and subsequent silver immobilization. The raw material, which is a commercially available biodegradable product, was grafted at room temperature with the monomer 4-vinylpyridine through a “grafting-from” method initiated with high-energy gamma rays from a Co-60 source, using absorbed doses of 10 – 50 kGy and monomer concentrations of 10 – 100 vol%. Grafted films were loaded with silver at room temperature using natural radiation. Our results demonstrate that the modified materials exhibit antimicrobial activity against the pathogens Staphylococcus aureus and Pseudomonas aeruginosa, as confirmed through the Kirby-Bauer disc diffusion assay.
Abe, M.M., Branciforti, M.C., & Brienzo, M. (2021). Biodegradation of hemicellulose-cellulose-starch-based bioplastics and microbial polyesters. Recycling, 6(1):22. https://doi.org/10.3390/recycling6010022
Ali, A., Basit, A., Hussain, A., Sammi, S., Wali, A., Goksen, G., et al. (2023). Starch-based environment friendly, edible and antimicrobial films reinforced with medicinal plants. Frontiers in Nutrition, 9:1066337. https://doi.org/10.3389/fnut.2022.1066337
Avramescu, A.M. (2023). The importance and necessity of new bio-based materials in industrial design. Materiale Plastice, 60(1):121-127. https://doi.org/10.37358/MP.23.1.5651
Bartolucci, L., Cordiner, S., De Maina, E., Kumar, G., Mele, P., Mulone, V., et al. (2023). Sustainable valorization of bioplastic waste: A review on effective recycling routes for the most widely used biopolymers. International Journal of Molecular Sciences, 24(9):7696. https://doi.org/10.3390/ijms24097696
Çaykara, T., Sande, M.G., Azoia, N., Rodrigues, L.R., & Silva, C.J. (2020). Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces. Medical Microbiology and Immunology, 209(3):363-372. https://doi.org/10.1007/s00430-020-00660-8
Chae, Y., & An, Y.J. (2017). Effects of micro-and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Marine Pollution Bulletin, 124(2):624-632. https://doi.org/10.1016/j.marpolbul.2017.01.070
Ecoshell. (2023). Available from: https://www.ecoshell.com.mx [Last accessed on 2023 Aug 09].
Eerkes-Medrano, D., Thompson, R.C., & Aldridge, D.C. (2015). Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75:63-82. https://doi.org/10.1016/j.watres.2015.02.012
Flores-Rojas, G.G., Vázquez, E., López-Saucedo, F., Buendía- González, L., Vera-Graziano, R., Mendizabal, E., et al. (2023). Lignocellulosic membrane grafted with 4-vinylpiridine using radiation chemistry: Antimicrobial activity of loaded vancomycin. Cellulose, 30(6):3853-3868. https://doi.org/10.1007/s10570-023-05089-9
Geyer, R., Jambeck, J.R., & Law, K.L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7):e1700782. https://doi.org/10.1126/sciadv.1700782
Ghazzy, A., Naik, R.R., & Shakya, A.K. (2023). Metal-polymer nanocomposites: A promising approach to antibacterial materials. Polymers (Basel), 15(9):2167. https://doi.org/10.3390/polym15092167
Gill, Y.Q., Khurshid, M., Abid, U., & Ijaz, M.W. (2022). Review of hospital plastic waste management strategies for Pakistan. Environmental Science and Pollution Research International, 29(7):9408-9421. https://doi.org/10.1007/s11356-021-17731-9
Huang, Y.X., Wang, Z., Horseman, T., Livingston, J.L., & Lin, S. (2022). Interpreting contact angles of surfactant solutions on microporous hydrophobic membranes. Journal of Membrane Science Letters, 2(1):100015. https://doi.org/10.1016/j.memlet.2022.100015
Idrees, M., Sawant, S., Karodia, N., & Rahman, A. (2021). Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. International Journal of Environmental Research and Public Health, 18(14):7602. https://doi.org/10.3390/ijerph18147602
Jain, N., & LaBeaud, D. (2022). How should US health care lead global change in plastic waste disposal? AMA Journal of Ethics, 24(10):E986-E993. https://doi.org/10.1001/amajethics.2022.986
Jiang, S., Li, Q., Wang, F., Wang, Z., Cao, X., Shen, X., et al. (2022). Highly effective and sustainable antibacterial membranes synthesized using biodegradable polymers. Chemosphere, 291(Pt 3):133106. https://doi.org/10.1016/j.chemosphere.2021.133106
Khan, T., Ullah, H., Nasar, A., & Ullah, M. (2022). Antibiotic resistance and sensitivity pattern of Pseudomonas aeruginosa obtained from clinical samples. Letters in Applied NanoBioScience, 12(4):112. https://doi.org/10.33263/lianbs124.112
Kluytmans, J., van Belkum, A., & Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clinical Microbiology Reviews, 10(3):505-520. https://doi.org/10.1128/CMR.10.3.505
Kong, X., Qi, H., & Curtis, J.M. (2014). Synthesis and characterization of high-molecular weight aliphatic polyesters from monomers derived from renewable resources. Journal of Applied Polymer Science, 131(15):40579. https://doi.org/10.1002/app.40579
Kumar, S., Sarita, Nehra, M., Dilbaghi, N., Tankeshwar, K., & Kim, K.H. (2018). Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Progress in Polymer Science, 80:1-38. https://doi.org/10.1016/j.progpolymsci.2018.03.001
Li, N., Zhou, Z., Wu, F., Lu, Y., Jiang, D., Zhong, L., et al. (2022). Development of pH-indicative and antimicrobial films based on polyvinyl alcohol/starch incorporated with ethyl lauroyl arginate and mulberry anthocyanin for active packaging. Coatings, 12(10):1392. https://doi.org/10.3390/coatings12101392
Mehta, K., Kumar, V., Rai, B., Talwar, M., & Kumar, G. (2023). Silver nanoparticles-immobilized-radiation grafted polypropylene fabric as breathable, antibacterial wound dressing. Radiation Physics and Chemistry, 204:110683. https://doi.org/10.1016/j.radphyschem.2022.110683
Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H., & AbdulGhani, A. (2022). Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Current Research in Green and Sustainable Chemistry, 5:100273. https://doi.org/10.1016/j.crgsc.2022.100273
Muñoz-Bonilla, A., & Fernández-García, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37(2):281-339. https://doi.org/10.1016/j.progpolymsci.2011.08.005
Nisha, A.J., Vallinayagam, S., & Rajendran, K. (2022). Biodegradable of plastic industrial waste material. In: Iqbal, H.M.N., Bilal, M., Nguyen, T.A., & Yasin, G. (eds.). Biodegradation and Biodeterioration at the Nanoscale. Amsterdam: Elsevier, p.323-338. https://doi.org/10.1016/B978-0-12-823970-4.00014-2
Pacioni, N.L., Borsarelli, C.D., Rey, V., & Veglia, A. V. (2015). Synthetic routes for the preparation of silver nanoparticles: A mechanistic perspective. In: Alarcon, E.I., Griffith, M., & Udekwu, K.I. (eds.). Silver Nanoparticle Applications, in the Fabrication and Design of Medical and Biosensing Devices. 1st ed. Germany: Springer International Publishing, p.13-46. https://doi.org/10.1007/978-3-319-11262-6_2
Patnaik, S., Panda, A.K., & Kumar, S. (2020). Thermal degradation of corn starch based biodegradable plastic plates and determination of kinetic parameters by isoconversional methods using thermogravimetric analyzer. Journal of the Energy Institute, 93(4):1449-1459. https://doi.org/10.1016/j.joei.2020.01.007
Prabhu, S., & Poulose, E.K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2(1):32-41. https://doi.org/10.1186/2228-5326-2-32
Salaberria, A.M., Diaz, R.H., Labidi, J., & Fernandes, S.C.M. (2015). Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocolloids, 46:93-102. https://doi.org/10.1016/j.foodhyd.2014.12.016
Sen, S., Nugay, N., & Nugay, T. (2003). Synthesis and properties of poly(4-vinylpyridine)/montmorillonite nanocomposites. E-Polymers, 3(1):49. https://doi.org/10.1515/epoly.2003.3.1.634
Tashiro, T. (2001). Antibacterial and bacterium adsorbing macromolecules. Macromolecular Materials and Engineering, 286(2):63-87. https://doi.org/10.1002/1439-2054(20010201)286:2<63:aid-mame63>3.0.co;2-h
Tudor, V., Mocuta, D., Teodorescu, R.F., & Smedescu, D. (2019). The issue of plastic and microplastic pollution in soil. Materiale Plastice, 56(3):484-487. https://doi.org/10.37358/MP.19.3.5214
Vega, D.A., Villar, M.A., Failla, M.D., & Vallés, E.M. (1996). Thermogravimetric analysis of starch-based biodegradable blends. Polymer Bulletin, 37(2):229-235. https://doi.org/10.1007/BF00294126