AccScience Publishing / AN / Online First / DOI: 10.36922/AN025310085
MINI-REVIEW

Nucleolar alterations in brain aging and Alzheimer’s disease

Bin Wu1 Juan Zhang2 Yao Lu1* Qiang Liu3,4,5*
Show Less
1 Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
2 Department of Pathophysiology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China
3 Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
4 Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
5 Department of Anesthesiology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
Advanced Neurology, 025310085 https://doi.org/10.36922/AN025310085
Received: 30 July 2025 | Revised: 15 October 2025 | Accepted: 17 October 2025 | Published online: 10 November 2025
(This article belongs to the Special Issue Advanced Neurology 3rd Anniversary Special Issue)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The nucleolus is a dynamic, non-membrane-bound nuclear organelle organized into fibrillar and granular components, serving as a central hub for ribosome biogenesis, stress responses, and cell cycle regulation. In brain aging and Alzheimer’s disease (AD), it undergoes marked structural and functional alterations. Aging brains commonly exhibit cognitive decline, whereas AD is characterized by neuronal loss and biochemical abnormalities, including extracellular amyloid-beta plaques and tau hyperphosphorylation. Mounting evidence indicates that nucleolar alterations—such as impaired ribosome biogenesis, disrupted proteostasis, and activation of nucleolar stress pathways—occur early in AD pathogenesis. This review summarizes current understanding of nucleolar function, highlights its dysfunction in aging and AD, and discusses its potential as a therapeutic target.

Keywords
Brain aging
Alzheimer’s disease
Nucleolus
Structure and function
Funding
This work was supported by the National Key R&D Program of China (2021YFA0804900 and 2020YFA0509300), the National Natural Science Foundation of China (82125009, 82330045, 82071185, 92149303, 32121002 and 82470279), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB39000000), CAS Project for Young Scientists in Basic Research (YSBR- 013), Plans for Major Provincial Science & Technology Projects (202303a07020004), Research Funds of Center for Advanced Interdisciplinary Science and Biomedicine of IHM (QYZD20220003), the Major Frontier Research Project of the University of Science and Technology of China (LS9100000002), the Hefei Comprehensive National Science Center Hefei Brain Project, and the USTC Research Funds of the Double First-Class Initiative.
Conflict of interest
Qiang Liu is an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet. 2020;396(10248):413-446. doi: 10.1016/s0140-6736(20)30367-6

 

  1. Gaspar-Silva F, Trigo D, Magalhaes J. Ageing in the brain: Mechanisms and rejuvenating strategies. Cell Mol Life Sci. 2023;80(7):190. doi: 10.1007/s00018-023-04832-6

 

  1. Huang S, Lu Y, Fang W, Huang Y, Li Q, Xu Z. Neurodegenerative diseases and neuroinflammation-induced apoptosis. Open Life Sci. 2025;20(1):20221051. doi: 10.1515/biol-2022-1051

 

  1. Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health. 2020;5(12):e661-e671. doi: 10.1016/s2468-2667(20)30185-7

 

  1. Jin S, Lu W, Zhang J, et al. The mechanisms, hallmarks, and therapies for brain aging and age-related dementia. Sci Bull (Beijing). 2024;69(23):3756-3776. doi: 10.1016/j.scib.2024.09.005

 

  1. Twarowski B, Herbet M. Inflammatory processes in Alzheimer’s disease-pathomechanism, diagnosis and treatment: A review. Int J Mol Sci. 2023;24(7):6518. doi: 10.3390/ijms24076518

 

  1. Neary D, Snowden JS, Mann DM, et al. Alzheimer’s disease: A correlative study. J Neurol Neurosurg Psychiatry. 1986;49(3):229-237. doi: 10.1136/jnnp.49.3.229

 

  1. Li D, Zhang J, Liu Q. Mechanistic insights on non-coding RNAs in learning and memory. Sci Bull (Beijing). 2023;68(15):1591-1594. doi: 10.1016/j.scib.2023.07.005

 

  1. Zhou H, Xia Y, Zhu R, et al. Ribosomal DNA and neurological disorders. Curr Mol Med. 2025;25(5):556-566. doi: 10.2174/0115665240292079240513093708

 

  1. Hernández-Ortega K, Garcia-Esparcia P, Gil L, Lucas JJ, Ferrer I. Altered machinery of protein synthesis in Alzheimer’s: From the nucleolus to the ribosome. Brain Pathol. 2016;26(5):593-605. doi: 10.1111/bpa.12335

 

  1. Garland W, Comet I, Wu M, et al. A functional link between nuclear RNA decay and transcriptional control mediated by the polycomb repressive complex 2. Cell Rep. 2019;29(7):1800-1811.e6. doi: 10.1016/j.celrep.2019.10.011

 

  1. Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP. The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol. 2021;22(3):165-182. doi: 10.1038/s41580-020-0272-6

 

  1. Hua L, Yan D, Wan C, Hu B. Nucleolus and nucleolar stress: From cell fate decision to disease development. Cells. 2022;11(19):3017. doi: 10.3390/cells11193017

 

  1. Puvion-Dutilleul F, Puvion E, Bachellerie JP. Early stages of pre-rRNA formation within the nucleolar ultrastructure of mouse cells studied by in situ hybridization with a 5’ETS leader probe. Chromosoma. 1997;105(7-8):496-505. doi: 10.1007/bf02510486

 

  1. Hernandez-Verdun D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus. 2011;2(3):189-194. doi: 10.4161/nucl.2.3.16246

 

  1. Olson MO, Dundr M, Szebeni A. The nucleolus: An old factory with unexpected capabilities. Trends Cell Biol. 2000;10(5):189-196. doi: 10.1016/s0962-8924(00)01738-4

 

  1. Carron C, Balor S, Delavoie F, et al. Post-mitotic dynamics of pre-nucleolar bodies is driven by pre-rRNA processing. J Cell Sci. 2012;125(Pt 19):4532-4542. doi: 10.1242/jcs.106419

 

  1. Sen Gupta A, Sengupta K. Lamin B2 modulates nucleolar morphology, dynamics, and function. Mol Cell Biol. 2017;37(24):e00274-17. doi: 10.1128/mcb.00274-17

 

  1. Li D, Cao R, Li Q, et al. Nucleolus assembly impairment leads to two-cell transcriptional repression via NPM1-mediated PRC2 recruitment. Nat Struct Mol Biol. 2023;30(7):914-925. doi: 10.1038/s41594-023-01003-w

 

  1. Lafita-Navarro MC, Conacci-Sorrell M. Nucleolar stress: From development to cancer. Semin Cell Dev Biol. 2023;136:64-74. doi: 10.1016/j.semcdb.2022.04.001

 

  1. Casafont I, Bengoechea R, Navascués J, Pena E, Berciano MT, Lafarga M. The giant fibrillar center: A nucleolar structure enriched in upstream binding factor (UBF) that appears in transcriptionally more active sensory ganglia neurons. J Struct Biol. 2007;159(3):451-461. doi: 10.1016/j.jsb.2007.05.004

 

  1. Lafarga M, Villegas J, Crespo D. Changes in nucleolar morphology and volume of the supraoptic nucleus neurons during postnatal development of the rat. Brain Res. 1985;354(2):310-313. doi: 10.1016/0165-3806(85)90185-3

 

  1. Clark P, Jones KJ, LaVelle A. Ultrastructural and morphometric analysis of nucleolar and nuclear changes during the early growth period in hamster facial neurons. J Comp Neurol. 1990;302(4):749-760. doi: 10.1002/cne.903020407

 

  1. Pietrzak M, Smith SC, Geralds JT, Hagg T, Gomes C, Hetman M. Nucleolar disruption and apoptosis are distinct neuronal responses to etoposide-induced DNA damage. J Neurochem. 2011;117(6):1033-1046. doi: 10.1111/j.1471-4159.2011.07279.x

 

  1. Parlato R, Kreiner G, Erdmann G, et al. Activation of an endogenous suicide response after perturbation of rRNA synthesis leads to neurodegeneration in mice. J Neurosci. 2008;28(48):12759-12764. doi: 10.1523/jneurosci.2439-08.2008

 

  1. Casafont I, Palanca A, Lafarga V, Berciano MT, Lafarga M. Effect of ionizing radiation in sensory ganglion neurons: Organization and dynamics of nuclear compartments of DNA damage/repair and their relationship with transcription and cell cycle. Acta Neuropathol. 2011;122(4):481-493. doi: 10.1007/s00401-011-0869-0

 

  1. Zhang H, Wang JC, Liu LF. Involvement of DNA topoisomerase I in transcription of human ribosomal RNA genes. Proc Natl Acad Sci U S A. 1988;85(4):1060-1064. doi: 10.1073/pnas.85.4.1060

 

  1. Bemiller PM, Lee LH. Nucleolar changes in senescing WI-38 cells. Mech Ageing Dev. 1978;8(6):417-427. doi: 10.1016/0047-6374(78)90041-6

 

  1. Tiku V, Jain C, Raz Y, et al. Small nucleoli are a cellular hallmark of longevity. Nat Commun. 2017;8:16083. doi: 10.1038/ncomms16083

 

  1. Yang K, Wang M, Zhao Y, et al. A redox mechanism underlying nucleolar stress sensing by nucleophosmin. Nat Commun. 2016;7:13599. doi: 10.1038/ncomms13599

 

  1. Marquez-Lona EM, Tan Z, Schreiber SS. Nucleolar stress characterized by downregulation of nucleophosmin: A novel cause of neuronal degeneration. Biochem Biophys Res Commun. 2012;417(1):514-520. doi: 10.1016/j.bbrc.2011.11.152

 

  1. Tsekrekou M, Stratigi K, Chatzinikolaou G. The nucleolus: In genome maintenance and repair. Int J Mol Sci. 2017;18(7):1411. doi: 10.3390/ijms18071411

 

  1. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. The nucleolus under stress. Mol Cell. 2010;40(2):216-227. doi: 10.1016/j.molcel.2010.09.024

 

  1. Lee C, Smith BA, Bandyopadhyay K, Gjerset RA. DNA damage disrupts the p14ARF-B23(nucleophosmin) interaction and triggers a transient subnuclear redistribution of p14ARF. Cancer Res. 2005;65(21):9834-9842. doi: 10.1158/0008-5472.Can-05-1759

 

  1. Ren X, Hu B, Song M, et al. Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep. 2019;26(13):3643-3656.e7. doi: 10.1016/j.celrep.2019.02.088

 

  1. Iacono D, O’Brien R, Resnick SM, et al. Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol. 2008;67(6):578-589. doi: 10.1097/NEN.0b013e3181772794

 

  1. Mann DM, Marcyniuk B, Yates PO, Neary D, Snowden JS. The progression of the pathological changes of Alzheimer’s disease in frontal and temporal neocortex examined both at biopsy and at autopsy. Neuropathol Appl Neurobiol. 1988;14(3):177-195. doi: 10.1111/j.1365-2990.1988.tb00880.x

 

  1. Honda K, Smith MA, Zhu X, et al. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem. 2005;280(22):20978-20986. doi: 10.1074/jbc.M500526200

 

  1. Ding Q, Markesbery WR, Cecarini V, Keller JN. Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer’s disease. Neurochem Res. 2006;31(5):705-710. doi: 10.1007/s11064-006-9071-5

 

  1. Ding Q, Markesbery WR, Chen Q, Li F, Keller JN. Ribosome dysfunction is an early event in Alzheimer’s disease. J Neurosci. 2005;25(40):9171-9175. doi: 10.1523/jneurosci.3040-05.2005

 

  1. Da Silva AM, Payão SL, Borsatto B, Bertolucci PH, Smith MA. Quantitative evaluation of the rRNA in Alzheimer’s disease. Mech Ageing Dev. 2000;120(1-3):57-64. doi: 10.1016/s0047-6374(00)00180-9

 

  1. Tavares WM, Sperança MA, De Labio RW, et al. Apolipoprotein E4 allele and ribosomal genes in Alzheimer’s disease. J Alzheimers Dis. 2004;6(4):391-395; discussion 443-449. doi: 10.3233/jad-2004-6406

 

  1. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008;105(2):716-721. doi: 10.1073/pnas.0706729105

 

  1. Li D, Zhang J, Wang M, et al. Activity dependent LoNA regulates translation by coordinating rRNA transcription and methylation. Nat Commun. 2018;9(1):1726. doi: 10.1038/s41467-018-04072-4

 

  1. Zaidi SH, Malter JS. Nucleolin and heterogeneous nuclear ribonucleoprotein C proteins specifically interact with the 3’-untranslated region of amyloid protein precursor mRNA. J Biol Chem. 1995;270(29):17292-17298. doi: 10.1074/jbc.270.29.17292

 

  1. Lin J, Lai S, Jia R, et al. Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Nature. 2011;469(7331):559-563. doi: 10.1038/nature09688

 

  1. Caccamo A, Branca C, Talboom JS, et al. Reducing ribosomal protein S6 kinase 1 expression improves spatial memory and synaptic plasticity in a mouse model of Alzheimer’s disease. J Neurosci. 2015;35(41):14042-14056. doi: 10.1523/jneurosci.2781-15.2015

 

  1. Zhu X, Raina AK, Rottkamp CA, et al. Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem. 2001;76(2):435-441. doi: 10.1046/j.1471-4159.2001.00046.x

 

  1. Proctor CJ, Gray DA. GSK3 and p53 - is there a link in Alzheimer’s disease? Mol Neurodegener. 2010;5:7. doi: 10.1186/1750-1326-5-7

 

  1. Comptdaer T, Tardivel M, Schirmer C, Buée L, Galas MC. Cell redistribution of G quadruplex-structured DNA is associated with morphological changes of nuclei and nucleoli in neurons during tau pathology progression. Brain Pathol. 2025;35(2):e13262. doi: 10.1111/bpa.13262
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing