AccScience Publishing / DP / Online First / DOI: 10.36922/dp.3882
ORIGINAL RESEARCH ARTICLE

A novel approach for designing high-accuracy approximate signed multipliers

Faraz Baraati1 Abdolah Amirany2* Milad Tanavardi Nasab3 Kian Jafari4,5 Reza Ghaderi1
Show Less
1 Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
2 Department of Electrical and Computer Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, United States of America
3 Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
4 Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, Quebec, Canada
5 Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
Submitted: 6 June 2024 | Accepted: 30 July 2024 | Published: 8 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Signed multiplication is crucial for performing arithmetic operations with positive and negative numbers. It has applications in signal processing, digital image processing, communication, cryptography, neural network hardware accelerators, and more. Until today, to multiply signed numbers, the data are often converted to unsigned format, and the sign is added to the final product. This method imposes high hardware requirements for data conversion and presents challenges in designing approximate multipliers. This paper proposes a novel method for designing approximate signed multipliers that eliminate the need for data conversion, thereby reducing the overall hardware requirement while maintaining accuracy. Comprehensive evaluations at the system level using MATLAB and circuit-level performance analysis using HSPICE demonstrate that the proposed approach offers a successful trade-off between area overhead, power consumption, and accuracy. The achieved trade-off makes the proposed method a promising solution for optimizing digital circuits in various applications such as artificial intelligence and image processing.

Graphical abstract
Keywords
Signed multiplication
Approximate multiplier
Low-power design
Neural networks
Funding
None.
Conflict of interest
Abdolah Amirany is an Editorial Board Member of this journal but was not involved, directly or indirectly, in the editorial or peer-review process for this paper. Separately, the other authors declared no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Ullah S, Schmidl H, Sahoo SS, Rehman S, Kumar A. Area-optimized accurate and approximate softcore signed multiplier architectures. IEEE Trans Comput. 2021;70(3):384-392. doi: 10.1109/tc.2020.2988404

 

  1. Cherkauer BS, Friedman EG. A hybrid radix-4/madix-8 low power signed multiplier architecture. IEEE Trans Circuits Syst II Analog Digit Sig Process. 1997;44(8):656-659. doi: 10.1109/82.618039

 

  1. Amirany A, Epperson G, Patooghy A, Rajaei R. Accuracy adaptive spintronic adder for image processing applications. IEEE Transactions on Magnetics. United States: IEEE; 2021. p. 1-1. doi: 10.1109/tmag.2021.3069161

 

  1. Rezaei M, Amirany A, Moaiyeri MH, Jafari K. A high-accuracy and low-power emerging technology-based associative memory. IEEE Trans Nanotechnol. 2024;23:1-6. doi: 10.1109/tnano.2024.3380368

 

  1. Rezaei M, Amirany A, Moaiyaeri MH, Jafari K. A Reliable non-volatile in-memory computing associative memory based on spintronic neurons and synapses. Engineering Reports; 2024. doi: 10.1002/eng2.12902

 

  1. Iranfar P, Amirany A, Moaiyeri MH, Jafari K. On the Layout-Oriented Investigation of Power Attack Hardness of Spintronic-Based Logic Circuits. Circuits Syst Sig Process. 2024;43:3212-3237. doi: 10.1007/s00034-024-02603-7

 

  1. Amirany A, Jafari K, Moaiyeri MH. A Task-schedulable nonvolatile spintronic field-programmable gate array. IEEE Magn Lett. 2021;12:1-4. doi: 10.1109/lmag.2021.3092995

 

  1. Amirany A, Jafari K, Moaiyeri MH. High-Performance and Soft Error Immune Spintronic Retention Latch for Highly Reliable Processors. In: Presented at: Electrical Engineering (ICEE), Iranian Conference on; 2020.

 

  1. Lian Y, Yu YJ. Guest editorial: Low-power digital filter design techniques and their applications. Circuits Syst Sig Process. 2010;29(1):1-5. doi: 10.1007/s00034-009-9110-y

 

  1. Amirany A, Jafari K, Moaiyeri MH. DDR-MRAM: Double data rate magnetic RAM for efficient artificial intelligence and cache applications. IEEE Trans Magn. 2022;58:1-1. doi: 10.1109/tmag.2022.3162030

 

  1. Bakhtiary V, Amirany A, Moaiyeri MH, Jafari K. An SEU-hardened ternary SRAM design based on efficient ternary C-elements using CNTFET technology. Microelectronics Reliab. 2023;140:114881. doi: 10.1016/j.microrel.2022.114881

 

  1. Amirany A, Jafari K, Moaiyeri MH. BVA-NQSL: A bio-inspired variation aware nonvolatile quaternary spintronic latch. IEEE Magn Lett. 2020;11:1-5. doi: 10.1109/lmag.2020.3036834

 

  1. BahmanAbadi M, Amirany A, Jafari K, Moaiyeri MH. Efficient and highly reliable spintronic non-volatile quaternary memory based on carbon nanotube FETs and multi-TMR MTJs. ECS J Solid State Sci Technol. 2022;11:061007. doi: 10.1149/2162-8777/ac77bb

 

  1. Mehri S, Amirany A, Moaiyeri MH, Jafari K. Theoretical circuit design of an efficient spintronic random number generator with an internal post-processing unit. IEEE Magn Lett. 2022;13:1-5. doi: 10.1109/lmag.2022.3200326

 

  1. Amirany A, Moaiyeri MH, Jafari K. MTMR-SNQM: Multi-Tunnel Magnetoresistance Spintronic Non-volatile Quaternary Memory. In: Presented at: 2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL); 2021.

 

  1. Amirany A, Meghdadi M, Moaiyeri MH, Jafari K. Stochastic Spintronic Neuron with Application to Image Binarization. In: Presented at: 2021 26th International Computer Conference, Computer Society of Iran (CSICC); 2021.

 

  1. Amirany A, Rajaei R. Nonvolatile, spin-based, and low-power inexact full adder circuits for computing-in-memory image processing. Spin. 2019;9(3):1950013. doi: 10.1142/s2010324719500139

 

  1. Sayadi L, Timarchi S, Sheikh-Akbari A. Two efficient approximate unsigned multipliers by developing new configuration for approximate 4:2 compressors. IEEE Trans Circuits Syst I Regular Pap. 2023;70(4):1649-1659. doi: 10.1109/tcsi.2023.3242558

 

  1. Avan A, Taheri M, Moaiyeri MH, Navi K. Energy-Efficient approximate compressor design for error-resilient digital signal processing. Int J Electron. 2022;110(9):1-23. doi: 10.1080/00207217.2022.2117854

 

  1. Rajaei R, Amirany A. Nonvolatile low-cost approximate spintronic full adders for computing in memory architectures. IEEE Trans Magn. 2020;56(4):1-8. doi: 10.1109/tmag.2020.2974142

 

  1. Spagnolo F, Corsonello P, Frustaci F, Perri S. Efficient implementation of signed multipliers on FPGAs. Comput Electr Eng. 2024;116:109217. doi: 10.1016/j.compeleceng.2024.109217

 

  1. Strollo AGM, Napoli E, De Caro D, Petra N, Saggese G, Di Meo G. Approximate multipliers using static segmentation: Error analysis and improvements. IEEE Trans Circuits Syst I Regular Pap. 2022;69(6):2449-2462. doi: 10.1109/tcsi.2022.3152921

 

  1. Waris H, Wang C, Liu W, Han J, Lombardi F. Hybrid partial product-based high-performance approximate recursive multipliers. IEEE Trans Emerg Top Comput. 2022;10(1): 507-513. doi: 10.1109/tetc.2020.3013977

 

  1. Yin P, Wang C, Waris H, Liu W, Han Y, Lombardi F. Design and analysis of energy-efficient dynamic range approximate logarithmic multipliers for machine learning. IEEE Trans Sustain Comput 2021;6(4):612-625. doi: 10.1109/tsusc.2020.3004980

 

  1. Almurib HAF, Kumar TN, Lombardi F. Approximate DCT image compression using inexact computing. IEEE Trans Comput. 2018;67(2):149-159. doi: 10.1109/tc.2017.2731770

 

  1. Ejtahed SAH, Timarchi S. Efficient approximate multiplier based on a new 1-gate approximate compressor. Circuits Syst Sig Process. 2022;41(5):2699-2718. doi: 10.1007/s00034-021-01902-7

 

  1. Baugh CR, Wooley BA. A two’s complement parallel array multiplication algorithm. IEEE Trans Comput. 1973;C- 22(12):1045-1047. doi: 10.1109/t-c.1973.223648

 

  1. Osorio RR, Rodriguez G. Truncated SIMD multiplier architecture for approximate computing in low-power programmable processors. IEEE Access. 2019;7:56353- 56366. doi: 10.1109/access.2019.2913743

 

  1. Waris H, Wang C, Liu W. Hybrid low radix encoding-based approximate booth multipliers. IEEE Trans Circuits Syst II Exp Briefs. 2020;67(12):3367-3371. doi: 10.1109/tcsii.2020.2975094

 

  1. Sang-Min K, Jin-Gyun C, Parhi KK. Low error fixed-width CSD multiplier with efficient sign extension. IEEE Trans Circuits Syst II Analog Digit Sig Process. 2003;50(12): 984-993. doi: 10.1109/tcsii.2003.820231

 

  1. Arasteh A, Hossein Moaiyeri M, Taheri M, Navi K, Bagherzadeh N. An energy and area efficient 4:2 compressor based on FinFETs. Integration. 2018;60:224-231. doi: 10.1016/j.vlsi.2017.09.010

 

  1. Clark LT, Vashishtha V, Shifren L, et al. ASAP7: A 7-nm finFET predictive process design kit. Microelectronics J. 2016;53:105-115. doi: 10.1016/j.mejo.2016.04.006

 

  1. Ha M, Lee S. Multipliers with approximate 4–2 compressors and error recovery modules. IEEE Embedded Syst Lett. 2018;10(1):6-9. doi: 10.1109/les.2017.2746084

 

  1. Ahmadinejad M, Moaiyeri MH, Sabetzadeh F. Energy and area efficient imprecise compressors for approximate multiplication at nanoscale. AEU Int J Electron Commun. 2019;110:152859. doi: 10.1016/j.aeue.2019.152859

 

  1. Yang Z, Han J, Lombardi F. Approximate Compressors for Error-Resilient Multiplier Design. In: Presented at: 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS); 2015.

 

  1. Jinghang L, Jie H, Lombardi F. New metrics for the reliability of approximate and probabilistic adders. IEEE Trans Comput. 2013;62(9):1760-1771. doi: 10.1109/tc.2012.146

 

  1. Akbari O, Kamal M, Afzali-Kusha A, Pedram M. Dual-quality 4:2 Compressors for utilizing in dynamic accuracy configurable multipliers. IEEE Trans Very Large Scale Integr Syst. 2017;25(4):1352-1361. doi: 10.1109/tvlsi.2016.2643003

 

  1. Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing using MATLAB. United Kingdom; Pearson Education India; 2004.

 

  1. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600-612. doi: 10.1109/tip.2003.819861

 

  1. Sabetzadeh F, Moaiyeri MH, Ahmadinejad M. An Ultra- Efficient Approximate Multiplier with Error Compensation for Error-Resilient Applications. In: IEEE Transactions on Circuits and Systems II: Express Briefs; 2022. p. 1-1. doi: 10.1109/tcsii.2022.3215065

 

  1. Ahmadinejad M, Moaiyeri MH. Energy-and Quality- Efficient Approximate Multipliers for Neural Network and Image Processing Applications. In: IEEE Transactions on Emerging Topics in Computing; 2021. p. 1-1. doi: 10.1109/tetc.2021.3072666

 

  1. Pei H, Yi X, Zhou H, He Y. Design of ultra-low power consumption approximate 4–2 compressors based on the compensation characteristic. IEEE Trans Circuits Syst II Exp Briefs. 2021;68(1):461-465. doi: 10.1109/tcsii.2020.3004929

 

  1. Kumar UA, Chatterjee SK, Ahmed SE. Low-power compressor-based approximate multipliers with error correcting module. IEEE Embedded Syst Lett. 2022;14(2): 59-62. doi: 10.1109/les.2021.3113005

 

  1. Esposito D, Strollo AGM, Napoli E, De Caro D, Petra N. Approximate multipliers based on new approximate compressors. IEEE Trans Circuits Syst I Regular Pap. 2018;65(12):4169-4182. doi: 10.1109/tcsi.2018.2839266

 

  1. Waris H, Wang C, Xu C, Liu W. AxRMs: Approximate Recursive Multipliers using High-Performance Building Blocks. In: IEEE Transactions on Emerging Topics in Computing; 2021. p. 1-1. doi: 10.1109/tetc.2021.3096515

 

  1. Strollo AGM, Napoli E, De Caro D, Petra N, Meo GD. Comparison and extension of approximate 4-2 compressors for low-power approximate multipliers. IEEE Trans Circuits Syst I Regular Pap. 2020;67(9):3021-3034. doi: 10.1109/tcsi.2020.2988353

 

  1. Fang B, Liang H, Xu D, et al. Approximate multipliers based on a novel unbiased approximate 4-2 compressor. Integration. 2021;81:17-24. doi: 10.1016/j.vlsi.2021.05.003

 

  1. Baraati F, Nasab MT, Ghaderi R, Jafari K. FinFET-based Low-Power Approximate Multiplier for Neural Network Hardware Accelerator. In: Presented at: 2022 Iranian International Conference on Microelectronics (IICM); 2022.
Share
Back to top
Design+, Electronic ISSN: 3060-8953 Published by AccScience Publishing