Global solutions for long COVID: The necessity of sustainable vagal tone restoration
Al-Aly, Z., & Topol, E. (2024). Solving the puzzle of Long Covid. Science, 383(6685):830-832. https://doi.org/10.1126/science.adl0867
Bohlson, S.S., O’Conner, S.D., Hulsebus, H.J., Ho, M.M., & Fraser, D.A. (2014). Complement, C1q, and C1q-related molecules regulate macrophage polarization. Frontiers in Immunology, 5:402. https://doi.org/10.3389/fimmu.2014.00402
Cervia-Hasler, C., Brüningk, S.C., Hoch, T., Fan, B., Muzio, G., Thompson, R.C., et al. (2024). Persistent complement dysregulation with signs of thromboinflammation in active Long Covid. Science, 383(6680):eadg7942. https://doi.org/10.1126/science.adg7942
Jakob, M.O., Murugan, S., & Klose, C.S.N. (2020). Neuro-immune circuits regulate immune responses in tissues and organ homeostasis. Frontiers in Immunology, 11:308. https://doi.org/10.3389/fimmu.2020.00308
Jin, H., Li, M., Jeong, E., Castro-Martinez, F., & Zuker, C.S. (2024). A body-brain circuit that regulates body inflammatory responses. Nature, 630(8017):695-703. https://doi.org/10.1038/s41586-024-07469-y
Kim, S., Park, I., Lee, J.H., Kim, S., Jang, D.H., & Jo, Y.H. (2022). Vagus nerve stimulation improves mitochondrial dysfunction in post-cardiac arrest syndrome in the asphyxial cardiac arrest model in rats. Frontiers in Neuroscience, 16:762007. https://doi.org/10.3389/fnins.2022.762007
Kumaria, A., & Ashkan, K. (2023). Neuromodulation as an anticancer strategy. Cancer Medicine, 12(21):20521-20522. https://doi.org/10.1002/cam4.6624
Lladós, G., Massanella, M., Coll-Fernández, R., Rodríguez, R., Hernández, E., Lucente, G., et al. (2023). Vagus nerve dysfunction in the post-COVID-19 condition : A pilot cross-sectional study. Clinical Microbiology and Infection, 30(4):515-521. https://doi.org/10.1016/j.cmi.2023.11.007
Nakamura, Y., Matsumoto, H., Wu, C.H., Fukaya, D., Uni, R., Hirakawa, Y., et al. (2023). Alpha 7 nicotinic acetylcholine receptors signaling boosts cell-cell interactions in macrophages effecting anti-inflammatory and organ protection. Communications Biology, 6(1):666. https://doi.org/10.1038/s42003-023-05051-2
Papadopoulou, M., Bakola, E., Papapostolou, A., Stefanou, M.I., Andreadou, E., Zouvelou, V., et al. (2023). Autonomic dysfunction entwined with post-COVID but absent in non-post-COVID patients: A neurophysiological and neurosonology study. Therapeutic Advances in Neurological Disorders, 16:eCollection 2023. https://doi.org/10.1177/17562864231180711
Pendse, M., De Selle, H., Vo, N., Quinn, G., Dende, C., Li, Y., et al. (2023). Macrophages regulate gastrointestinal motility through complement component 1q. Elife, 12:e78558. https://doi.org/10.7554/eLife.78558
Petrisko, T.J., Gargus, M., Chu, S.H., Selvan, P., Whiteson, K.L., & Tenner, A.J. (2023). Influence of complement protein C1q or complement receptor C5aR1 on gut microbiota composition in wildtype and Alzheimer’s mouse models. Journal of Neuroinflammation, 20(1):211. https://doi.org/10.1186/s12974-023-02885-9
Rangon, C.M. (2024). VNS in Long COVID. In: Vagus Nerve Stimulation. United States: Academic Press Inc.
Rangon, C.M., & Staats, P. (2024). Benefit of noninvasive vagus nerve stimulation in vaccine optimization for young children. Microbes and Immunity, 1(1):2598. https://doi.org/10.36922/mi.2598
Rangon, C.M., Barruet, R., Mazouni, A., Le Cossec, C., Thevenin, S., Guillaume, J., et al. (2021). Auricular neuromodulation for mass vagus nerve stimulation: Insights from SOS COVID-19 a multicentric, randomized, controlled, double-blind French pilot study. Frontiers in Physiology, 12:704599. https://doi.org/10.3389/fphys.2021.704599
Rangon, C.M., Krantic, S., Moyse, E., & Fougère, B. (2020). The vagal autonomic pathway of COVID-19 at the crossroad of Alzheimer’s Disease and aging: A review of knowledge. Journal of Alzheimers Disease Reports, 4(1):537-551. https://doi.org/10.3233/ADR-200273
Schedel, A., Thornton, S., Schloss, P., Klüter, H., & Bugert, P. (2011). Human platelets express functional Alpha7-nicotinic acetylcholine receptors. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(4):928-934. https://doi.org/10.1161/ATVBAHA.110.218297
Sévoz‐Couche, C., Liao, W., Foo, H.Y.C., Bonne, I., Lu, T.B., Tan Qi Hui, C., et al. (2024). Direct vagus nerve stimulation: A new tool to control allergic airway inflammation through α7 nicotinic acetylcholine receptor. British Journal of Pharmacology, 181(13):1916-1934. https://doi.org/10.1111/bph.16334
Siopi, E., Galerne, M., Rivagorda, M., Saha, S., Moigneu, C., Moriceau, S., et al. (2023). Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice. Molecular Psychiatry, 28(7):3002-3012. https://doi.org/10.1038/s41380-023-02071-6
Van Westerloo, D.J., Giebelen, I.A.J., Meijers, J.C.M., Daalhuisen, J., De Vos, A.F., Levi, M., et al. (2006). Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. Journal of Thrombosis and Haemostasis, 4(9):1997-2002. https://doi.org/10.1111/j.1538-7836.2006.02112.x
Yang, Y., Yang, L.Y., Orban, L., Cuylear, D., Thompson, J., Simon, B., et al. (2018). Non-invasive vagus nerve stimulation reduces blood-brain barrier disruption in a rat model of ischemic stroke. Brain Stimulation, 11(4):689-698. https://doi.org/10.1016/j.brs.2018.01.034
Zhang, D., Zhou, Y., Ma, Y., Chen, P., Tang, J., Yang, B., et al. (2023). Gut microbiota dysbiosis correlates with Long COVID-19 at one-year after discharge. Journal of Korean Medical Science, 38(15):e120. https://doi.org/10.3346/jkms.2023.38.e120
Zheng, Z.S., Simonian, N., Wang, J., & Rosario, E.R. (2024), Transcutaneous vagus nerve stimulation improves Long COVID symptoms in a female cohort: A pilot study. Frontiers in Neurology, 15:1393371. https://doi.org/10.3389/fneur.2024.1393371
Zhou, H., Liang, H., Li, Z.F., Xiang, H., Liu, W., & Li, J.G. (2013). Vagus nerve stimulation attenuates intestinal epithelial tight junctions disruption in endotoxemic mice through α7 nicotinic acetylcholine receptors. Shock, 40(2):144-151. https://doi.org/10.1097/SHK.0b013e318299e9c0